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ABSTRACT
Cross-validation is a mainstay for measuring performance
and progress in machine learning. There are subtle
differences in how exactly to compute accuracy, F-measure
and Area Under the ROC Curve (AUC) in cross-validation
studies. However, these details are not discussed in
the literature, and incompatible methods are used by
various papers and software packages. This leads to
inconsistency across the research literature. Anomalies in
performance calculations for particular folds and situations
go undiscovered when they are buried in aggregated results
over many folds and datasets, without ever a person looking
at the intermediate performance measurements. This
research note clarifies and illustrates the differences, and
it provides guidance for how best to measure classification
performance under cross-validation. In particular, there are
several divergent methods used for computing F-measure,
which is often recommended as a performance measure
under class imbalance, e.g., for text classification domains
and in one-vs.-all reductions of datasets having many
classes. We show by experiment that all but one of
these computation methods leads to biased measurements,
especially under high class imbalance. This paper is of
particular interest to those designing machine learning
software libraries and researchers focused on high class
imbalance.

1. INTRODUCTION
The field of machine learning has benefited from having

a few standard performance metrics by which to judge our
progress on benchmark classification datasets, such as the
Reuters text dataset [4]. Many papers in the published
literature have referenced each other’s performance numbers
in order to establish that a new method is an improvement
or at least competitive with existing published methods.
The importance of being able to cite others’ performance
figures increases over time. As methods and software
systems become increasingly complex, it is more difficult
for each researcher to meticulously reproduce each others’
methods as baselines against which to compare one’s
own experiments. But the correctness of citing another’s
performance breaks down if the performance measures we
use are incomparable. This clearly happens when one
paper reports only F-measure and another reports only the
Area Under the ROC Curve (AUC). But more insidiously,

it can also catch us unawares when, say, the F-measure
was measured in an incompatible way, or the AUC in one
paper was measured in a way that inadvertently demands a
consistently calibrated classifier as well.

F-measure and AUC are well-defined, mainstream perfor-
mance metrics whose definitions can be found everywhere.
Likewise, many publications describe the widely accepted
practice of cross-validation for assessing and comparing the
quality of classification schemes on a given labeled dataset.

But ironically, there is ambiguity and disagreement about
how exactly to compute F-measure and AUC across the
folds of a cross-validation study.1 This was first brought
to our attention by the number of questions we get from
other researchers on how exactly to go about measuring
these under cross-validation. Upon further investigation,
we could not find the matter addressed in the literature.
We informally surveyed dozens of articles and found that
there is not just a little disagreement on the matter. Not
only do different papers use different methods for computing
F-measure or AUC, but most do not bother to specify how
exactly they computed it under cross-validation—perhaps
not realizing that there are choices. Heretofore it has
not been highlighted in the literature, and certainly not
illustrated why some common choices can lead to biased
results. One of the anonymous reviewers of this article
shared in their review that last year they had to deal with
two instances of this problem, which caused experimental
results to be positively biased. Finally, we have observed
inconsistent and biased strategies available from different
software libraries, as well as students’ research software.
Detecting such subtle inconsistencies is relatively difficult
compared with bugs that make themselves known by halting
execution.

Not only are the methods of computation different, but
it also turns out that there can be significant disagreement
in their outputs under some test conditions. This paper
enumerates the different methods of calculation (Section 2),
works through examples to illustrate that the differences
can be large (Section 3), and demonstrates that a particular
choice for computing F-measure is superior in terms of bias
and variance (Section 4).

The method of calculation is particularly important when
dealing with class imbalance. A dataset is imbalanced when
the classes are not equally represented, i.e., the class of

1We invite the reader before proceeding to write down
exactly how he or she typically computes these measures
under cross-validation, for comparison with the discussion
later.
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interest is rare, which is a common situation in text datasets
and is of growing research interest generally. High class
imbalance also occurs when datasets having many classes
are factored into a large number of one-vs.-all (OVA) sub-
tasks.

