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Appearance traits in fish, those external body characteristics that influence consumer
acceptance at point of sale, have come to the forefront of commercial fish farming, as
culture profitability is closely linked to management of these traits. Appearance traits
comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these
traits in different fish reveals significant genetic variation within populations, indicating
potential for their genetic improvement. Work into ascertaining the minor or major genes
underlying appearance traits for commercial fish is emerging, with substantial progress in
model fish in terms of identifying genes that control body shape and skin colors. In this
review, we describe research progress to date, especially with regard to commercial fish,
and discuss genomic findings in model fish in order to better address the genetic basis
of the traits. Given that appearance traits are important in commercial fish, the genomic
information related to this issue promises to accelerate the selection process in coming
years.
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INTRODUCTION
Over the past few decades, body shape and skin pigmentation have
become valuable appearance traits in commercial fish (Table 1).
Due to increasing market sophistication, fish size, meat quality,
and other traditional traits are not the only attributes that influ-
ence consumer choice at point of sale, especially when fish are sold
whole.

On the subject of skin pigmentation, previous work con-
ducted in other livestock species has demonstrated that proper
handling of pigmentation traits allows for response to consumer
demands for various food products, such as skin color in pigs
and egg shell, yolk, and skin color in chickens (see review
by Hudon, 1994). This topic is relevant for producers because
the color of a food product is a quality attribute for the con-
sumer. For example, consumers perceive redder salmon filets
as being fresher, better-tasting, and higher quality as compared
with paler salmon, and, therefore, they are willing to pay sig-
nificantly more for the product (Anderson, 2000; Alfnes et al.,
2006). Therefore, to satisfy modern market demands and increase
profitability, producers are forced to manage external traits more
intensively on an industrial scale, in particular body shape and
skin color.

However, this is not an easy task, because body shape
and skin color in fish are complex traits, involving numer-
ous genetic and environmental factors. Thus, progress in this
field will depend in part on dissecting the underlying genetics
of these traits for future implementation of modern selection
strategies, such as marker-assisted selection based on molecular
data.

In commercial fish, such as the common carp, tilapia, sea
bream, and salmonids (Pillay and Kutty, 2005), this strategy will
complement progress made to date based solely on breeding values
estimated with phenotypic and genealogical information or clas-
sical genetics which, for example, has enabled the development of
new strains (Figure 1).

Further understanding of this issue may be gained from
progress achieved in model and ornamental fish, where char-
acterization of the inheritance mode of mutation, genes,
and quantitative trait loci (QTL) for external traits is more
advanced.

In this review, we describe efforts made to improve the external
traits in commercial fish based on classical genetic approaches,
as well as recent progress in genomics, the latter initially aimed
at identifying the specific region that harbors genes controlling
quantitative traits. This information, together with data available
on this issue in model fish, will enhance progress in this field, an
objective of tremendous importance for producers who need to
increase the competitiveness of their cultures by managing external
characteristics that give added value to cultured fish.

FISH BODY SHAPE
In common carp, one of the first domesticated fish in the world
(Balon, 2004), the long process of domestication has produced a
domesticated phenotype very different from the wild-type phe-
notype (Ankorion et al., 1992; Zhang et al., 2013). Many of these
changes have arisen due to intentional selection of traits, but it
is equally true that many traits are the result of an unintentional
selection process. This phenomenon emerged as a result of the
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Table 1 | Examples of appearance traits for body shape and skin pigmentation used in fish farming.

Category of trait Species Strains Trait characteristic Practical application Reference

Body shape Common carp

(Cyprinus carpio)

Aischgrund and

Galician

High-backed To increase esthetics of body

shape

Ankorion et al. (1992)

var. wuyuanensis

(also called Purse red

carp)

Broadly elliptical body (red

skin); standard length to

body height ratio: 2.3

To increase esthetics,

creating a desirable “wallet”

shape and all-red body color

Zhang et al. (2013)

var. haematopterus

(also called Amur

wild carp)

Spindle-shaped body

(steel-gray skin); standard

length to body height ratio:

3.5

To increase desirability for

sport fishing (its body is

elongated, making it an

excellent sport fish)

Zhang et al. (2013)

Rainbow trout

(Oncorhynchus

mykiss)

