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Purpose: Artificial-intelligence population-based automated

quantification of placental maturation and health from a rapid

functional Magnetic Resonance scan. The placenta plays a

crucial role for any successful human pregnancy. Deviations

from the normal dynamic maturation throughout gestation

are closely linked to major pregnancy complications. Antena-

tal assessment in-vivo using T2* relaxometry has shown great

promise to inform management and possible interventions but

clinical translation is hampered by time consuming manual seg-

mentation and analysis techniques based on comparison against

normative curves over gestation.

Methods: This study proposes a fully automatic pipeline to pre-

dict the biological age and health of the placenta based on a

rapid (sub-30 second) T2* scan in two steps: Automatic segmen-

tation using a U-Net and a Gaussian Process regression model to

characterize placental maturation and health. These are trained

and evaluated on 110 3T MRI placental data sets including 20

high-risk pregnancies diagnosed with pre-eclampsia and/or fe-

tal growth restriction.

Results: Automatic segmentation achieves comparable perfor-

mance to human experts (mean DICE coefficients automatic-

manual 0.76, Pearson Correlation Coefficient 0.986 for mean

T2* within the masks). The placental health prediction achieves

an excellent ability to differentiate early cases of placental in-

sufficiency before 32 weeks. High abnormality scores correlate

with low birth weight, premature birth and histopathological

findings. Retrospective application on a different cohort imaged

at 1.5T illustrates the ability for direct clinical translation.

Conclusion: The presented automatic pipeline facilitates a fast,

robust and reliable prediction of placental maturation. It yields

human-interpretable and verifiable intermediate results and

quantifies uncertainties on the cohort-level and for individual

predictions. The proposed machine-learning pipeline runs in

close to real-time and, deployed in clinical settings, has the po-

tential to become a cornerstone of diagnosis and intervention of

placental insufficiency.

Placental MRI | Relaxometry | Acquisition | Pre-eclampsia | health prediction

Correspondence: maximilian.pietsch@kcl.ac.uk, 1st Floor South Wing, St
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1. Introduction

A. Placental Maturation. The human placenta is key for

any successful human pregnancy. It grows and changes

across gestation to adapt to the increasing demands of the

foetus. To this end the increased transfer of nutrients and oxy-

gen from the maternal circulation to the fetal circulation is of

key importance. This exchange process, occurring in 20-40

functional units or lobules across the placenta, relies on suf-

ficient inflow from the maternal spiral arteries, through the

fetal vasculature in the villous trees, into the umbilical vein,

to match fetal demand. This low resistance system relies on

ongoing combined angiogenesis and villous transformation

with initial sprouting and branching followed by stromal re-

duction to increase the vasculo-syncitial membrane area to

maximise oxygen and nutrient transfer. As the placenta ages,

there is increased deposition of calcium within the lobules as

well as deposition of fibrin largely within the septa between

the lobules. The fibrin deposition contributes to the lobulated

appearance on imaging, seen as low signal intensity on T2-

weighted images, and the calcium deposition to an increase

in granularity within the placenta as a whole. This process of

placental ageing occurs normally in accord with gestational

age (GA) and the associated changes are not pathological.

However, accelerated aging of the placenta, as documented

on histopathology, has been associated with increased risk of

placental failure, fetal growth restriction, pre-eclampsia (PE)

and unexplained late stillbirth (1, 2). In contrast, delayed

maturation of the placenta is associated with gestational dia-

betes and chromosomal abnormalities (1–3). Thus, advanc-

ing our understanding of placental maturation and identifying

tools to describe and quantify this process are vital to help

improve early detection of placental failure. Functional MR

imaging could provide a quantifiable marker of placental ag-

ing and could facilitate identification of accelerated ageing or

of a delayed trajectory in individual placentas.

B. State of the art. Placental development over gestation

has been recently studied with T2* relaxometry (4–11). The

T2* values can be linked to the concentration of deoxy-

genated haemoglobin via the BOLD effect and thus provide

both an ability to visually inspect and quantify function in

spatial maps cross-sectionally and over gestation. Many re-

cent studies have employed these techniques to study the pla-

centa in high-risk pregnancies compared to control low-risk

pregnancies with normal outcomes. The majority of stud-

ies compare placental mean T2* values between controls and
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high-risk cohorts.

Segmentation A crucial step for any quantitative, or in-

deed, qualitative assessment is the detection and delineation

of the placenta. The heterogeneous placental shape and vari-

ation of its location on images that typically cover the entire

uterus, including maternal, fetal and placental tissue as well

as amniotic fluid, hampers this step. For current published

studies, the obtained T2* maps are manually segmented, ei-

ther on selected slices (4, 6) or across the entire placental vol-

ume (7, 8, 12). First attempts to automate placental segmen-

tation have already been undertaken for anatomical placental

scans. The interactive Slic-Seg approach was proposed using

random forests within slices (13) and subsequently improved

using probability-based 4D Graph Cuts and deep learning.

