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Abstract. Visual tracking is the task of estimating the trajectory of an
object in a video given its initial location. This is usually done by com-
bining at each step an appearance and a motion model. In this work, we
learn from a small set of training trajectory annotations how the objects
in the scene typically move. We learn the relative weight between the
appearance and the motion model. We call this weight: visual deceptive-
ness. At test time, we transfer the deceptiveness and the displacement
from the closest trajectory annotation to infer the next location of the
object. Further, we condition the transference on an event model. On a
set of 161 manually annotated test trajectories, we show in our experi-
ments that learning from just 10 trajectory annotations halves the center
location error and improves the success rate by about 10%.
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1 Introduction

Visual object tracking from static cameras is an important topic of computer
vision with applications in video surveillance, traffic monitoring, and augmented
reality [27]. Typically, visual tracking starts with the initial location of the object
in an initial frame. Then, an appearance model which is continuously updated
attempts to localize the object at each subsequent frame [20,18,16,19,8].

An aspect of tracking in surveillance video that is often disregarded is the
possibility to generalize from a set of annotated trajectories of other objects, i.e.
supervised learning of visual tracking. Using trajectories as training data poses
two main challenges which have discouraged the tracking community. First, tra-
jectories are sequential data and objects can adopt a wide variety of trajectories.
Hence, predicting trajectories is very challenging and its functional form is much
more complex than for recognition and detection [4]. Second, such annotations
are more costly to obtain than bounding boxes or class labels. Despite these
problems, we believe that trajectories are very informative for a given scene,
such that a few may suffice to robustly learn visual tracking. As any learning
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Fig. 1. At training time, we obtain trajectory annotations (1) we associate them to the
events in the scene and we learn their visual deceptiveness ρ (2). At test time (right),
we transfer displacement δ and deceptiveness ρ from the closest annotations in the
same event and combine it with the appearance model to predict the next location of
the object. (All our figures are best viewed in color)

scenario, our framework has two phases, as shown in Fig. 1. The first is a training

phase, where annotated data is collected for a scene and a model for tracking is
learnt. The second is to use this model to improve tracking in a test sequence
of the same scene, where previously unseen objects are tracked from their initial
bounding boxes. We run experiments on traffic surveillance videos and show that
even a few trajectory annotations considerably improve tracking performance.

Similar to other visual tracking methods, we use a mixture of appearance (A)
and motion (M) models [27]. Our motion model is based on transferring dis-
placements observed in the training set and the mixture weight ρ ∈ [0, 1] be-
tween A and M is determined at every step of tracking, also using transfer from
annotated trajectories (c.f. Fig. 1). In essence, this mixture weight captures the
situations in which the appearance of an object is not reliable for tracking. For
this reason, we refer to ρ as visual deceptiveness. Importantly, in our framework,
the user does not provide ρ for the ground-truth trajectories, but instead we
propose an automatic way to learn it. As we show in this paper, the regions with
high deceptiveness typically align with the failure cases of the appearance model:
occlusions with static objects, tracking of small objects, bad lighting conditions.

Furthermore, we propose to associate the trajectories and their deceptiveness
to the events discovered by [13]. In essence, [13] segments the video in consistent
optical flow prototypes. This association improves the robustness of our decep-
tiveness estimation and removes ambiguities when transferring displacements.
We show in our experiments that combining events and deceptiveness produces
the best results in our datasets and improves over the state of the art [6,7,8].

In summary, our main contributions are: i) A framework to learn the visual
deceptiveness of annotated trajectories, which are automatically selected; ii) A
motion model based on transferring displacement and deceptiveness from trajec-
tories; iii) The conditioning of this transfer on an event model; iv) The thorough
evaluation of performance on two fully annotated test videos (with 161 trajecto-
ries in total, publicly available online). In the following, we first discuss related
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work in Sec. 2. We then present our tracking model in Sec. 3 and, in Sec. 4, the
training procedure, i.e., how visual deceptiveness is learnt and tracks selected
for annotation. The conditioning on the event model is presented in Sec. 5 and
our experimental validation in Sec. 6. We draw conclusions in Sec. 7.

