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In the framework of quantum field theory, it is attempted to investigate whether the hydro

dynamical description is applicable to the meson cloud produced in extremely high energy 

collision of nucleons as considered in Landau's theory of the multiple production of particles. 

The applicability conditions of the hydrodynamical model consist of local equilibrium and 

conditions for the possibilities of defining the local system in the meson cloud, which are 

prepared by the methods based on quantum statistical mechanics of irreversible processes. 

These conditions are examined by comparison of the correlation lengths and the relaxation 

times of the meson fluid with a characteristic length and time, in which the thermodynamical 

parameters, the temperature for example, of the fluid decrease or increase by an appreciable 

amount on a macroscopic scale. From such examinations, it may be concluded that the 

hydrodynamical model holds almost everywhere except in the front part of the cloud after 

the whole cloud spreads over a region whose size is the order of the correlation length. It 

is, however, emphasized that the interactions in the initial cloud directly after collision and 

in the front part of the expanding cloud can never be described by any statistical law or 

hydrodynamics. The fact that the front particles are never in any thermal equilibrium 

suggests that they remember some features of initial high energy interactions in the very 

small cloud. In other words, it is inferred that the distributions (for example, Kin ratio and 

the momentum or angular distribution) of the front particles may inform us about the 

interactions at very small distances. On the other hand the influences of initial interactions 

on the remaining cloud are only taken into account through the initial boundary conditions 

for the hydrodynamical equation. In addition to the above discussions, it is pointed out that 

the assumption of the perfect fluid used by Landau is not so good; it turns out that one 

can expect an increment of the number of particles through the final interactions. Finally 

it is discussed whether these characteristics may be consistent with the recent experiments. 

§ 1. Introduction 

The statistical laws in thermal equilibrium or thehydrodynamical equations are 

often used in theories of the multiple production of particles in nucleon-nucleon col

lisions. Such theories are to be grounded in the statistical mechanics of irreversible 

processes as presented in the previous paperl). Following its prescriptions, it should 

be confirmed that interactions in the system relax most disturbances and revive 

thermal equilibrium in a reasonably short time. Furthermore, in the hydrodyna-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

2
/3

/4
0
3
/1

8
6
5
8
5
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



404 c. Iso, K. Mori and M. ,,-Vamiki 

mical model, one must define a small cell which may be regarded as a point In 

the continuous meson fluid in question. In every such cell, it must be shown that 

good relaxation phenomena occur, in other words, local equilibrium holds. 

A few years ago Blokhintsev2
) pointed out by discussions using the uncertainty 

principle that the momentum density could not be define::!, in a small cell, com

patible with the hydrodynamical description of the meson cloud. We however, 

think that such a small cell is not an isolated system as treated in Blokhintsev's 

criticism, but must be considered to have furious interactions with the surrounding 

cloud of high density and high temperature. Following statistical mechanics, it is 

natural that one should determine the smallest size of the above-mentioned cells by 

the longest of the various correlation lengths in the presence of interactions with 

the surrounding cells and self-interactions. Otherwise, the physical quantities in a 

cell change with some correlation to surrounding cells, so that an individual cell 

can not be considered as a local system in the fluid. If the correlation lengths are 

much smaller than the linear dimensions of the cloud, it becomes possible to define 

many local systems in the cloud and, consequently, to use the notion of the mass 

flow or the local velocity formulated in 1. Local equilibrium can be expected for 

systems with sufficiently short relaxation times. Strictly speaking, the correlation 

length and the relaxation times should be compared with the characteristic length 

and time, in which the thermodynamical parameters, the temperature for example, 

of the meson fluid vary by an appreciable amount on a macroscopic scale. Moreover, 

in order to examine the assumption of the perfect fluid used by Landau, we must 

show the smallness of the transport coefficients, for example., the heat conductivity, 

the coefficients of shear and bulk viscosities, of the meson fluid. This can be per

formed by estimating quantities like the Reynolds number. As will be seen later, 

the transport coefficients can also be used as a measure of fluctuations of the trans

ported quantities associated with them. 

To summarize the above arguments, we must examine the following three 

applicability conditions of Landau's model: (i) the correlation lengths of the cloud 

must be much smaller than the linear dimensions of the system and the characteristic 

length for a macroscopic change of the temperature, (ii) the relaxation time of the 

clould must be much shorter than the characteristic time for a macroscopic change 

of the temperature, and (iii) the transport coefficients must be small. Furthermore 

Landau has assumed 3 p = c for the equation of state of the meson fluid. Then 

the applicability conditions of Landau's model should be supplemented by examining 

such an equation of state. It is the purpose of the present paper to perform 

these examinations. 