The latter utilizes user interactions after an initial convolu-

tional neural network to refine the segmentation with a sec-

ond convolutional neural network. Fully automatic frame-

works were proposed using 3D multi-scale convolution neu-

ral networks to identify the area of interest, followed by 3D

dense conditional random fields (14) and U-Net based seg-

mentation (15). Finally, a technique combining motion cor-

rection, segmentation and shape extraction has been proposed

by Miao et al. (16). Similarly, in 3D placental US imaging,

seed-based random walker techniques (17) and U-Nets have

been successfully employed for volumetric segmentations.

However, for functional imaging data, to date only manual

placental segmentations have been used (4, 6–8, 12, 18).

Disease progression using Gaussian Processes Conven-

tionally, following segmentation, quantitative measures are

obtained, most often the mean T2*, averaged across the en-

tire placenta, which are assessed against “normative” curves

over gestation obtained from longitudinal or cross-sectional

studies (4, 6, 8, 19, 20). Using a group of placentas of nor-

mal appearance, a normative curve and credibility intervals

can be derived directly from the data using a Bayesian re-

gression algorithm. Assuming abnormal placental develop-

ment manifests as a mean T2* signal deviation, this can be

used to estimate an abnormality score, taking the uncertainty

of the model fit into account. We use Gaussian Process re-

gression (21), a nonparametric algorithm that assigns a prob-

ability to each possible function describing the training data,

and allows the calculation of normative curves (the mean of

its posterior distribution) as well as credibility regions around

these. This technique has been successfully used previously,

for instance, in the setting of neuroimaging (22–24). A key

difference to these studies is however the inter-subject vari-

ability of placental shape, size and location which hinders the

construction of atlases or standard planes. Hence, we use the

scalar measures GA and mean T2* inside the automatically

segmented placenta to estimate normal and abnormal matu-

ration.

A placental age prediction model could be used to identify

abnormal data via comparison of ‘predicted biological pla-

cental age’ and chronological age. Similarly, we could pre-

dict mean T2* for a given GA and determine the difference

between measured and expected values. We use an approach

Fig. 1. The proposed algorithm is presented in the grey box together with input and

output above, training data and evaluation data below.

based on error-in-variables modelling, that takes uncertain-

ties associated with both quantities into account to minimise

prediction bias.

C. Contributions. This work seeks to establish a fully auto-

matic pipeline using mean T2* measurements as a biomarker

of placental maturation and health. A data set of well charac-

terized uncomplicated pregnancies as well as a range of com-

plicated pregnancies allows us to study placental maturation

in depth. We aim to do this in two different ways:

1. Demonstrate the automated pipeline consisting of a

sub-30 second MRI scan, an automated U-Net based

segmentation, and subsequent placental health estima-

tion.

2. Demonstrate that the studied techniques can accurately

capture the credibility interval of low-risk data which

can be used to build a normative model of placental

maturation in a cohort of well characterized uncompli-

cated pregnancies and to assess a cohort of pregnancies

affected by pregnancy complications.

2. Materials and Methods

The proposed pipeline is depicted in Fig. 1 consisting of

the data acquisition, automatic segmentation used to calcu-

late the placental mean T2* and the Gaussian Process regres-

sion fit or prediction, which is used to characterize placental

health. All parts will be discussed in detail in the following.

A. Data acquisition and preparation. MRI imaging

was performed on 108 women with singleton preg-

nancies between 18 and 40 weeks GA without con-

traindications to MRI. Informed consent was obtained

(https://placentaimagingproject.org/, REC

14/LO/1169) and the scan was performed on a clinical 3T

Philips Achieva (Best, The Netherlands) scanner using the

32-channel cardiac receiver coil. All women were scanned

in the supine position with frequent monitoring of their

heart rate, saturation and blood pressure throughout the

scan. Dedicated padding was provided to increase maternal

comfort and verbal communication was maintained. Clinical
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FOV [mm × mm] 340×400

Resolution [mm3] 3×3×3

Slices 24-86

Orientation coronal

TEs [ms] 13.8, 70.4, 127, 183.6

TR [s] 12

SENSE 3

Halfscan 0.6

TA [s] 26

Table 1. MRI parameters.

information and pregnancy outcome were obtained. For

the fetus, this included gestation at birth, birth weight and

birth weight centile calculated using the INTERGROWTH

algorithm (25), Apgar score and admission to neonatal unit.

Maternal age, Body Mass Index (BMI), clinical history,

ethnicity and any diagnosis of PE, fetal growth restriction,

hypertension, gestational diabetes mellitus and any other

complications were recorded. Analysis of subsequent clini-

cal outcome data allowed us to define a low-risk cohort and

a high-risk cohort diagnosed with PE or growth restriction

using the criteria outlined previously (26, 27). The GA at

scan was obtained based on the agreed expected date of

delivery from ultrasound exams between 11 and 14 weeks of

gestation. In addition, for 39 participants of the healthy and

17 participants from the high-risk cohort histopathological

data was available. Macroscopic and microscopic evaluation

of the placenta was performed and the presence of maternal

vascular malperfusion and signs of chorioamnionitis were

recorded. Details of these cohorts are given in Table 2 and

graphically illustrated in Supplementary Figure 8.