Finnish national

breeding program

Slender body (i.e., low body

height to length ratio; silvery

skin with fewer spots)

To produce fish more visually

appealing desirable for the

whole carcass market

Kause et al. (2003)

Skin color Tilapia

(Oreochromis

niloticus)

Red strains (red

Stirling, red Yumbo,

etc)

Red body color without signs

of normal black pigmentation

of wild-type fish

To add value to the final

product

McAndrew et al. (1988),

Moreira et al. (2005)

Rainbow trout

(Oncorhynchus

mykiss)

Blue Back Intense bluish back; whitish

belly; reduced number of

dark spots, both on the back

and below the lateral line

To satisfy market demands Colihueque et al. (2011)

adaptation of fish to captive conditions, quite different than the
natural environment inhabited by wild-type fish.

The domesticated phenotype phenomenon arises because the
body shape of an organism results from the integration of mor-
phological, behavioral, and physiological traits (Reid and Peichel,
2010), where different genetic and environmental pressures can
lead to functional trade-offs (Reznick and Ghalambor, 2001;
Ghalambor et al., 2003; Walker, 2010). This creates functional
constraints, where those changes with the greatest positive and
fewest negative effects on fitness will be selected (Reid and Peichel,
2010). For example, in natural populations, there is a relation-
ship between body shape and swimming performance, but body
shape is also influenced by foraging behavior, the risk of pre-
dation, and stream velocity (Webb, 1984; Walker, 1997). The
trade-off for body shape also operates in captive populations.
For instance, cultured populations of rainbow trout selected
for rapid growth result in more rotund fish, given the exis-
tence of a positive genetic correlation of body mass with body
shape and condition factor (Gjerde and Schaeffer, 1989; Kause
et al., 2003); that is, mass gain in fish achieved by increas-
ing body width and height rather than by increasing body
length.

It has been shown that other factors, such as water velocity
(Pakkasmaa and Piironen, 2001), rearing environment (Swain
et al., 1991), fish density, and diet (Higgs et al., 1992; Einen
et al., 1998; Jenkins et al., 1999) may also modify body shape in
fish. This phenomenon occurs given that many morphological
growth-related traits show phenotypic and genetic correlations
in fish (Kause et al., 2003; Martyniuk et al., 2003), whose origins

are related to the genetic architecture of traits such as covaria-
tion in QTL location or conservation of chromosomal regions
homologous across species (Reid et al., 2005).

In common carp, this process has produced various phe-
notypes of commercial value that are currently used in fish
farming, such as the high-backed and elliptical body shape
morphs, typical of the Galician and Wuyuanensis strains, respec-
tively (Ankorion et al., 1992; Zhang et al., 2013). Even this
process of domestication can reach a high level of body shape
modification, such as it has been observed in the ornamen-
tal goldfish (Carassius auratus), where various morphological
traits have been modified (e.g., body shape, fins, and eyes).
Several of these modified traits can be found in the same indi-
vidual, giving rise to popular strains called “monstrosities” (Balon,
1990).

Alterations of morphology characteristics, mainly body length
and fins (Haffter et al., 1996) can also be seen in mutants of
zebrafish (Danio rerio). In the guppy (Poecilia reticulate), varia-
tion in male body shape occurs in association with mating success
(Tripathi et al., 2009). Therefore, available evidence in fish indi-
cates that these organisms are highly amenable to morphological
modification, already widely explored in ornamental as well as in
model fish.

The underlying genetics of phenotypic variation is beginning
to be understood in various commercial fish (Massault et al., 2009;
Loukovitis et al., 2013; Zhang et al., 2013). These studies are focus-
ing on finding significant QTL for morphometric traits based
mostly on geometric morphometry; in these analyses, different
types of molecular markers have been used. These investigations
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FIGURE 1 | Examples of commercial fish strains with improved skin

pigmentation and body shape. (A) A wild-type tilapia (Oreochromis
niloticus) with normal black pigmentation; (B) a red strain tilapia (red
Yumbo) with improved red skin pigmentation; (C) a wild-type rainbow trout
(Oncorhynchus mykiss) with normal pigmentation and (D) a Blue Back
rainbow trout with improved intense bluish back, whitish belly, and a
reduced number of dark spots; (E) a common carp (Cyprinus carpio) of var.
haematopterus (or Amur wild carp) with a spindle-shaped body and
steel-gray skin color; and (F) a common carp of var. wuyuanensis with
improved broadly elliptical body (red skin color).

are contributing to our understanding of the genetic architecture
of divergence in body shape, by means determining the number of
genes or QTLs that contribute to a particular trait, or the number
of traits that a particular gene or QTL affects, i.e., the pleiotropic
effect, and the location of genes or QTLs within the genome that
affect body shape, along with their interaction.