2 Related Work

There are many works on single and multiple target tracking [3,10,24,15,23]. The
most relevant ones are those based on motion prior and trajectory patterns.

Spatial Motion Prior. Several authors [1,30] have proposed tracking methods
that uses static, space-dependent fields as a motion prior. These works simply
encode the dominant direction of motion for each spatial region, limiting their
use to simple videos. Rodriguez et al. [22] extended this idea with a set of mo-
tion directions, able to capture time-varying patterns. Further spatio-temporal
dependencies between nearby motion patterns have been recently explored by
Liu et al. [17] for tracking sport players. There, the authors exploit correlations
between players and hand-designed motion rules for sport games.

We go beyond these works by conditioning our motion model spatially and
temporally, without any further assumptions on the type of scene. We rely on a
state-of-the-art unsupervised event discovery model [13] to capture, via optical
flow prototypes, the dynamics of motion in a scene.

Analyzing Trajectory Patterns. In our work, we automatically select which
trajectories should be annotated by a user. This relates to works, mostly on
human tracking, that find typical trajectories patterns in videos. Zhou et al. [31]
analyze the collective behavior of pedestrians in crowded scenes. They identify
trajectory clusters and derive a generative model from which trajectories can
be simulated. Similarly, when tracking in a simple physical environment, Kitani
et al. [11] are able to predict plausible paths and destinations of people. These
methods learn trajectory patterns in an unsupervised manner, hence assuming
that automatic tracking succeeds. They are thus limited to scenarios where fail-
ures are relatively rare. In difficult tracking situations, [29] and [17] resort to a
large amount of manually annotated trajectories. As this is very time-consuming,
they have focused on a domain where tracks can be easily re-used: sport fields.

In our traffic scenes, automatic tracks fail rather often, so manual annotations
are also necessary to correct them. To reduce the annotation cost as much as
possible, our method automatically selects which trajectories shall be annotated.

Combining Motion and Appearance. Combining appearance and motion
models has already been explored by various works. Yang and Nevatia [26] com-
bined motion patterns and appearance models for multiple object tracking, but
without assessing which component is more critical to the success of tracking.
Cifuentes et al. [2] studies tracking with moving cameras and automatically
chooses at each frame the most appropriate among six simple camera motion
models (e.g., “travelling”, “forward”, etc.). For single-object tracking, Kwon
and Lee [14] proposed an MCMC sampling method to select, at each frame, the
best tracker out of a pool of independent motion and appearance trackers.
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In these works, the trackers are independent or näıvely combined. In contrast,
we integrate motion and appearance in a single mixture model tracker, and we
learn at training time how to adapt this weight dynamically to minimize tracking
errors at test time. Notably, this weight (the visual deceptiveness) is not a fixed
value: it depends on the time and the location of the object to track.

3 Tracking with Motion and Deceptiveness Transfer

In this section, we describe our tracking model. For now, we assume that a set T
of trajectory annotations with their respective local deceptiveness is available.
As explained in the introduction, the visual deceptiveness ρ is a mixture weight
which has a high value when the appearance model is less reliable. Thus, it
identifies image regions where tracking based on appearance is more difficult.

More formally, let xk be the current estimated position of the tracked object at
frame k and y1:k be the set of all previous observations until this step. Then, like
most single object tracking methods [7,14], we compute the posterior distribution
of the location at frame k based on the following Bayesian filtering:

p(xk+1|y1:k+1) ∝ p(yk+1|xk+1)

︸ ︷︷ ︸
A(yk+1|xk+1)

1−ρ

∫
p(xk+1|xk)p(xk|y1:k)dxk

︸ ︷︷ ︸
M(xk+1|y1:k)

ρ

,
(1)

where we have highlighted the definitions of A, M and ρ. In the equation above,
we have abstracted the appearance model A, a motion model M and a weight
ρ between the two. The value of ρ depends on xk and determines the relative
weight between the motion model and the appearance model.

As appearance model, we use the tracker of [7], which was shown to be the
state of the art [25]. This model predicts the most likely location for the object
in frame k+1 based on the appearance model trained up to frame k.