After initial fetal brain imaging and whole uterus imaging, a

map of the B0 field was acquired and image-based shimming

performed. Next, a free-breathing multi-echo Gradient

Echo Echo Planar Imaging technique was performed, the

parameters are specified in Table 1. The local requirement is

to keep the acoustic output of all sequences used for routine

fetal imaging below 98 dB(A) which drives the choice of TEs

and resolution. The total acquisition time was 26 seconds.

Of the 108 acquired scans, 6 data sets with either signs

of sub-clinical contractions, seen as transient areas of low

signal distorting the uterine wall, or containing unresolved

fat artefacts were discarded. This data pre-selection step can

be performed in less than one minute by trained placental

analysts. Work on automatic identification based on 3D

reconstruction is ongoing (28).

A mono-exponential decay model was fitted on a voxel-level

using a Levenberg-Marquart algorithm with 50 iterations, ini-

tialised using the first echo time. Slices were fitted indepen-

dently, and as all echos for one slice were acquired within

200ms, no motion was observed within slices obviating the

need for motion correction. T2* values over 300ms were

clipped to limit partial volume effects from amniotic fluid

close to the placental boundaries.

The placenta was manually outlined on all slices by one

Low-risk Placental insufficiency

n 90 20

GA at MRI 29.93 ± 4.26 30.83±3.52

weeks

Maternal age 33.9 ±3.54 32.52 ±6.69

years

BMI 22.48 ±2.66 24.65±2.99

kg/m2

GA delivery 40.09±1.23 34.07±3.27

weeks

Fetal sex 40.09 34.07

% female

Birth weight 3.41 ±0.43 1.77±0.7

kg

Birth weight 55.72±27.28 13.45±18.39

centile

∆ GA 10.06±4.46 3.23±3.27

weeks

Table 2. Characteristics of the study participants. The cohort included low-risk

pregnancies without evidence of PE, fetal growth restriction, Gestational Diabetes

Mellitus or hypertension resulting in a live birth at 36 weeks or above with a birth

weight between the 2nd and 98th centile and a high-risk cohort of pregnancies

diagnosed with PE and or fetal growth restriction. ∆ GA corresponds to the time

between scan and delivery in weeks. For scatter plots see Figure 8.

or two experienced placental analysts using the fitted T2*

map and/or the image data corresponding to individual

echo times. If two segmentations were available, one was

randomly chosen and used for training and evaluation of

the U-net. The strict selection of normal, uncomplicated

pregnancies forming the normal cohort allows using the

chronological GA as a substitute for biological placental age.

B. Placental segmentation. The network architecture is

based on the 2D U-net implementation nnU-Net3 (29). Train-

ing and inference were performed on 2D patches of 64x64

voxels. The data pre-processing included normalizing of

the T2* maps by demeaning with the mean of the training

dataset. For training, data augmentation in the form of spa-

tial cropping, mirroring and rotations was applied using the

batchgenerator framework1 (30). The network is trained via

stochastic gradient descent using the Adam optimizer (31)

with a learning rate of 0.0001 and batch size of five for 50000

epochs using a binary cross entropy loss function. The train-

ing of the network utilizes 12 GB of VRAM and takes ap-

proximately 2 days on a Tesla P100 GPU on Google collab-

oratory.

Training and test data for the segmentation To test out-of-

sample performance, five-fold stratified cross-validation was

performed. All reported segmentation and hereof based T2*

measurements were generated using the network for which

this data was part of the held-out data. To avoid leakage be-

tween training and test data, participants were assigned ex-

clusively to one of the partitions. Each training round was

performed on 72 healthy low-risk cases and 16 high-risk ab-

normal cases, the test data consisting of 18 control and 4

1https://github.com/MIC-DKFZ/batchgenerators
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high-risk cases. If two segmentations were available, one was

chosen randomly to perform the training as specified above.

Evaluation Each network was evaluated on its correspond-

ing test data. To match the training process, inference

was performed on 64x64 patches of the validation set with

patches chosen to overlap by 30%. The predicted likelihood

was averaged across overlapping predictions and binarized

to obtain the full 3D mask. The performance was evaluated

with two metrics, first via direct evaluation of the segmen-

tation using the DICE coefficient (32). Second, agreement

between the mean T2* value between the manual and auto-

matic segmented placental mean T2* results was evaluated

on the test data using the Pearson Correlation Coefficient and

Root Mean Square Error.

C. Unbiased Placental health prediction. The final part

of the pipeline consisted of a Gaussian Process regression

model that uses the mean T2* data generated via automated

segmentations to capture normal maturation.