2. PERFORMANCE MEASURES UNDER
CROSS-VALIDATION

In this section we define and distinguish the different
methods of calculating the performance scores. Given a
labeled dataset and a classification algorithm, the question
at hand is how to measure how well the classifier performs
on the dataset.

2.1 Formal Notation Preliminaries
Let X denote our instance space, i.e., a set that covers

all instances expressible in our representation. We assume
a fixed but unknown distribution D underlying X that
determines the probability or density to sample a specific
example x ∈ X . Each x is associated with a label from a
finite set Y.

A hard classifier is a function c : X → Y. A learning
algorithm is an algorithm that outputs a classifier c after
reading a sequence (x1, y1), . . . , (xt, yt) of t labeled training
examples, where each xi ∈ X is an example from the
instance space, and yi ∈ Y the corresponding label of xi.

We will refer to the sequence of examples as the training
set and make the assumption that each labeled example
in that set was sampled i.i.d. from D. The overall goal
is to find learning algorithms that are likely to output
classifiers with “good” behavior with respect to the same
unknown underlying distribution D. As one important
example, we might want a classifier c to have high accuracy,
P(x,y)∼D(c(x) = y).

In practice, we clearly have to rely on test sets to assess
the performance of a classifier c with respect to D. A hold-
out set or test set T sampled i.i.d. from the same D allows
one to compute an estimate of various performance metrics.
In this case, it is clearly desirable to use a method that
gives unbiased and low variance estimates of the unknown
ground truth performance value over the entire space D.
Such estimates are based on counts. We focus on binary
(hard) classification, where Y consists only of a “positive”
and a “negative” label. Each classifier c segments the test set
into four partitions, based on both the true label yi and the
predicted label c(xi) for each example (xi, yi) ∈ T . We will
refer to the absolute number of true positives as TP, false
positives as FP, false negatives as FN, and true negatives as
TN. The test set accuracy is (TP + TN)/(TP + TN + FP +
FN), for example. We explicitly refer to the “ground truth
accuracy” where we mean P(x,y)∼D(c(x) = y) instead.

The predominant tool for computing estimates of learning
algorithm performances is k-fold cross-validation (often 10-
fold). It divides the available training data T into k disjoint

subsets T (1), . . . , T (k) of equal size. Each of the T (i) sets
is used as a test set and is evaluated against a classifier
trained from all the other data T \ T (i). Thus, we can get k
different test set performances. Often we report the average
of those as the overall estimate for the classifier on that
dataset. This process aims to compute estimates that are
close to the ground truth performance when running the
learning algorithm on the complete set T . But we shall

 0  1 0

 1

 0

 1

F-measure

recall
precision

 0  1 0

 1

 0

 1
F-measure

FP rate
TP rate

Figure 1: F-measure as a function of (a) precision and
recall, or (b) true positive rate and false positive rate—
shown assuming 1% positives.

show in the following section that there is a problem with
reporting the average F-measure in this way.

We will use superscripts in this paper to refer to values
that belong to specific cross-validation folds. For example,
the number of true positives of fold i would be referred to
as TP(i), the precision of fold j as Pr(j).

An option to the cross-validation approach discussed
above is stratified cross-validation. The only difference
is that it takes care that each subset T (i) contains the
same number of examples from each class (±1). This
is common practice in the machine learning community,
partly as a result of people using integrated learning
toolboxes like WEKA [3] or RapidMiner [6] that provide
stratification by default in cross-validation experiments.
The main advantage of this procedure is that it reduces the
experimental variance, which makes it easier to identify the
best of the methods under consideration.

2.2 F-measure without Cross-Validation
While error rate or accuracy dominate much of the

classification literature, F-measure is the most popular
metric in the text classification and information retrieval
communities. The reason is that typical text mining corpora
have many classes and suffer from high class imbalance.
Accuracy tends to undervalue how well classifiers are doing
on smaller classes, whereas F-measure balances precision
and recall.
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Definition 1. The precision Pr and the recall Re of a
classifier with TP true positive, FP false positives, and FN
false negatives are

Pr := TP/(TP + FP) and

Re := TP/(TP + FN)

F-measure combines these two into a single number, which is
useful for ranking or comparing methods. It can be thought
of as an ‘and’ function: if either precision or recall are poor,
then the resulting F-measure will be poor, shown graphically
in Figure 1a. Formally, F-measure is the harmonic mean
between precision and recall.