Displacement Transfer Motion Model. Our motion model, illustrated in
Fig. 1, is based on transferring a displacement probability distribution from
ground-truth trajectories, which we model as a Gaussian distribution:

M(xk+1|y1:k) = N (xk + δ(xk), σM ), (2)

where δ(xk) is the displacement at xk as estimated from T , and σM is a fixed
variance. Note that xk is uniquely determined by y1:k. From T , we also estimate
ρ(xk), which leads to the following expression for the probability of xk+1:

p(xk+1|y1:k+1) ∝ A(yk+1|xk+1)
1−ρ(xk)N (xk + δ(xk), σM )ρ(xk). (3)

Similarly to [7], the scale and aspect ratio of the windows are sampled.

Nearest Neighbor Displacement and Deceptiveness Estimation from T .

Let T =
{
x̄i
k′ , i ∈ [1, · · · , N ]

}
be the set of annotated trajectories, where x̄i

k′ is
the bounding box of trajectory x̄i at time k′. Since T contains few annotations,
we estimate the displacement δ(xk) and deceptiveness ρ(xk) using the nearest
neighbour bounding-box x̄i

k′ of xk in T and use its deceptiveness ρ(x̄i
k′ ), but

only if x̄i
k′ is close enough. Formally, we use
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x̄i
k′ = argminb∈T d(xk, b) = ‖c(xk)− c(b)‖·(1−IoU (xk, b)), where c(·) is the center

of a window, ‖·‖ is the Euclidean norm and IoU (·, ·) is the intersection over union
of two windows, and:

δ(xk) =

{
x̄i
k′+1 − x̄i

k′ if d(xk, x̄
i
k′) ≤ κ

0 otherwise
and ρ(xk) =

{
ρ(x̄i

k′) if d(xk, x̄
i
k′) ≤ κ

0 otherwise.

(4)

That is, if x̄i
k′ is further than κ, our model falls back to the appearance model

alone. This κ threshold avoids transferring from too distant neighbours. In our
experiments, we use a σM of 2 pixels and a κ of 25.

4 Training Phase: Learning to Track

An important contribution of our work is to learn, from a set of trajectory an-
notations, the visual deceptiveness of the scene, c.f. Sec. 4.1. Annotating trajec-
tories is a tedious task, so we want to limit their number. We present in Sec. 4.2
a method to automatically select which tracks the user should annotate.

4.1 Learning the Visual Deceptiveness of Tracks

The crux of our system is the visual deceptiveness ρ ∈ [0, 1] of trajectories, i.e.,
the relative weight between motion and appearance models to be used when
tracking (c.f. Eq. (3)). We propose to learn it in 2 steps from a set of anno-
tated trajectories T . We first learn a raw deceptiveness ρ̃ independently for each
ground-truth trajectory. As ρ̃ tends to overfit to its own track, in the second
step we diffuse it across neighboring trajectories to obtain a more consistent
deceptiveness ρ that generalizes better. We detail these steps below.

Learning Raw Deceptiveness from One Trajectory. In this section we
want to learn the raw deceptiveness ρ̃ of a single ground-truth trajectory. This
is a vector of values ρ̃k for each frame k in the trajectory. We learn it by tracking
the object automatically and seeing where and how much ground-truth motion
information is needed to reproduce the ground-truth object trajectory.

Problem formulation. We start with the important observation that ρ̃ should
be sparse, i.e., rely on appearance as much as possible instead of motion. This
prevents overfitting and ensures that unobserved or unexpected behavior of the
objects will still be captured. In other words, we want ρ̃> 0 only when strictly
necessary. We encode this objective with the following optimization problem:

minimize
ρ̃

T∑

k=1

ρ̃k

subject to ∀k ∈ [1, T ], 0 ≤ ρ̃k ≤ 1,

trackingError(ρ̃) ≤ θ,

(5)
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Fig. 2. We learn how to make the tracker reproduce a trajectory that is closer than
trackingError to the ground-truth. We start by completely trusting appearance (ρ̃=0)
and we track with it. If trackingError goes over θ then an update is applied to ρ̃

and we restart tracking. The process is repeated until ρ̃ is high enough to fulfill the
trackingError constraint. (NB: The original images have been flipped for clarity.)

where trackingError is a function that measures the overall error made by the
tracker over the full trajectory and θ ≥ 0 is the threshold we use to decide
whether the tracking was successful. In our experiments, we use the common
Center Location Error (CLE) as trackingError. When tracking an object during

T frames, trackingError =
∑T

k=1 ξk /T , where ξk is the distance at frame k
between the center location of the automatic and the ground-truth trajectories.