Biological age prediction To predict biological placental

age tb from the mean T2* value inside the automatically

segmented placental mask (T2∗), we assumed a probabilis-

tic function tb = f(T2∗) + ǫ with independent and identi-

cally normally-distributed noise ǫ ∼ N (0,σ2
ǫ 1). We trained

a Gaussian Process regression model to approximate f(x) ∼

GP(µ(x),kθ(x,x′)), where µ(x) is the mean function and

k the covariance function with hyperparameters θ. Given

the relatively smooth and continuous relation of the data in

a GA-vs-T2* plot, we chose µ to be constant and k to model

a linear trend with local nonlinear deviation using a sum of

dot product kernel and squared-exponential function kernel

(length-scale ≤ 1σ(T2∗)) with an additive white noise ker-

nel. Model hyperparameters were estimated by maximiz-

ing the log marginal likelihood, maximizing the probability

of the training data conditioned on kernel hyperparameters.

All fits were performed using SciKitLearn (33). The perfor-

mance was evaluated by calculating the mean squared error

and Pearson correlation coefficient between biological GA

(tb) and predicted GA.

Total least squares Gaussian Process regression In the

ordinary least squares regression model tb = f(T2∗) + ǫ, it

is assumed that the independent variable (T2∗) is measured

without error; all error is attributed to tb. However, T2∗

values are derived from noisy MRI measurements using

imperfect segmentations and T2∗ might be influenced by

factors not related to age. Since biological age is known

relatively precisely, the majority of the errors in the least

squares fit could be associated with the independent variable.

To obtain an unbiased estimates of placental health, an

errors-in-variables model (34–37) that takes both sources of

error into account is required. A commonly used errors-in-

variables technique is total least squares, which minimises

the squared distance orthogonal to the fitted line or to the

fitted (hyper-)plane in higher dimensions instead of along

the direction of a single dependent variable. Different

contributions to the expected residuals can be accounted

for by scaling the data prior to fitting so that their expected

errors are equal (36).

To be able to use a Gaussian Process regression fit, we

transformed each of the (tb,T2∗) data points to a form that

allowed fitting an approximately unbiased estimator using a

least squares fit. For this, the age and mean T2* of the n mea-

surements are stored in the columns of the 2 × n data matrix

X , which is demeaned and, as in the TLS approach, scaled

according to the expected errors in the training set of both

quantities Xs = SX , with S =
[ (1−E(tb))/σǫ 0

0 1−E(T 2∗)/σδ

]

.

Finally, Xs is rotated so that its rows represent the scaled

data transformed onto the first and second principal axes

X ′ = UT SX , where the columns of U hold the left singular

vectors of Xs.

Training and test data for the prediction We aim to evalu-

ate the performance of the proposed pipeline on as much data

as possible. Since the Gaussian Process regression model

relies on the automatic segmentation, we used the segmen-

tations generated on the cross-validation test-set and the re-

spective U-net models to predict placental masks. This al-

lowed calculating unbiased mean T2* values for all images.

For training and evaluation of the Gaussian Process based

health prediction, data from the low-risk control cohort

were split into a training and test set in the ratio 0.7:0.3.

Only low-risk cases were chosen for training as only these

allow the Gaussian Process to accurately model normal

maturation over gestation. The model was tested on the

hold-out low-risk test data and the data from the high-risk

cohort.

Evaluation A Gaussian Process regression fit was per-

formed to predict the first row of X ′, given the second. This

allows capture of any potentially non-linear relations not ac-

counted for by the first principal direction and to determine

Z-scores and confidence regions using the Gaussian Process

posterior. Z-scores for unseen data can be estimated using

the transformation matrices and Gaussian Process posterior

estimated from the training data. For visualisation, Gaussian

Process predictions can be transformed back and shown in

the original space of X using the inverse projection S−1U .

Likelihood for accelerated ageing The posterior predictive

distribution of a Gaussian Process regression model can be

used to describe the predictive distribution which allows esti-

mating credibility intervals of the data. This allows the calcu-

lation of Z-scores for new observations. The posterior is con-

ditional on the training data and on the hyperparameters but it

assumes noiseless input data for inference. Given knowledge

of the uncertainty associated with the input data, we can inte-

grate over this input data distribution to estimate the true pre-

dictive distribution for noisy data. We assume a multivariate

normal noise model with covariance matrix diag(σ2
ǫ ,σ2

δ ) for

new observations and estimate the corresponding predictive

distribution via Markov Chain Monte-Carlo sampling (10000

4 | medRχiv Pietsch et al. | APPLAUSE
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samples). Conditional on the hyperparameters, training data,

and input noise estimates, we can then calculate the likeli-

hood that a placenta exhibits abnormally accelerated aging

(Z < −3) from a single mean T2* measurement.

D. Generalization and 1.5T data. Summarizing, once

trained, the complete algorithm for unseen data consists of

the acquisition and mono-exponential fitting of multi-echo

gradient echo data followed by segmentation via the trained

U-net and finally estimation of the Z-score or accelerated

aging probability using the Gaussian Process Regression

model. The translation to a new scanner and MRI protocol

requires retraining or fine-tuning the segmentation U-net

and estimation of the Gaussian Process parameters. Hence,

translation depends upon a cohort of low-risk scans spanning

the age-range of interest as well as manual segmentations for

low-risk and, depending on image characteristics, high-risk

groups.