Definition 2. The F-measure of a classifier with precision
Pr and recall Re is defined as

F := 2 · Pr · Re

Pr + Re
(1)

Many research papers and software libraries simplify the
definition of F-measure as follows:

F = 2 · Pr · Re

Pr + Re

= 2 ·

(
TP

TP+FP

)
·
(

TP
TP+FN

)
(

TP
TP+FP

)
+
(

TP
TP+FN

)
= (2 · TP) / (2 · TP + FP + FN) (2)

Thus, it computes F-measure in terms of the number of true
positives and false positives. Figure 1b shows this view using
the false positive rate and true positive rate on the x- and
y-axes. The graph shown assumes 1% positives, resulting
in the sharpness of the surface; when negatives abound, any
substantial false positive rate will result in low precision and,
therefore, low F-measure.

Exceptions: Equation (1) is undefined in some situ-
ations. Precision is undefined if the classifier makes no
positive predictions, TP+FP = 0. This happens sometimes
with small or class-imbalanced test sets, or with very
conservative classifiers, such as those that learn in training
to always vote for the majority class. Recall is undefined
when there are no positives in the test set. This can
happen in rare situations with highly imbalanced datasets
if random sampling or unstratified cross-validation is used.
Equation (2) smoothly extends the definition of F-measure
to be well-defined (namely, zero) in most all situations. Even
so, it still results in division-by-zero for the case that a
particular test set has no positives (TP + FN = 0) and the
classifier agrees—that is, it makes no positive predictions
(TP + FP = 0). Test harness software that encounters any
of these undefined situations above can do one of two things.
It can substitute a zero for an otherwise undefined value, or,
less commonly, it can leave out the occasional, troublesome
test fold from the final computations. As we show later,
these choices result in a negative or positive bias in the
measurement of F-measure.

2.3 F-measure with Cross-Validation
In the previous two sections we separately discussed cross-

validation and F-measure. Most researchers do not consider
the combination of these two, the notion of cross-validated
F-measure, to be ambiguous. In this section, we will give
a description of three different combination strategies that

are all actively used in the literature. Two of these allow for
different ways of handling the undefined corner cases, so we
end up with a total of five different aggregation strategies
altogether. The number of strategies doubles to ten if we
consider both unstratified and stratified cross-validation.

All subsequently discussed cases have in common that we
train k classifiers, and that we evaluate the classifier c(i)

(which we got in iteration i when training on T \ T (i))

exclusively on the hold-out set T (i). The superscripted terms
TP(i) through TN(i), F (i), Pr(i), or Re(i) refer to the test
set performance of c(i) on T (i), as defined in Sections 2.1
and 2.2.

Using the precise notation and framework we have
established, we are now in a position to define the three
main ways that F-measure results are aggregated across the
k folds of cross-validation.

1. We start with the case of simply averaging F-measure.
In each fold, we record the F-measure F (i) and
compute the final estimate as the mean of all folds:

Favg :=
1

k
·

k∑
i=1

F (i)

2. Alternately, one can average precision and recall across
the folds, using their final results to compute F-
measure according to Equation 1:

Pr :=
1

k
·

k∑
i=1

Pr(i)

Re :=
1

k
·

k∑
i=1

Re(i)

Fpr,re := 2 · Pr · Re

Pr + Re

3. Instead, one can total the number of true positives and
false positives over the folds, then compute F-measure
according to either Equations 1 or 2:

TP :=

k∑
i=1

TP(i)

FP :=

k∑
i=1

FP(i)

FN :=

k∑
i=1

FN(i)

Ftp,fp := (2 · TP) / (2 · TP + FP + FN)

Exceptions: As discussed above, in some folds we might
encounter the problem of undefined precision or recall. Let
V (i) := 1 if Pr(i) and Re(i) are both defined, and V (i) := 0,
otherwise. Precision will be undefined whenever a classifier
c(i) does not predict any of the test examples in fold T (i)

as positive. Recall can be undefined only if a fold does not
contain any positives. This cannot happen with stratified
cross-validation, unless the number of folds exceeds the
number of positives, and it is considered rare for unstratified
cross-validation.