Progress in model fish should be mentioned here, particu-
larly in zebrafish (Haffter et al., 1996) where a set of dominant
Mendelian loci affecting body shape and fins in induced mutants
have been identified. For example, loci that affect body shape
may cause a reduction of overall body length in the adult fish,
due to a reduction either in the length of vertebrae (stöpsel
mutant) or number of vertebrae (däumling mutant). Interest-
ingly, mechanisms of body shape variation involving axial length
modification also occur naturally across several fish species (Ward
and Mehta, 2010), which indicates that this mechanism has
been of evolutionary significance for body form differentiation in
fish.

Recent work on QTL searching in commercial fish clearly sup-
ports the existence of major genes underlying the quantitative
genetic variation of morphological and body shape-related traits
(Table 2). In Gilthead seabream (Sparus aurata), Loukovitis et al.
(2013), using half-sib regression analysis, found significant mor-
phology QTLs, e.g., distances from pectoral fin to dorsal fin
or from pectoral fin to anal fin (see Table 2), in three link-
age groups (9, 21, and 25) identified at genome-wide level that
explain 18.5 to 27.1% of trait variation. This result suggests
the existence of one locus in each linkage group affecting sev-
eral traits in this fish. Moreover, given that QTLs affecting body
weight were located at the same positions for the linkage groups
9 and 21 (Loukovitis et al., 2011), the authors conclude that
there might be only one pleiotropic QTL in each LG affecting
overall body size. This is in accordance with the high genetic
correlations (rG > 90%) observed between all traits analyzed
(see Table 2), including body weight. These results, combined
with those obtained from previous studies (Boulton et al., 2011),
underline highly significant loci affecting overall morphology in
S. aurata.

On the other hand, using half-sib regression analysis and vari-
ance component analysis at the genome-wide level in sea bass
(Dicentrarchus labrax), six significant QTLs for a combination of
morphometric traits (standard length, head length, body length,
pre-anal length, abdominal length, post-anal length, head depth,
body depth; see Table 2) on linkage groups 1B, 4, 6, 7, 15, and
24 were reported by Massault et al. (2009). These QTLs explain
between 9.4 and 16% of phenotypic variance. In this study, a
body weight QTL was discovered at the same linkage groups
(linkage groups 4 and 6) and at similar positions as morphol-
ogy QTLs, which might explain the high correlation observed
between body weight and all morphometric traits studied in this
fish.

Moreover, in common carp (Cyprinus carpio), in a primary
genome-wide scan using single nucleotide polymorphisms (SNPs)
and microsatellite markers, Zhang et al. (2013) found five signifi-
cant QTLs for body-shape related traits (body height, body width
and standard length) located at linkage groups 1, 12, and 20, which
explain 20.4 to 20.7%, 18.9 to 21.1%, and 19.5% of phenotypic
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Table 2 | Examples of QTLs for body shape-related traits mapped on different commercial fish genomes.

Species Trait Linkage group (LG) where QTLs were

detected. Name of QTL (bold), linked

markers, and respective phenotypic

variation noted in parentheses

Reference

Gilthead seabream

(Sparus aurata)

Standard length, body length, pectoral dorsal 1,

pectoral dorsal 2, body length 2, pectoral anal 2,

pectoral anal 1, dorsal fin length, belly length, body

depth 2, body depth 3, head length

LG-9 (SL, BL, PecDor1, Pecdors2, BL2,

PectAnal1, PecAnal2, Bd20, 18.5–23%)

LG-21 (DFL, BellyL, BD2, BD3, ELD36 and

SAGT1, 18.6–27.1%)

LG-25 (HL, 22.6%)

Loukovitis et al. (2013)

Sea bass

(Dicentrarchus

labrax )