To investigate generalization of the methods to other clinical

cohorts and scanner environments, data was acquired on a

clinical 1.5T Philips Ingenia scanner on cohorts of women

with low-risk and high-risk pregnancies. These cohorts

were in general characterized by a higher BMI due to the

larger bore size of the employed 1.5T scanner. We note

that increased maternal weight is associated with decreased

image quality and increased maternal health risks including

PE (38). The high-risk 1.5T cohort was uniquely composed

of PE cases. A total of 42 data sets were acquired, including

36 control and 6 PE cases. The protocol was adapted as far

as required for the different scanner conditions. Specifically,

the inter-echo spacing was changed to adapt to the acoustic

output of the 1.5T scanner. The spatial resolution was

slightly increased from 3mm to 2.5mm to comply with other

ongoing projects. This data was processed and analysed

using the pipeline developed for the 3T data as described in

the method section.

3. Results

We present results for all steps of the pipeline in the order of

the processing steps. First, representative T2* data sets ob-

tained with the sub-30 second whole placenta acquisition are

illustrated in Fig. 2 ordered by GA. Second, the results of the

segmentation step are presented and quantified and finally,

the placental health prediction step is evaluated.

A. Segmentation. To evaluate the performance of the au-

tomatic segmentations, we compared the U-net segmenta-

tions obtained on the test sets of the cross-validation train-

ing scheme against one (randomly chosen) human expert seg-

mentation. Automatic segmentations for two exemplary pla-

centas are shown in Fig. 3, one with a median DICE score

between manual and automated segmentations and one with

a DICE score in the lowest 20%. The manual segmentations

are shown for both observers in blue and green and the result

of the automatic segmentation in red for two cases.

Fig. 2. Illustration of central slices from segmented placental T2* maps for 40 low-

risk cases used in this study. Images are sorted by GA (row-major).

Fig. 4 shows a quantitative comparison of segmentation

results (DICE scores) and agreement in derived mean T2*

values for the automatic segmentation compared to a ran-

domly chosen manual segmentation and for the two expert

annotators where data from both was available. On average,

the agreement between human annotator measured as the

DICE coefficient is comparable to the agreement between

automatic and manual segmentation (c-d). The mean DICE

coefficient for manual and automatic segmentation methods

is 0.72 and 0.78, respectively. The variance between human

and automated segmentations tends to be higher than that

across the human observers. However, there is a good

correspondence of the mean T2* results between automatic

and manual segmentations (a) and between expert annotators

(b) indicating that segmentation performance is sufficient

to derive meaningful T2* values. The Pearson correlation

coefficients for inter-rater and automatic segmentation

performance is 0.987 and 0.884 respectively and the root

mean squared error equals 3.2 and 7.4 ms respectively.

We further visually assessed the manual segmentations in de-

tail. Differences, where present, were usually detected at

the placental-myometrium boundary or in scans with reduced

image quality due to maternal habitus or posterior located

placenta.

B. Placental health prediction.

Data uncertainty estimate For the total least squares fit, we

estimate the errors associated with the two variables of inter-

est. We model biological placental age using GA, which is
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Fig. 3. Segmentations from both manual (green) and automatic (red) process for

two cases with Dice scores between automatic and manual segmentation in the low-

est 20% (top) and highest 20% (bottom) of the normal cohort are illustrated overlaid

on the volume acquired at the second TE. The slices are acquired in coronal plane

from anterior to posterior position. In the top example, the ‘Manual 2’ segmenta-

tion includes only the first seven slices of the placenta, which explains the low Dice

score here.

Fig. 4. Quantitative results for the automatic segmentation. The results from the

automatic segmentation in comparison with the one randomly chosen manual seg-

mentation are given in the left column (a,c,e) and the results from the manual ob-

servers in the right column (b,d,f). (a) and (b) show the correspondence in mean

T2* with the gray identity line. Plots (c) and (d) compare the Dice coefficient for all

participants and (e) and (f) the mean T2* over GA. The gray line in (c-d) illustrates

the mean Dice coefficient obtained between manual segmentations. As before, the

results from the normal cohort are shown in black and the results from the abnormal

cohort with mustard triangles. Units: GA in weeks, T2* in ms.
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Fig. 5. Total least squares Gaussian Process placental health prediction results. (a)

Posterior mean and 95% (Z=±1.96) and 99.7% (Z=±3) credible intervals (dashed

lines) estimated from the training data (gray). Test low-risk data and the high-risk

data are shown in blue and yellow. Residuals are indicated using lines projecting

data onto the posterior mean. (b) Scatter plot of Z-scores vs gestational age show

no age bias in training and test data, high-risk cases tend to have reduced Z-scores

indicating lower mean T2* or lower biological GA than expected. (c) Likelihood

of accelerated aging for each observed data point taking the Gaussian Process

credibility interval as well as uncertainty estimates of biological GA and mean T2*

measurements into account. (d-e) Bland-Altman plots of age and mean T2*. Note

that these plots are not independent as the prediction links both quantities. For

least-squares fit and Gaussian Process results based on manual segmentations

see Supplementary Figures 9 and 10.

not necessarily an absolute measure of development as nor-

mal full term gestation ranges from 37 to 42 weeks. There-

fore, assuming Gaussian distributed errors, we expect the

standard deviation of the biological age of the placenta σǫ

to be (42 − 37)/(2 ∗ 1.96) ≈ 1.3 weeks. We assume that the

true not observable value of T2∗ is corrupted by additive er-

rors δ ∼ N (0,σ2
δ1). With fixed σǫ, we estimate the 95% CI

for T2∗ from a point estimate in 1σ age proximity of the

highest data density as 35ms, yielding σδ = 8.7ms, which

is slightly larger than 7.4ms, the root mean squared error of

mean T2* between the manual and automatic segmentations.