One strategy for overcoming this problem is to substitute
zero based on a reformulation of F-measure; see Equa-
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tion (2). We will use this as the default interpretation

throughout the paper, so F (i) := 0 when V (i) = 0.

An alternative is to declare any folds having undefined
precision and recall as being invalid measurements and
simply skip them. The folly of such a choice will be exposed
in a later section. This might happen as an unintended
consequence of the software throwing an exception. We
will add a tilde to Favg or Fpr,re whenever we refer to this
latter computation. For example, the definition above then
becomes

F̃avg :=
1∑k

i=1 V
(i)
·

k∑
i=1

F (i)

2.4 Error Rate, Accuracy, and AUC
Accuracy and error rate do not have an equivalent

problem under cross-validation: you get the same result
whether you compute accuracy on each fold and then
average, or if you tally the error count and then compute
the accuracy rate just once at the end. Thus, the problem
has not been a concern for many learning papers that have
historically measured performance based only on error-rate
or accuracy.

By contrast, AUC under cross-validation can be computed
in two incompatible ways. The first is to sort the individual
scores from all folds together into a single ROC curve
and then compute the area of this curve, which we call
AUCmerge. The other is to compute the AUC for each fold
separately and then average over the folds:

AUCavg :=
1

k
·

k∑
i=1

AUC(i)

The problem with AUCmerge is that by sorting different
folds together, it assumes that the classifier should produce
well-calibrated probability estimates. Usually a researcher
interested in measuring the quality of the probability esti-
mates will use Brier score or such. By contrast, researchers
who measure performance based on AUC typically are
unconcerned with calibration or specific threshold values,
being only concerned with the classifier’s ability to rank
positives ahead of negatives. So, AUCmerge adds a usually
unintended requirement on the study: it will downgrade
classifiers that rank well if they have poor calibration across
folds, as we illustrate in Section 3.2.

WEKA [3] as of version 3.6.1 uses the AUCmerge strategy
in its Explorer GUI and in its Evaluation core class
for cross-validation, but uses AUCavg in its Experimenter
interface.

Exceptions: Although traditionally not a problem, if
there were any fold containing no positives, it would be
impossible to compute AUC for that fold. Under stratified
cross-validation, this can never be a problem. But without
stratification—such as in a multi-label setting—and with
great imbalance for some of the classes, this problem could
arise. In this situation, some software libraries may fail
altogether, others may silently substitute a zero or skip such
folds.
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Figure 2: Class imbalance and minority class size for
a variety of binary classification tasks in the literature
[1,2,5,6].

3. ILLUSTRATION
Here we provide specific examples of cross-validation

results that show wide disparity in performance, depending
on the method of calculation. We begin with F-measure and
follow with AUC. We use only four folds in order to simplify
the exposition and reduce visual clutter; however, the
disparity among the methods can be even more pronounced
with normal 10-fold cross-validation or with higher numbers
of folds. We use stratified cross-validation, although more
extreme results could be demonstrated for unstratified
situations where recall may sometimes be undefined. We
chose examples that avoid all corner cases to be more
convincing potentially (later we shall come back to the
matter). The performance statistics are the actual results of
a linear SVM (WEKA[3] SMO implementation with options
-M -N 2 for Platt scaling) on binary text classification tasks
drawn originally from Reuters (dataset re0 in [1]).

The examples here are demonstrated using highly imbal-
anced tasks in order to emphasize the disparity. The degree
of imbalance we consider (1% positives and 2.5%) is not
uncommon in text studies or in research that focuses on
imbalance. Figure 2 shows the imbalance and the number
of examples of the minority (positive) class for a set of binary
tasks drawn from the old Reuters benchmark [4], the new
Reuters RCV1 benchmark [5], 19 multiclass text datasets [1],
and a collection of UCI and other datasets used in imbalance
research [7].