Combination of morphometric traits (standard

length, head length, body length, pre-anal length,

abdominal length, post-anal length, head depth,

body depth)

LG-1B (MORPH, 14%)

LG-4 (MORPH, 13%)

LG-6 (MORPH, 9.4%)

LG-7 (MORPH, 16%)

LG-15 (MORPH, 12%)

LG-24 (MORPH, 13%)

Massault et al. (2009)

Common carp

(Cyprinus carpio var.

haematopterus)

Body height

Body width

Standard length

LG-1 (qbh1, snp0163, 20.4%; qbw1, snp0163,

20.7%)

LG-12 (qsl12, snp0315, 21.1%; qbh12,

snp1133, 18.9%)

LG-20 (qbh20, hlj1717, 19.5%)

Zhang et al. (2013)

QTLs were detected at genome-wide level using permutation tests at a significance threshold value of P < 0.05 for S. aurata and D. labrax, and of P < 0.01 for
C. carpio.

variance, respectively. Given that QTLs of linkage group 1 were
located in the same interval, it was concluded that only one QTL
produced pleiotropic effects on these traits, which was not the
case for QTLs found in linkage group 12, indicating that different
factors control the traits. Importantly, this study provides strong
evidence that the marked body shape differences of Cyprinus carpio
populations, in particular between Cyprinus carpio var. wuyuanen-
sis and Cyprinus carpio var. haematopterus, depend on quantitative
genetic variations that control different body shape-related traits
that may have originated through the process of selective breeding
that has occurred for decades in this species.

In salmonids, another important group of commercial fish (Pil-
lay and Kutty, 2005), progress has been made in this field through
QTLs searching, mainly for growth-related traits, including fork
length, body weight, and Fulton’s condition factor, and also for
meristic traits (for review see Araneda et al., 2008). For example,
in Atlantic salmon (Salmo salar), four QTLs for condition factor
and two for body weight were detected in comparative studies with
rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus
alpinus). One strong QTL explaining 20.1% of variation in body
weight was found on linkage group AS-8, while another QTL with
a strong effect on condition factor accounting for 24.9% of trait
variation was found on linkage group AS-14. This result suggests
that a significant portion of quantitative variation in body weight
and condition factor in this species is under the control of a few
QTLs with relatively large effects.

However, to date no study has been specifically undertaken
to search QTLs in salmonids based on the geometric morphol-
ogy method. It is noteworthy that in some species of this group,
such as rainbow trout, a marked intra- and inter-population dif-
ferentiation in body shape has been observed (Kause et al., 2003;
Hecht et al., 2012; Pulcini et al., 2013). For example, Pulcini et al.
(2013), in a common-garden experiment, found a marked mor-
phological variation in body shape traits such as body profile,
head length, dorsal and anal fin length, and caudal peduncle
size, using geometric morphometry among wild, semi-wild and
domestic lines of this species. Domestic lines have a deeper body
profile, with longer dorsal and anal fins and shorter and deeper
caudal peduncles than wild lines. This differentiation, attributed
to exposure of domestic lines to captive conditions, suggests that
the variations may result from fixed genetic differences among
lines due to the existence of QTL. Therefore, further QTL analy-
sis in rainbow trout would be useful in clarifying the underlying
genetics of this striking differentiation in body shape. To achieve
this goal the use of SNPs it is possible given that these markers
are considered to be the most desirable molecular markers for
developing high-density genome scan to discover and locate tar-
get genes underlying the quantitative traits (Wang et al., 1998).
This approach has been demonstrated to be efficient to dis-
cover several QTLs in guppy that control the complex patterns
of skin pigmentation of males (Tripathi et al., 2009). However,
it needs to use next-generation sequencing analysis to discover
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thousands of such SNPs (Miller et al., 2007; Davey et al., 2011) and
in several cases developing SNP chips to perform genome-wide
scans.