The 1.5T data consists of fewer measurements which hinders

robust uncertainty estimation. Therefore, we pooled all low-

risk data (training and test) to define four age bins containing

at least 4 measurements within ±1σǫ weeks which was as-

sumed to be the same for this cohort. σδ,1.5T = 16.4ms was

estimated by averaging the T2* standard deviations of these

age bins.

Placental biological age and health prediction The to-

tal least squares Gaussian Process regression model (trans-

formed back into GA vs mean T2* space) shows the expected

approximately linear relationship between the two quantities

(Fig. 5 (a)). Both training and test data lie within the ex-

pected Z-score range ±3 (Fig. 5 (b)), indicating that data

from the normal cohort is indeed modelled as such. Further-

more there is no discernible age-dependency in the Z-scores

of the normal cohort. This is a result of the total least squares

fit as demonstrated in Supplementary Fig. 9, where the Z-

scores of an ordinary least squares model that was fit to pre-

dict biological placental age from mean T2* measurements

shows a clear age-dependency in the training and test data

(Supplementary Fig. 9 (b)). This age-bias of the ordinary

least squares model causes erroneously elevated Z-scores for

high-GA cases which reduces predictive power of accelerated

aging in the high-risk cohort (see bottom of Fig. 6).

Utilizing a total least squares model, trained and evalu-

ated on either manual or automatic segmentations, yields

comparable predicted Z-scores for the low-risk cohort

(±1.96SD[−0.64,0.56]) and no discernible age-bias (see

Bland Altman plots in Fig. 6). The abnormal cases ex-

hibit similar bias and spread except for two to three cases,

for which automatic segmentation-based Z-scores indicate

higher abnormality than obtained via the manual segmenta-

tion. Hence, the predictions using automatic segmentations

yield similar performance in the low-risk cohort and increase

the rate of detected accelerated aging in the high-risk cohort.

Z-score correlates with biological and histopathological in-

formation The obtained Z-scores are further analyzed and

depicted in Fig. 7. A positive linear trend between Z-scores

and both GA at birth and the logarithm of the birth weight

centile can be observed in (a). Large deviations from the

trends (Z-score < 4) are associated with either premature

birth (GA at birth 28 weeks) or very low birth weight centile

(< 1st centile). Correlation between Z-score and available

histopathology findings are shown in Fig. 7 (b). In high-risk

cases, lower Z-scores are associated with maternal vascular

Pietsch et al. | APPLAUSE medRχiv | 7

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20199521doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199521
http://creativecommons.org/licenses/by/4.0/


2.5 0.0 2.5
manual T2* Z-scores

3

2

1

0

1

au
to

 - 
m

an
ua

l T
2*

 Z
-s

co
re

s training and test data

mean: -0.04

+1.96*sd: 0.56

-1.96*sd: -0.64

2.5 0.0 2.5
manual T2* Z-scores

placental insufficiency

mean: -0.27

+1.96*sd: 1.22

-1.96*sd: -1.77

25

30

35

GA

25

30

35

GA

4 2 0 2
ODR Z-scores

1

0

1

OL
S 

- O
DR

 Z
-s

co
re

s

training and test data

mean: 0.00

+1.96*sd: 0.92

-1.96*sd: -0.91

4 2 0 2
ODR Z-scores

placental insufficiency

mean: 0.68

+1.96*sd: 1.79

-1.96*sd: -0.42

25

30

35

GA

25

30

35

GA

Fig. 6. Top: Comparison of the obtained Z-scores between manual and auto-

matic segmentation results both using total least squares regression illustrated with

Bland-Altman plots for the low-risk cohort (left, training data shown as squares) and

the high-risk cohort (right). Bottom: Bland-Altman plots for total least squares and

ordinary least squares Gaussian Process fits using automatically generated masks.

The GA at scan (in weeks) is color coded.

malperfusion (MVM) while signs of chorioamnionitis coin-

cides with normal Z-scores. No cases with MVM have been

found in the analysed low-risk cohort, and the Z-scores of

the cases with chorioamnionitis findings in the low-risk co-

hort obtain similar (normal) Z-scores.

C. Generalization and 1.5T data. The results from the

1.5T data in Supplementary Figure 11 illustrate the same re-

lationships between placental parameters and clinical find-

ings as for the 3T data. The subjects with PE have consis-

tently reduced Z-scores (Z < −1.5, Fig. 11(b)) and elevated

likelihood of abnormally accelerated aging (Fig. 11(c)).