3.1 F-measure
Table 1 shows the detailed numbers for each fold of a

stratified cross-validation on a task having 1% positives
out of 1504 data rows. This degree of class imbalance
is considered challenging, especially for the small number
of positives. Nonetheless, such small classes do appear
among text and UCI benchmarks, and our purpose here is
simply to illustrate a real example where the methods differ
substantially.

In the table, we see the classifier made a relatively large
number of false positive errors on the last two folds, leading
to poor precision for those folds. Whenever precision or
recall is low, then F-measure will also be low for those
folds. Averaging the four per-fold F-measures, we get

SIGKDD Explorations Volume 12, Issue 1 Page 52



Table 1: Example 4-fold stratified cross-validation shows F-measure can differ widely depending on how it is computed.
Fold Negatives Positives TP FP Precision Recall F-measure

1 373 3 3 0 100% 100% 100%
2 372 4 4 1 80% 100% 89%
3 372 4 4 13 24% 100% 38%
4 372 4 3 5 38% 75% 50%

Totals: 1489 15 14 19 Averages: 60% 94% 69% Favg

58% Ftp,fp 73% Fpr,re

Table 2: A second example where the F-measure calculation methods disagree because the classifier predicted no positives on
the second fold. Precision here(†) is set to zero to avoid division by zero; the metrics with a tilde instead skip this fold.

Fold Negatives Positives TP FP Precision Recall F-measure
1 372 4 2 0 100% 50% 67%
2 372 4 0 0 0%† 0% 0%
3 372 4 4 0 100% 100% 100%
4 372 4 4 0 100% 100% 100%

Totals: 1488 16 10 0 Averages: 75% 63% 67% Favg

77% Ftp,fp 68% Fpr,re 89% F̃avg

91% F̃pr,re

69% Favg. But if we instead average the precision and
recall columns, then any especially low precision or recall
value is smoothed over, rather than accentuated. Thus,
even with the very poor 24% precision on one fold, the
average precision and average recall are moderate, yielding
73% Fpr,re = 2× 0.60×0.94

0.60+0.94
, which is significantly higher than

Favg. Finally, if we tally up the true positives and false
positives across the folds (at lower left) and then compute
F-measure from these, we get 58% Ftp,fp = 2×14

2×14+19+1
,

which is much lower than Favg. This illustrates that the
difference can be large: Fpr,re = 1.26× Ftp,fp. In Section 4
we characterize the bias and variance of each, showing which
is actually the better estimator.

For a different class (not shown) having exactly 4 positives
in each of the four folds (1% positive), we found the classifier
happened to make no positive predictions for one of the
folds. This led to an undefined precision and penalized
the classifier with zero F-measure for that fold, although
generally the classifier performed well on the other folds.
Finally there is the option to skip any folds that lead to
undefined precision. These variants are marked with a tilde.
Naturally, they assign better scores for having effectively
removed a difficult fold from the test set. This naturally
leads to a strong positive bias in the scoring function:
F̃pr,re = 1.34× Fpr,re.

3.2 AUC
Next we turn to the Area Under the ROC Curve. The

primary issue in this case is that the soft score outputs from
each of the fold classifiers are not necessarily calibrated with
one another. For example, we conducted 4-fold stratified
cross-validation of the same dataset for a different class
dichotomy having 38 positives (2.5%). The AUC scores
for each fold were 96%, 91%, 94% and 87%, which yield
an average of 92% AUCavg. But these four classifiers

were not calibrated with each other, as we illustrate in
Figure 3. The left graph shows the false positive rate vs.
the classifier score threshold and the right graph shows the
same for true positive rate. Notably, only two of the
folds happen to align; two other curves are greatly shifted
horizontally. Thus, when the soft scores of all four folds
are sorted together to form one ROC curve, its overall score
is only 80% AUCmerge. Unless the classifier is calibrated
to output probabilities rather than just scores with some
threshold, it is not meaningful to compare the scores from
different folds. Note that this also applies for ranking
metrics such as Precision at 20 and Mean Average Precision;
such metrics need to be computed separately for each fold
and then averaged. If, on the other hand, the classifiers
are intended to be calibrated and one wishes to penalize
methods that produce inferior calibration, then one may
sort all soft classifier outputs together and then compute
the metric. Our purpose here is, again, simply to illustrate
a substantial difference.