Note that a solution always exists: setting ρ̃ to 1, the tracker is simply re-
producing the ground-truth and the trackingError is 0. In practice, this never
happens with the relatively loose error threshold θ of 15 pixels that we use.

Deceptiveness as a set of local Gaussian updates. The optimization problem in
Eq. (5) is very general and complex to solve because the tracking error depends
on the full trajectory and the full sequence of ρ̃. Fortunately, we can exploit the
cumulative nature of trackingError and the sequential properties of tracking (as
detailed below and in the supplementary material) to derive an efficient algo-
rithm that starts from ρ̃ = 0 and iteratively increments it until the trackError
constraint is fulfilled. To do so, we propose to model ρ̃ as the truncated sum of
a set of local spatial Gaussian updates G={g(·|k′i)}i=1...Nc

, where each Gaussian
update g has a fixed standard deviation σup and is centered around a frame k′i:

ρ̃k = min

(
1,

Nc∑

i=1

g(k|k′
i)

)
, g(k|k′

i) = Ñ (s(k)|s(k′
i), σup), (6)
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Fig. 3. Learning ρ̃ independently for each object can give different results. Compared
to b), a) is easier to track because it is bigger and c) is harder to track because it
contrasts more with the occluding traffic lights.

where s(k) is the cumulative distance from the frame 1 to frame k. Since the
values of ρ̃ are now sums over local Gaussian updates, learning ρ̃ becomes finding
the (small) set G of frames k′i where to apply those updates. Notably, multiple
updates will accumulate near the most deceptive regions of a track.

In practice, we set σup to the size of the bounding box and g has a maximum

response of 0.2 at the center of the Gaussian, hence the notation Ñ .

Optimization process. Using this new definition of ρ̃, we now describe our vari-
ation of backjumping [21] to optimize of Eq. (5), as illustrated in Fig. 2. We
initialize G = ∅ , ρ̃ = 0 and k = 1, and repeat the following steps:

1. We track the object using ρ̃ from frame k until failure or end of track.
If we reached the end of the track, we return ρ̃ as the solution.
Otherwise we continue with the following:

2. We find the frame k′ where the relative acceleration between the track and
the ground-truth is maximum, i.e., we use the 2nd-order derivative of ξk.
We add g(·|k′) to the set of local updates G and remove from G all the
updates on later frames, since they are now potentially irrelevant.

3. We recompute ρ̃ as for the new set of local Gaussians G. Let k′′ < k′ be the
first frame for which the deceptiveness was impacted by this update.

4. We set k = k′′−1 and go back to step 1.

In this algorithm, we have exploited many observations. First, trackingError
is cumulative, hence we know that the tracking has failed as soon as the partial
error reaches θ. Second, a failure at frame k can only be recovered with updates
on earlier frames. Finally, an update at frame k invalidates all the later updates
but does not affect earlier tracking.

To further prevent overfitting, we post-process as described below the decep-
tiveness of ground-truth tracks ρ̃ to ensure spatial consistency.

Spatial Diffusion of Raw Deceptiveness. Some objects, due to size and
appearance, are harder to track than others, c.f. Fig. 3. Therefore, the learnt ρ̃
are not always good estimates of the deceptiveness for all tracks. We aim to learn
an underlying deceptiveness ρ that is consistent for neighboring annotations,
hence finding regions in the scene where appearance is deceiving, c.f. Fig. 4.

To this end, we propose diffusing the ρ̃ across the image pixels with [12], em-
ploying a grid-graph with 8-connected neighbourhoods. The graph has pairwise
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Fig. 4. Comparison of raw and consistent deceptiveness. Note the variability of ρ̃ and
how ρ manages to detect the underlying difficult zones, cropped occlusions in b). The
intensity of ρ translates to the difficulty of the occlusions.