4. Discussion and Conclusion

This study presents a fully automatized pipeline to assess

the maturation of a placenta in-vivo from a sub-30 second

MRI scan. The proposed two-step process, consisting of

first a fully automatic segmentation and second the assess-

ment of placental age and health, assures accessibility and

interpretability. The availability of the whole organ seg-

mentations as an intermediate step allows visual inspection

and effortless extension to other quantitative markers. Its

potential for direct translation is illustrated by including

results from a different cohort, scanned on a different scanner

with lower field strength and altered acquisition parameters

(Fig. 11.

The mean T2* values obtained from the automatic segmen-

tations (Fig. 4) decay over GA in line with literature values

(4, 9, 12, 18), and are reduced as previously observed in high-

risk cases (19, 26). The obtained placental Z-scores for the

high-risk cohort with apparent placental insufficiency corre-

100 101 102

birth weight centile

4

2

0

2

Z-
sc

or
e

30 35 40
GA at birth [weeks]

placental insufficiency
test data

30

35

40

GA
 a

t b
irt

h 
[w

ee
ks

]

100

101

bi
rth

 w
ei

gh
t c

en
til

e(a)

MVM
normal
(n=4)

MVM
finding
(n=13)

4

2

0

2

Z-
sc

or
e

placental insufficiency

MVM
normal
(n=13)

MVM
finding
(n=0)

test data

MVM
normal
(n=26)

MVM
finding
(n=0)

training data

Chorioamnitis
normal
(n=15)

Chorioamnitis
finding
(n=2)

4

2

0

2

Z-
sc

or
e

placental insufficiency

Chorioamnitis
normal
(n=7)

Chorioamnitis
finding
(n=6)

test data

Chorioamnitis
normal
(n=9)

Chorioamnitis
finding
(n=17)

training data

30.0

32.5

35.0

37.5

40.0

GA
 a

t b
irt

h 
[w

ee
ks

]

(b)

Fig. 7. Top: The placental health Z-scores for the high-risk cohort and the low-risk

test data are strongly related with degree of prematurity measured as GA at birth

(right) and extremely low birth weight centile (left). Bottom: Z-scores grouped by

histopathological examination results for training, test, and placental insufficiency

data, color-coded by GA at birth. Participants with maternal vascular malperfu-

sion (MVM) exhibit lower Z-scores and belong to the group delivered prematurely.

Chorioamnionitis does not affect Z-scores in control cases but seems to correlate

to normal Z-scores in two of the high-risk participants.

late well with outcome assessed by birth weight centile, GA

at birth and histopathological results (Fig. 7). In addition, re-

duced Z-scores, hypothesized to relate to accelerated aging,

corresponded to the presence of maternal vascular malper-

fusion in this study. This is in line with the most common

components of MVM, villous infarction, retroplacental hem-

orrhage, accelerated villous maturation, and distal villous hy-

poplasia, often occuring in placentas with long periods of fe-

tal hypoxia, often co-occuring with other signs such as of

accelerated villous maturation (39, 40). Signs of chorioam-

nionitis were found equally in our low and high-risk cohorts.

However, in our high-risk cohort the presence of chorioam-

nionitis was associated with normal Z-scores, suggesting dif-

ferent pathological processes in these high-risk cases such as

a more acute pathology associated with inflammation.

Automatic segmentation of the placenta has attracted rea-

sonable interest mainly on anatomical data with the aim to

perform volumetrics (13–15). Previous functional T2*-based

studies have used manual segmentations of either individual

slices (4, 6, 9) or the entire organ (8, 12). The presented

study allows automatic segmentation of the entire placenta,

but does not provide exact volumetrics due the distortions

and inter-slice motion present in the Multi-Echo Gradient

Echo data.

The aim of this pipeline was to establish a fully automatic

assessment, close to the data and accessible throughout the
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processing pipeline. However, this could be expanded with

further post-processing steps. These include placental 3D re-

construction, eg from orthogonal slice stacks or multiple dy-

namics as has been recently proposed for T2* data for the

brain (41) and the placenta (28) or inter-slice motion correc-

tion techniques (42) to improve the 3D continuity of the data

thus enabling 3D patch-based segmentation and/or placental

flattening techniques (16, 43), resulting in representations in

a common coordinate system.

This study deliberately proposes a pipeline built explicitly

to be close to the original and wide-spread 2D multi-slice

acquisition which makes it extendable to other applications

of quantification of T2* data. It provides the full organ

segmentation for all acquired slices and this can be expanded

at any stage by reconstruction and registration approaches.

Similarly, the proposed maturation quantification method

is independent of the actual measurement method of the

T2* values. For the evaluation performed here, mean

T2* over the whole organ was chosen as this is the most

widely used measure. It thus provides excellent validation

of the segmentation and the new maturation assessment

concept: The obtained mean T2* values as a function of age

matches observations in the recent literature (4, 9). Further

measures of interest for placental characterisation, including

spatial information as previously proposed histogram based

measures and texture analysis (8, 44, 45), can be included in

future work. Another possible directly supported step would

be the use of a convolutional neural network on the imaging

data itself to map image properties against age instead of the

mean T2* values.