4. F-MEASURE BIAS AND VARIANCE
Here we address the following questions:

• Why do we expect cross-validated F-measure results
to be biased?

• Do the different methods for estimating F-measure
introduce different kinds of biases?

• Which method introduces the lowest bias in absolute
terms and has the lowest variance?

• How do bias and variance change under class imbal-
ance and changing target F-measures?
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Figure 3: (a) Classifier false positive rate vs. output score.
(b) true positive rate vs. output score.

4.1 Why We Expect Biased Results
Before stepping into the details, we want to discuss why

F-measure is prone to biased estimates.

To this end, let us first study the behavior of accuracy.
Accuracy tends to be “naturally” unbiased, because it
can be expressed in terms of a binomial distribution:
A “success” in the underlying Bernoulli trial would be
defined as sampling an example for which a classifier under
consideration makes the right prediction. By definition,
the success probability is identical to the accuracy of the
classifier. The i.i.d. assumption implies that each example
of the test set is sampled independently, so the expected
fraction of correctly classified samples is identical to the
probability of seeing a success above. Averaging over
multiple folds is identical to increasing the number of
repetitions of the Binomial trial. This does not affect the
posterior distribution of accuracy if the test sets are of equal
size, or if we weight each estimate by the size of each test
set.

In contrast, F-measure has the drawback that it cannot be
broken down into F-measures of arbitrary example subsets.
Referring to Equation (2), it can easily be seen that the
impact of an individually sampled example on the overall
estimate depends on which other examples are already
part of the test set. This prohibits an exact computation
of global F-measure in terms of the F-measures of each
fold of a cross-validation. Having random variables in the
denominator adds complexity, basically a form of “context
dependencies.” The averaged result will usually change
whenever we swap examples between the test sets of folds,
even when assuming we get the exact same classifier for all

folds. Equation (2) illustrates that F-measure is concave in
the number of true positives TP , and steepest near TP = 0.
Especially under class imbalance, missing even a single true
positive (compared to expectation based on the ground truth
contingency table) might reduce the F-measure of a cross-
validation fold substantially. In contrast, including an extra
true positive has a much lower impact, so the overall bias
is negative. Clearly, this is an unpleasant property under
cross-validation.

Quantifying the bias for the methods considered in this
paper analytically is a hard problem. Running simulations
is comparably simple, and offers equally valuable insights
into the problem.

4.2 Details of the Simulation
We repeatedly simulated 10-fold cross-validation over a

dataset with 1000 cases: 900 training and 100 testing
for each fold. The performance of the binary classifier
was simulated such that it had controlled ground-truth
F-measure, with its precision exactly equal to its recall.
Thus, we can postulate a classifier with 80% F-measure that
exhibits 80% precision and 80% recall in ground-truth. For
generating our simulated test set results, we first allocate
the positives and negatives to the folds, either stratified or
randomly for unstratified. Then within each fold we sample
from the binomial distribution to determine the number of
its positives that become true positives and the number of its
negatives that become false positives. There is no expensive
learning step required. By repeating the simulation a million
times, we were able to determine the distribution of scores
generated for each of the five methods of computing F-
measure. This experiment methodology simplifies matters
for two reasons. First, it gives us a notion of ground truth,
as we know the correct outcome beforehand (the ground-
truth F-measure). We clearly want a validation method that
reports the ground truth with no bias or very little bias as
well as low variance. Second, under the i.i.d. assumption and
given the “ground truth” contingency table of our classifiers,
we can assess the bias and variance of each method.