SKIN PIGMENTATION
The cellular basis of skin pigmentation in fish is well known. Skin
color depends on five types of pigment cells (or chromatophores)
known as melanophores, xanthophores, erythrophores, iri-
dophores, and leucophores, each producing a different color (black
or brown, yellow or orange, red, iridescent, blue, silver or gold,
and white, respectively; Fujii, 1969, 1993). The underlying genet-
ics of skin pigmentation phenotype, however, has been explored
mostly for qualitative traits by means of large-scale analyses of
natural or induced color mutants, mainly in model fishes (see
review by Colihueque, 2010). Evidence from studies in these
and in other fish species indicates that the inheritance mode
of qualitative traits for skin pigmentation has a simple genetic

basis (Tave, 1986), i.e., a monogenetic control, which may be
recessive, completely/incompletely dominant, and co-dominant
or sex-linked. Moreover, these studies indicate that several genes
participate in producing a specific skin color or color pattern that
may be involved in chromatophore development, pigment synthe-
sis, and pigment expression. For example, about 90 and 40 genes
of this type have been identified in zebrafish and medaka (Oryzias
latipes), respectively, that control specification, proliferation, sur-
vival, differentiation, and distribution of chromatophores, among
other processes.

However, recent studies emphasize that skin pigmentation
in fish can also possess a more complex genetic architecture,
characterized by specific genome regions that harbor genes
controlling quantitative traits (Table 3). For example, in the
threespine sticklebacks (Gasterosteus aculeatus), two significant
QTLs on linkage groups 1 and 6 that control the degree of bar-
ring and explain 26.6% of the variance of the trait were found

Table 3 | Examples of QTLs for skin pigmentation traits mapped on different fish model genomes.

Species Trait Linkage group (LG) where QTLs were detected. Name

of QTL (bold), linked markers, and respective

phenotypic variation noted in parentheses

Reference

Threespine sticklebacks

(Gasterosteus aculeatus)

Degree of barring

Degree of melanization

Number of dorsal melanophores

Number of ventral

melanophores

LG-1 (barring, chrI:3310077, 6.6%)

LG-1 (melanization, chrI:4816374, 11.7%) LG-6 (barring,

chrVI:15780594, 20%)

LG-1 (ventral melanophores, chrI:21909727, 8.9%)

LG-7 (dorsal melanophores, chrVII:1728753, 11.6%)

Greenwood et al. (2011)

Guppy (Poecilia

reticulate)

Dorsal fin black area

Dorsal fin orange area

Central blue white spot

Anterior main black stripe

Anterior orange spot

Black spot by gonopodium

Central orange spot

Posterior main black stripe

Posterior ventral black stripe

Posterior orange spot

Hind fin lower orange area

LG-1, LG-2, LG-4, LG-9, LG-12 (Dorsal fin black area,

22.9%)

LG-1, LG-2, LG-4, LG-6, LG-7, LG-16 (Dorsal fin orange

area, 26.8%)

LG-2, LG-12, LG-17, LG-21, LG-23 (Central blue white

spot, 26.5%)

LG-8, LG-19 (Anterior main black stripe, 9.4%)

LG-6, LG-7, LG-9, LG-12, LG-20 (Anterior orange spot,

23%)

LG-01, LG-04, LG-07, LG-12, LG-16 (Black spot by

gonopodium, 19.1%)

LG-05, LG-08, LG-20, LG-22 (Central orange spot,

15.3%)

LG-04, LG-10, LG-12, LG-13, LG-22, LG-23 (Posterior

main black stripe, 21.6%)

LG-01, LG-02, LG-13, LG-16, LG-18 (Posterior ventral

black stripe, 17.7%)

LG-08, LG-09, LG-15, LG-16, LG-18 (Posterior orange

spot, 26.2%)

LG-03, LG-04, LG-06, LG-12, LG-20 (Hind fin lower

orange area, 23.3%)

Tripathi et al. (2009)

QTLs were detected at genome-wide level using permutation tests at a significance threshold value of P < 0.05 for G. aculeatus and P. reticulate.
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(Greenwood et al., 2011). Given that these QTLs were asso-
ciated with spatial variation in melanophore number (linkage
group 6) and degree of melanization of melanophores (link-
age group 1), this finding reveals the existence of different loci
underlying variation in pigment patterns of this fish, which
shows striking diversity of among freshwater (barred) and marine
(unbarred) populations. Moreover, the number of dorsal and ven-
tral melanophores is also controlled by different loci in this fish,
since they were mapped to linkage group 7 and linkage group 1,
respectively.