Fig. 5. Trajectory annotations we obtain with the IAP annotation selection method

potentials encouraging smoothness via l2-norm between neighbouring ρ values
and unaries trying to preserve the original ρ̃. Specifically, we define Nij as the
number of trajectories that include pixel (i, j). For each pixel (i, j) with at least
one observation (Nij > 0), we assign it a representative observation ρ̃ij , which
is the average of the observations in a spatial neighbourhood of radius of 25% of
the average size of the windows. We then use ρ̃ij to define unary potentials:

Uij(ρ) =

{
N (ρ|ρ̃ij , σD) if Nij > 0
Unif(0, 1) otherwise,

(7)

which we discretize uniformly in 11 values: 0, 0.1, . . . , 1. That is, for pixels with
observations (Nij > 0) our unary is a Gaussian centered around ρ̃ij with a fixed
standard deviation σD=0.2. Otherwise (Nij = 0), the unary is uniform.

Our experiments show that this diffusion improves tracking at test time.

4.2 Automatic Annotation Selection

In our work, we aim at improving tracking performance by exploiting trajectory
annotations. As already argued, we want to limit the number of annotations
that the user has to provide. Thus, we propose to first automatically select the
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most representative and diverse trajectories using a variant of Affinity Propaga-
tion (AP, [5]), which we denote as Incremental Affinity Propagation (IAP).

Using AP is beneficial in our scenario. First, it is a clustering algorithm which
is based on data similarities, which are more natural for sequential data such
as tracks than data points. Second, AP is an exemplar-based clustering method
that selects the data sample that is the most representative for each cluster.

However, AP has the drawback that the exemplars for K clusters need not be
a superset of the exemplars for K ′ < K clusters. Ideally, if the user has already
annotated K ′ tracks, observes that the performance can still be improved and
believes that annotating K > K ′ could help, then only K−K ′ new tracks should
be needed, and not K. Thus, whether the user chooses to annotate tracks one-
by-one or by batches has no influence on the final tracking performance.

To achieve this property, we use the so-called data preference value Pi to
ensure that, when AP returns a set ψN of N exemplars, it is a superset of ψN−1.
This is done in a incremental fashion by modifying Pi dynamically, using P k

i at
step k. We start with P 1

i = λ1, a constant value determined so that only one
exemplar is chosen: ψ1 = {ti1}. Then, at each subsequent step k ≥ 2, we assign
an infinite preference to the already selected trajectories ψk−1, i.e., P

k
i = ∞ if

ti ∈ ψk−1, and λk otherwise. λk is found by bisection such as AP returns a set
of k exemplars, ψk. In practice, the sequence of λk is progressively increasing.
This process is repeated until N trajectories have been incrementally clustered.

To define track similarities, we first represent a track ti by a set of Q =
50 trajectory centers interpolated uniformly in space: ti =

{
cij , j = 1 . . .Q

}
.

Interpolation in space is a very effective way to account for variation in time
and speed, while avoiding to resort to more complex methods such as dynamic
time warping. Then, for a pair of trajectories (ti, tj), we define their asymmetric

similarity ŝ(ti, tj) as ŝ(ti, tj) = −
∑Q

k=1 minl ‖cik − cjl ‖
2. Finally, we symmetrize

the similarities using S(ti, tj) =
1
2 (ŝ(ti, tj) + ŝ(tj , ti)).

Fig. 5 shows the trajectory annotations we obtain with this procedure. We
show in the experiments that IAP yields more useful annotations than a random
trajectory selection, especially for a small number of annotations.

5 Conditioning Transfer on an Event Model

The flow of objects in structured scenes typically presents patterns and spatio-
temporal dependencies [13,1]. We build upon the model and code of [13] to
exploit this idea and improve tracking performance. Put simply, [13] learns a
Hidden Markov Model (HMM) temporal segmentation of the video by finding
prototypical optical flows, (c.f. Fig. 6). The states of the HMM correspond to
events and the transition probabilities between such events are also learnt. We
can use this HMM to assign a global event to each frame in a video of the same
scene. In our videos, it successfully detects high-level sequences in the scene, such
as traffic light cycles. Among the benefits of [13], it is completely unsupervised,
so we train it with sequences of 30 minutes without requiring any user interaction,
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Fig. 6. Illustration of our full learning phase with 40 annotations for Hospedales1, with
trajectories and deceptiveness conditioned on events. Ambiguous regions present in the
original annotations (top) do not occur in event trajectories.

and it automatically finds the optimal number of events. To exploit the events,
we adapt both the training and test phases as described below.