In our simulations, we evaluated scenarios with 1% to
25% of the cases being positive. Since there are only 1000
cases, at 1% there are just 10 positives in the dataset.
This extreme case is intentional in order to bring out the
exceptional behavior when no positives are predicted in
some folds occasionally. Clearly most researchers would
avoid drawing any conclusions with so few positives in their
dataset. But there are two major exceptions. First, in
the medical domain, conclusions about classifiers are often
drawn on datasets having very few cases; for example, the
heavily studied Leukemia dataset by Golub et al. [2] has
just 74 examples divided unevenly in four classes. Second,
some machine learning research that focuses on learning
under class imbalance draws conclusions from studies on
many different datasets or classification tasks having a small
number of positives each. It is hoped that when aggregated
over many imbalanced tasks, the superior classifiers will
become known. In order for these conclusions to be accurate
and comparable across the literature, it would be important
to measure F-measure correctly even under what some might
call extreme situations. And, of course, when writing
software we cannot control all the test situations to which
it may later be put.
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4.3 Simulation Results
Figure 5 shows the relative bias of each method under

10-fold stratified cross-validation with a classifier having
exactly 80% F-measure in ground-truth. Only one method
is almost perfectly unbiased, Ftp,fp, and therefore it is
the recommended way to compute F-measure. This is the
fundamental result of this analysis. We go on to offer
intuition for the biases of the other methods. The x-axis
varies the class prior from 1% to 5% positives in order
to illustrate different effects. As we move to the left, a
greater proportion of test folds have undefined precision:
the two methods that in these situations substitute zero
(the minimum possible F-measure) have a negative bias,
Favg and Fpr,re; whereas the two methods that instead skip
such folds have a positive bias, F̃avg and F̃pr,re. Recall
that substituting zeros is not an arbitrary decision: The
function converges to 0 as we approach any point that has
an undefined precision or recall. So 0 is the correct value
here, and the negative bias might be a bit surprising at
first. The reason for this lies in the concave shape of the
F-measure function, see Section 4.1.

As we move to the right, folds with undefined precision
occur less often, and so the distinction disappears between
like pairs of lines. At the right, the Fpr,re method has a
relative bias >+1%, and the Favg method has a smaller
negative bias. Why? Since F-measure operates like an
and-function between precision and recall, any fold having
by random variation especially low precision or low recall
will receive a low F (i) score. Given 10-folds, there are
ten chances to get an especially low F (i) score by chance,
bringing Favg down on average; in contrast, averaging the
precision and recall over the ten folds generally results in
less extreme values from which their harmonic mean Fpr,re is
computed. Thus, Fpr,re is far less likely to have an especially
low precision or recall score, and it shows a substantial
positive bias.

Next we examine how the bias depends on the ground-
truth F-measure, which we vary from 60% to 95%. The three
panels in Figure 6 show the results of 10-fold stratified cross-
validation for datasets having 1%, 5%, and 25% positives.
For each dataset, as the ground-truth F-measure declines,
the bias of each method generally becomes more extreme.
Figure 7 shows the same for unstratified 10-fold cross-
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Figure 5: Bias under unstratified 10-fold cross-validation.

validation. The y-axis is held the same, except for the
leftmost dataset where the range of bias is greatly increased
(note its y-axis). Without stratification, undefined precision
and, rarely, undefined recall can affect the measurements, as
described previously. Already with the 5% positive dataset
we see the zero-substitution methods Favg and Fpr,re have
substantial negative bias. (In the rightmost graph with

25% positives, Fpr,re and F̃pr,re are not visible as they are
overlaid atop Ftp,fp.) To cover all these situations, Ftp,fp is
clearly the preferred method.

Finally we want to discuss the bias of Ftp,fp. The same
argument of F-measure being concave applies here, and
explains a (very small) negative bias. We repeatedly sample
from a ground truth contingency table (our simulation) and
then average the biases. Underestimating the fraction of
true positives has a higher impact than overestimating it,
especially near 0. The main difference between Ftp,fp and
the methods that average cross-validation folds is that the
former avoids the highly non-linear regions of the F-measure
functions near 0 by considering aggregates. This reduced the
bias by two orders of magnitude in our experiments.