Through synteny analysis, Greenwood et al. (2011) identified
the Gja5 gene contained in the barring QTL on linkage group 6,
which encodes a gap junction protein whose mutation disrupts the
normal pigmentation pattern in zebrafish, in which spots form
in place of the typical horizontal stripes, caused by an altered
melanophore distribution (Watanabe et al., 2006). Moreover, the
region on linkage group 1 that mapped QTLs associated with both
barring and degree of melanization contains the tyrosinase gene,
which encodes a key enzyme in melanin synthesis, whose muta-
tion eliminates all pigmentation in zebrafish and medaka (Koga
et al., 1995; Iida et al., 2004). Therefore, these results suggest that
a few genes with large effects underlie the pigmentation pattern
variation in the threespine sticklebacks.

In guppy males, a more complex control of pigmentation
pattern has been observed (Tripathi et al., 2009), including a phe-
notype characterized by multi-colored areas with an ornamental
function involved in female choice and in male mating success,
and therefore, important for male fitness. In the genome of this
fish, using interval mapping and the multiple-QTL model, 49
QTLs for 11 areas of pigmentation traits were found (see Table 3),
which explain 9.4 to 26.8% of phenotypic variation in these traits.
In addition, these QTLs were mapped in 19 out of 24 linkage
groups of this species, although mainly on linkage group 12 and
4. QTLs located on linkage group 12, which corresponds to the
sex chromosome of the guppy, indicate that loci responsible for
polymorphisms in guppy color patterns are clustered on this chro-
mosome. This result coincides with previous knowledge regarding
physical linkage of major color pattern loci to sex chromosomes
in this species (Winge and Ditlevsen, 1947; Khoo et al., 1999). In
summary, the results obtained in this fish strongly suggest that
multiple QTLs with minor effects contribute to each color trait in
guppy males.

In commercial fish, most color phenotypes of commercial value
are qualitative traits known to be under Mendelian control, such as
the Red Stirling strain of tilapia (Oreochromis niloticus; dominant
inheritance, McAndrew et al., 1988), or the iridescent metallic blue
variant of rainbow trout (recessive inheritance, Kincaid, 1975);
therefore, given its simple inheritance mode, they could be more
easily subjected to selective breeding for new stocks with particular
colors.

However, there are some rainbow trout skin pigmentation phe-
notypes of commercial value, such as the Blue Back (Colihueque
et al., 2011) and Finnish national breeding program (Kause et al.,
2003) traits with complex pigmentation patterns comprising sev-
eral attributes (skin color, number, size, and position of dark spots)
that vary continuously at the intrapopulation level. A substan-
tial quantitative genetic component for the different attributes

that compose these traits has been reported (Kause et al., 2003;
Díaz et al., 2011). As it has been seen in model fish, it is pos-
sible that these skin pigmentation traits may possess a complex
genetic architecture, with the existence of a variable number of
quantitative loci with a minor or major effect for the different
trait attributes. Further analysis of these traits will clarify their
particular genetic architecture.

CONCLUDING REMARKS
In farmed fish, several traits are taken into account in order to
obtain a quality fish harvest suitable for marketing. These traits
include body shape and skin pigmentation, both of which affect
consumer acceptance of marketed fish at the point of sale. A fish
with an improved appearance has greater consumer acceptance
and, therefore, has a higher sale value than a fish with a normal
appearance.

There has been some progress in this area with commercial
fish, including traditional and new cultures, mainly through
selective breeding or classical genetic analysis. This selection strat-
egy has resulted in new fish stocks whose market participation
is constantly increasing, contributing to the improved profitabil-
ity of fish cultures. This trend is expected to continue over the
next few years due to the sophistication of the market in many
areas of the world. Therefore, there is interest in fish selection
to ensure specimens that are visually appealing, for example,
tilapia, rainbow trout, common carp, gilthead sea bream, and
sea bass.

However, to meet this challenge, fish farmers must adapt and
align their selective breeding goals with market demands. One
tool that may be explored to achieve this objective derives from
the discovery of QTLs or genes that underlie body shape and
skin pigmentation, in which continuous variation of the dif-
ferent attributes that compose these traits is usually observed.
This information could be used to implement selective breeding
based on molecular markers tightly linked to QTLs that control
various appearance traits of commercial interest, that is, marker-
assisted selection. This strategy may offer a more rapid response,
yielding fish with a specific external appearance to satisfy market
demands.
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