Training Phase. We use the HMM model to infer the event sk of each frame k
in the training set. Then, the bounding-boxes x̄i

k of trajectories i in frame k
are augmented with the event information. That is, a trajectory annotation i
is now composed of a sequence of location, deceptiveness and event triplets{
(x̄i

k, ρ
i
k, s

i
k)
}
k
. The event model does not impact how we learn the raw decep-

tiveness ρ̃, since it is learned individually for each trajectory, but we apply the
spatial smoothing separately for each event and its associated (sub-)trajectories.

Test Phase. We also infer the most probable event segmentation of the test
sequences using the HMM model. Thereby also obtaining an event sk for each
frame k. Then, we condition the nearest neighbour search described in Sec. 3
on sk. We do this by simply restricting the search on the subset of the trajectory
annotations that are also assigned to sk: x̄

i
k′ = argmin(b,·,sk)∈T d(xk, b). After

x̄i
k′ is found, its displacement and deceptiveness are transferred as in Sec. 3.

Fig. 6 shows how associating the trajectory annotations to events prevents
ambiguities that can appear when searching the nearest neighbor. This con-
ditioning corresponds to grouping the trajectory annotations by event, so we
refer to these groups as event trajectories. Note from Fig. 6 how the trajectory
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annotations are much more powerful than optical flow in regions where objects
are small or occluded. We show in the experiments that this association has a
considerable impact on the tracking performance at test time.

6 Experiments

We present in this section our experimental setup and results. In Sec. 6.1 we
first describe our datasets and evaluation metrics. The remainder of the section
is split in two parts: we first show in Sec. 6.2 a comparison with the state of the
art and then, in Sec. 6.3, we evaluate the impact of the different components
of our framework on the final results. We use the same parameters for all the
experiments, as defined in the previous chapters. We also provide an analysis of
the speed of our method in Sec. 6.4.

6.1 Dataset and Experimental Protocol

For our experiments, we have used two different scenarios from [13], denoted
as Hospedales1, (c.f. Fig. 6), and Hospedales3, (c.f. Fig. 4). These two scenarios
show two different crossings with heavy vehicle traffic and traffic light cycles.
They are challenging due to occlusions, appearance changes (vehicles turning),
low resolution and entry/exit points at the horizon.

We have used [28] to create 61 and 100 test track annotations, respectively,
for a total length of 112,345 frames (74.5 minutes). For training, we collected 517
and 341 additional trajectory annotations, respectively. We have created them on
a completely separate span of time of 10 minutes in each scene. In total we have
858 available training tracks.1 However, our method only needs a small subset
of them. This larger number of training tracks will help us evaluate important
aspects of our method: (i) How does the tracking performance evolve as we use
more trajectory annotations? (ii) Are our automatically selected tracks better
than randomly selected tracks? We provide answers in Sec. 6.3.

Concerning the event discovery model of [13], since it is unsupervised, we
trained it on a 30-minute clip for each sequence, without the need for human
intervention or annotation. These training clips were chosen such that they do
not contain any of the objects of the test sequences.

To measure performance, we use two popular tracking performance met-
rics [25]: the Center Location Error (CLE) and the Success Plot (SP). CLE
averages for each target object and each frame the distance between the center
of the estimated window and the center of the ground-truth window. The Success
Plot measures the percentage of frames where the target object is successfully
detected for a certain intersection-over-union (IoU ) threshold [25], i.e. the de-
tection rate. For one target object, detection rate is plotted as a function of IoU ,
as it is varied between 0 and 1. To summarize the plots for all target objects,
we compute their areas-under-the-curve (AuC ) and we refer to the average over
tracks as SP. A high-performing tracker will have a low CLE and a high SP.