The available data including comprehensive clinical in-

formation about maternal and fetal outcome has allowed

differentiation between low- and high-risk cohorts, with

evidence to support placental insufficiency in the latter. The

low-risk cohort is crucial to train the prediction algorithm as

it allows the reasonable assumption that the chronological

age is an unbiased estimator of biological age. The avail-

ability of birth weight, gestation at birth and histopathology

assessment results is essential to evaluate the acquired scores.

The segmentation U-net training requires a, for clinical set-

tings, relatively large training set. The data used in this study

was collected from a large scale study and presents over

100 datasets from in-vivo placental MRI scans together with

comprehensive outcome information allowing the creation

of a well characterized normal cohort, which is one of the

largest such data collections. Rigorous selection of control

cases was performed, only considering cases with complete

outcome and no history of fetal or maternal complications

(see section ‘Data’). However, for the high-risk cohort

with suspected ‘placental insufficiency’, cases with either

PE or fetal growth restriction have been analysed jointly

to reach sufficient numbers. It is appreciated though that

placental pathology may be different in these two groups

and also between cases with early versus late onset PE. The

PE cases were explored in a previous publication (26). The

high-risk cohort in the 1.5T data was more uniform in the

pathology as all were clinically diagnosed with PE, which

was well reflected in the clearer separation in Z-scores. The

available datasets are not equally distributed over GA with a

specifically reduced occurrence before 22 weeks and most

notably after 36 weeks. This both influences the ability of

the segmentation U-net to identify placental tissue in later

pregnancy (see decay in Dice coefficients over GA) and the

relatively wide credibility interval of the Gaussian Process

model for representations with lower mean T2* as would

normally occur in later GA and in high-risk cases with later

confirmed placental insufficiency. In addition, recruiting

and scanning cases with suspected placental insufficiency is

constrained by the challenges of clinical instability, need for

urgent early delivery and the availability of scan slots. The

reduced Dice scores for this cohort might again result from a

lack of training samples for such placentas. The strength of

the proposed pipeline is that it keeps the clinician in the loop

and allows manual intervention via access to the T2* maps

and segmentation masks.

Finally, if the achieved maturation marker is to be used

in longitudinal studies to evaluate e.g the influence of

treatments, its robustness to track individual pregnancies

over time needs to be established with longitudinal data.

This study proposes a comprehensive, automatic pipeline to

evaluate the maturation of a placenta in vivo from a short

T2* MRI scan. Further factors which could be studied using

this suggested pipeline include the effects and alteration of

maturation in prolonged pregnancies or gestational diabetes.

Inclusion into the clinical workflow is facilitated by the ease

of use and the transparent steps employed.
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Supplementary Figure 8. The demographics of the cohort are graphically illustrated with the control cohort in gray and the abnormal cohort in mustard. (a) Distribution of

the GA at the time of scan, maternal age (b), and (c) BMI at the time of scan, distribution of the difference from GA at scan to GA at birth (d), placental location (e) and fetal

sex (f) distribution. Finally, gestation at birth (g), birth weight (BW) in gram (h) and birth weight centile (i).
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Supplementary Figure 9. Ordinary Least Squares Gaussian Process results. This

fit was performed with identical initial hyperparameters, fitting procedure and data

as in Fig. 5 but using an ordinary least squares fit instead of the total least squares

projection. Here, Z-scores are derived from the difference between chronological

and predicted biological GA (b). The clear age-trend in the residuals for training and

testing data indicate that an error-in-variable model is required.

25 30 35
GA [weeks]

4

2

0

2

Z-
sc

or
e

(b) Gaussian Process Z-scores

25 30 35
GA [weeks]

0%

20%

40%

60%

80%

lik
el

ih
oo

d 
of

 Z
 <

 -3

(c) accelerated aging prob.

25 30 35
chronological GA [weeks]

1

0

1

2

pr
ed

ict
ed

 - 
ch

ro
no

lo
gi

ca
l G

A 
[w

ee
ks

]

(d) GA Bland-Altman plot

mean: -0.00

+1.96*sd: 1.03

-1.96*sd: -1.04

20 40 60 80 100
true T2* (manual) [ms]

20

10

0

10

20

30

pr
ed

ict
ed

 - 
tru

e 
T2

* (
m

an
ua

l) 
[m

s]

(e) T2* Bland-Altman plot

mean: -0.05

+1.96*sd: 13.13

-1.96*sd: -13.22

0 20 40 60 80 100 120
T2* (manual) [ms]

10

20

30

40

GA
 [w

ee
ks

]

(a)  data and GP posterior

training data
test data
placental insufficiency
Gaussian process mean

Z=1.96 Z=3

mean T2* from manual segmentations

Supplementary Figure 10. Equivalent of Fig. 5 using manual segmentations for

T2* estimation.
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Supplementary Figure 11. Equivalent of Fig. 5 using 1.5T data.
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