Having analyzed the bias, we now turn to variance.
Figure 8 shows the standard deviation relative to the
ground-truth F-measure. At 5% positives and more we
see that Ftp,fp shows least variance. Although it does not
always show the least variance at 1%, the other methods
here are unacceptably biased.

5. DISCUSSION AND CONCLUSIONS
The upshot of the empirical analysis is that (a) Ftp,fp

is the by far most unbiased method and should be used
for computing F-measure, and (b) this distinction becomes
important for greater degrees of class imbalance as well as
for less accurate classifiers. The Favg method, which is
in common use, penalizes methods that may occasionally
predict zero positives for some test folds. This causes an
unintentional and undesired bias in some research literature
to prefer methods that err on the side of producing more
false positives. This is naturally of greater concern for
researchers who are focused on studying class imbalance.
But it should also be of concern to software programmers,
whose software may someday be used in class imbalanced
situations, and to researchers studying large numbers of
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Figure 6: Relative bias under stratified 10-fold cross-validation.
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Figure 7: Relative bias under unstratified 10-fold cross-validation.
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Figure 8: Relative Standard Deviation under stratified 10-fold cross-validation.
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Figure 9: The probability of having at least one fold
with no positives in 10-fold unstratified cross-validation,
which results in undefined recall. The second curve shows
this probability increasing given many independent trials:
testing many different classes, many datasets to study, or
random splits of the same dataset.

datasets in aggregate without careful scrutiny, especially
datasets with many classes or multi-label settings.

Normally the stratification option is used to reduce
experimental variance, but in some studies it is omitted.
Without stratification, we run some risk of having zero
positives in one or more of the folds, leading to undefined
recall and undefined AUC. This risk grows greatly if there is
a small number of positives available in the dataset. Figure 9
shows the probability of this problem occurring for 10-fold
unstratified cross-validation, varying the number of positives
available. The grey data points reflect the actual number of
positives available for some of the binary classification tasks
shown previously in Figure 2. Given that every research
effort deals with many repeated trials, and/or multiple
classes being studied within each dataset, and/or multiple
datasets, the right-hand curve shows the probability that
the problem occurs in 1000 independent trials. The point
is that when studying datasets that have, say, less than 100
examples for some class, it is fairly probable that some of
unstratified experiments will encounter some folds with no
positives to test. This leaves AUC and possibly F-measure
undefined.

Now, the straightforward answer is simply to always
use stratification to avoid this potential problem. But
stratification can only be used for single-label datasets. In
multi-label settings it is infeasible to ensure that each and
every class is (equally) represented in every fold. Thus,
the risk of encountering undefined recall and AUC values
is mainly a concern for multi-label settings—an area of
growing research interest.

In conclusion, we urge the research community to
consistently use Ftp,fp and AUCavg. Be careful when
using software frameworks; as useful as they are for getting
experiments done efficiently and consistently, they can
also hide imporant details—details that matter in some
situations. For example, as of version 3.6.1, WEKA’s
Explorer GUI produces Ftp,fp and AUCmerge by default,
whereas its Experimenter produces Favg and AUCavg—as
do many other software frameworks. In order to obtain

both Ftp,fp and AUCavg, one needs to be explicit in
one’s programming. To obtain Ftp,fp, use a single call
to Evaluation.fMeasure() on a confusion matrix that has
been loaded with all cross-validation folds. But to obtain
AUCavg, call Evaluation.areaUnderROC() separately for
each fold and then average.

To keep things in perspective, there are a variety of known
pitfalls that are more frequently a problem than the subtle
issues of computation raised in this paper: using only a
single, often weakly chosen, baseline method; not making
sure the baselines have reasonable options and tuning;
and unintentionally leaking information from the test set,
sometimes as a result of twinning in datasets containing
near duplicate cases in training and testing. Altogether,
our diverse research community needs to continue to make
progress and generally adopt best practices for high quality
machine learning research.
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