1 This data is available on www.vision.ee.ethz.ch/~smanenfr/deceptiveness

www.vision.ee.ethz.ch/~smanenfr/deceptiveness
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Table 1. Comparison with the state of the art on 61 tracks in Hospedales1 and 100
tracks in Hospedales3. The improvement of our approach with respect to the state of
the art is shown in blue in parenthesis. In bold we show the best method between [7],
[8], [6] and using 10 annotations in our method.

(a) Hospedales1 (61 tracks)

Metrics [6] [8]2 [7]
[7] with Proposed method with # annotations
Kalman 0 10 20 30 40

CLE ↓ 31.8 39.7 42.5 40.4 42.5 9.6 (-70%) 10.6 (-67%) 9.6 (-70%) 10.4 (-67%)

SP ↑ 0.35 0.41 0.48 0.49 0.48 0.59 (+20%) 0.57 (+16%) 0.58 (+18%) 0.57 (+16%)

(b) Hospedales3 (100 tracks)

Metrics [6] [8]2 [7]
[7] with Proposed method with # annotations
Kalman 0 10 20 30 40

CLE ↓ 57.6 68.7 33.2 44.3 33.2 23.9 (-28%) 28.4 (-14%) 17.7 (-47%) 16.0 (-52%)

SP ↑ 0.15 0.21 0.43 0.39 0.43 0.44 (+2%) 0.45 (+5%) 0.46 (+7%) 0.46 (+7%)

6.2 Comparison with the State of the Art

Tabs. 1a and 1b show the performance of the state of the art and our framework
for Hospedales1 and Hospedales3, respectively. Note that [6,7,8] rank within the
5 best single object trackers according to the recent exhaustive benchmark [25]3.
We show the performance of our framework for different number of annotations,
a common theme that we adopt in the experimental section of this work. We
obviously obtain the same result as [7] if we do not use any annotations, because
in that case our model precisely falls back to the appearance model. As we are
provided with trajectory annotations we obtain a considerable improvement with
respect to the state of the art. For example, with as few as 10 trajectory anno-
tations, we obtain a relative improvement of 70% and 28% CLE for Hospedales1
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(b) Learning deceptiveness

Fig. 7. In a) we compare our IAP annotation selection method with a random ranking
baseline using a fixed ρ of 0.2 and all events (over 10 different runs). b) compares the
results of the proposed framework using different variants of deceptiveness (see text).

2 We only evaluated [8] for the frames for which it provided a bounding box.
3 We used the code of the authors publicly available in their webpage.
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and Hospedales3 respectively and 20% and 2% SP for these same scenarios. With
30 trajectory annotations, the improvement Hospedales3 becomes 47% for CLE
and 7% for SP. For comparison, we also extended [7] with a Kalman filter [9]
(using a hand-tuned ρ = 0.2) and show that it brings a much lower improvement
than our motion model. This occurs despite the use of the exact same fixed
parameters for our motion model and the Kalman filter. The classical Kalman
filter is simply not as powerful as our motion model since it does not learn from
trajectory annotations. These results highlight the difficulty of tracking in our
videos, and the huge benefits that our method is able to gain from a few manual
annotations.

Note that our framework is not restricted to the use of the appearance model
of [7]. It can easily accommodate future, better performing appearance models.

6.3 Baseline Comparison

In this section we perform some baseline comparisons for the three main com-
ponents of our proposed framework: (i) Our selection annotation approach,
(ii) learning the visual deceptiveness and (iii) conditioning the transfer on the
event model of [13]. For space reasons, we only show the SP performance metric.
We show all the results in the supplementary material.

Automatic Annotation Selection. We compare the IAP annotation selec-
tion method described in Sec. 4.2 with an incremental random selection baseline.
Fig. 7a shows the performance of the framework with these two methods and
a fixed ρ of 0.2. For the random sampling of annotations, we show the aver-
age of the curves obtained with 10 different random sets. Due to space con-
straints, Fig. 7a only shows the results for the scene Hospedales1. The results of
Hospedales3, which have similar conclusions, can be found in the supplementary
material. Our annotation selection approach shows a considerable improvement
for few annotations, since we pick representative and diverse trajectories. This is
especially important for practical applications, where obtaining trajectory anno-
tations is costly. As expected, this difference between the two methods decreases
as more annotations become available and vanishes when using all of them.

Learning Deceptiveness. Learning ρ is a major component of our framework
and our contributions. We show in Fig. 7b the final tracking performance if we
use a fixed deceptiveness of 0.2, if we learn it independently for each trajectory
(ρ̃) and if we additionally diffuse it spatially to obtain a consistent deceptiveness
ρ. We draw two conclusions: i) Diffusing the deceptiveness across trajectories
improves the performance of our approach and considerably impacts its stability
with respect to the annotation sets. As expected, the diffusion aggregates the
independently learned deceptiveness, extracting an underlying and consistent
one, c.f. Fig. 4. ii) Learning deceptiveness with the proposed algorithm improves
the results with respect to fixing the deceptiveness to a hand-tuned value of
0.2, and consistently outperforms the baseline tracker on both datasets. The
improvement is especially noticeable in Hospedales3, since this dataset has zones
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Tracking results... ... using the annotations + learned 

(a) Success cases
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(b) Event modeling (Hospedales1 )

Fig. 8. a) shows some cases in which our framework improves the tracking results.
Ground truth in green, [7] in red and ours (40 annotations) in blue. Our method can
track through deceiving zones by following previously learned trajectories in the regions
where the original tracker failed at training time. b) shows a comparison of conditioning
the transfer on one or all events with fixed and learned deceptiveness for Hospedales1.

with different degrees of difficulty to track. Fig. 4 shows how our framework is
able to learn larger ρ values for regions with more difficult occlusions.

Fig. 8a shows some examples of especially difficult tracking regions with the
corresponding deceptiveness that we have learned and how it helped to success-
fully track the objects at test time.

Conditioning Transfer on an Event Model. The last component of our
framework, and one of our contributions, is the conditioning of the transfer on
the events in the scene. We show in Fig. 8b how much this can improve tracking
performance in Hospedales1. Again, the results of Hospedales3 can be found
in the supplementary material. Generally, using conditioning on events in the
scene improves results, whether we learn the visual deceptiveness or not. Indeed,
transferring from the event trajectories helps to solve ambiguities in the scene,
c.f. Fig. 6. Importantly, even when using just one event the method we propose
to learn ρ also gives better results than a fixed ρ. Overall, the best results are
obtained with our full framework: learning deceptiveness and conditioning the
transfer on the event model of the scene.

6.4 Speed

The proposed tracking framework is very efficient at test time. Computing the
appearance model of [7] takes 175ms per frame on average. In contrast, com-
puting our motion model comes at a cost of only 1.5ms with unoptimized code,
excluding the real-time optical flow computation. This occurs because at test
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time the algorithm just has to do a nearest neighbor search and transfer the
displacement and deceptiveness that was learned at training time.

7 Conclusion

In this paper, we have proposed a new visual tracking framework for a surveil-
lance setup where we combine appearance and motion models in a single tracker.
In this framework, we automatically learn from a small set of trajectory anno-
tations how deceiving the appearance model is in different spatial and temporal
regions of the scene. This leads to the concept of visual deceptiveness. At test
time, we transfer the displacement and deceptiveness from the trajectory anno-
tations. The framework is extended by conditioning the learning and transfer on
an event model, which helps resolving ambiguities when searching for the closest
trajectory from which to transfer. Moreover, we propose an incremental cluster-
ing approach to automatically select from the training sequence a small number
of tracks which should be annotated by the user. We show in our experiments
that those contributions are complementary and lead to state-of-the-art tracking
results on 161 tracks that we publicly release.

One of the limitations of our current framework is that it disregards context,
i.e. the position of the other vehicles, to learn deceptiveness. We plan to include
such context modelling in future work. We also want to cast our framework
in an active learning scenario, where the learned deceptiveness on the first few
annotated tracks will guide the selection of new trajectory annotations so as
to further improve tracking. Ideally, the system would also find the number of
annotated tracks that are needed.
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