In Appendix A it is shown that the correlation lengths are as small as (liT) 

in the meson fluid with temperature T. * Since T decreases from a high initial 

value to a low final one, this guarantees in part the validity of defining a small 

* The units h = c = k (Boltzmann constant) = 1 are used through the present note. 
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Applicability Conditions of the Hydrodynamical Model 405 

cell in the meson fluid after the size of the system has exceeded the correlation 

lengths. The exceptional case occurs in the earlier stage of expansion where the 

Lorentz contraction brings about too flat an initial shape of the cloud, whose 

thickness ("- (1/T2» is smaller than the correlation length ("- (lIT». This can 

be easily seen without detailed calculations. Most of the remaining discussions in 

this note will be devoted to estimations of the relaxation times and transport 

coefficients and to examination of the conditions mentioned above. 

In § 2, by replacing the Heisenberg equation of the meson field with a Langevin

like equation, we formulate the semi-phenomenological interaction Hamiltonian re

presenting the furious interactions in the meson cloud. The fluctuation-dissipation 

theorem is used to characterize the interaction Hamiltonian. In § 3, the temperature 

dependences of the various transport coefficients, and the relaxation times associated 

with them, are determined. In § 4 we discuss whether the temperature dependences 

of the relaxation times and examination of other conditions permit us to use a 

hydrodynamical description of the meson cloud consistent with the space-time varia

tions in temperature obtained from Landau's model. In § 5, discussions are 

presented of the information to be obtained from extremely high energy phenomena 

and the consistency of the results in this paper with some recent experiments. 

Appendix A is concerned with the estimation of the correlation length and the 

validity of defining the mass flow or the local velocity. In Appendix B, the method 

of the Green's function of one meson in a medium is presented. In Appendix C 

the detailed calculation of the relaxation times and the transport coefficients is 

explained. 

§ 2. Fluctuation-dissipation theorem and interaction Hamiltonian 

We now consider an appropriate interaction Hamiltonian to represent furious 

interactions in a meson cloud of high density and high temperature. In the per

turbation theory with an elementary interaction (such as )¢4, for example), the 

calculations to the lowest order are only justified for a dilute meson gas. Con

sequently, it is of convenience for practical calculations to derive a semi-phenomeno

logical Hamiltonian from the exact one, for the purpose of treating furious inter

actions in a compact form. We shall make use of the fluctuation-dissipation theorem 

on the analogy to the theory of the Brownian motion. 

The interacting meson field* ¢ obeys the operator equation 

(2 ·1) 

111 the Heisenberg representation, m being the meson mass. Here F consists of 

the absorption and creation operators of one and more mesons, nucleon pairs and 

other particles. From analogous discussions of the vacuum field theory, it may be 

expected that the operator 1> or F can be divided into two parts, one representing 

* For simplicity we deal exclusively with the neutral field. 
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406 C. Iso, K. Mori and M. Namiki 

asymptotically one clothed meson in the medium of the meson cloud and the other 

corresponding to the remaining part. We may denote the one clothed meson part by 

II· ~ and the remaining part by f, respectively, where II is a c-number operator. 

Naturally, in the asymptotic sense the operator f is only associated with two and 

more mesons and other particles, and the difference of the numbers of creation 

operators and annihilation operators is more than 1. The field equation (2 ·1) is 

rewritten as 

(D-m2-II)~ f. (2 ·2) 

The c-number operator II can be connected with the Green function, for one clothed 

meson in the medium of the meson cloud, defined by 

G(x, t; x', t') =<T(~(x, t)~(XI,t'») 

=T1.{{JT(~(x, t)~(x', I'»}, (2·3) 

where p is the density matrix of the system and T stands for Wick's chronological 

operator. From (2·2) and (2·3), we easily find that the Green function G 

satisfies the equation 

(2·4) 

because of Tr{pT(~f)} =0. Here the symbol 1 means the delta function o(x-xl
) 

X a (t-t' ). The c-number function G or Il is to be calculated from the exact Hamil

tonian including the elementary interactions. The real part of II is nothing but 

the effective increment of meson mass, while its imaginary part implies the dis

sipation of one clothed meson in probability. 

Since the effects of f in the exact equation are expected to become random on 

a rough time scale, neglecting the interval of order (the correlation length/the light 

velocity) because it contains furious changes in the meson cloud of high density and 

high temperature, one may replace the definite operator f by a fluctuating external 

source (or sink) function f which represents the random interaction between the 

cloud and the large surrounding heat bath or the cloud itself. The equation (2·2) 

with such a random f is considered to be analogous to the Langevin equation in 

the theory of Brownian motion. That is to say, such a Langevin-like equation should 

be regarded as an asymptotic one valid only when one disregards the fine interactions 

during each time interval whose width is the correlation time (~o/l), ~o being the 

correlation length and 1 the light velocity. The fluctuating source j has a statistical 

character given by the fluctuation-dissipation theorem. The equation of form (2·2) 

with the external source f can be derived from the interaction Hamiltonian 

(2 ·5) 

in the Schrodinger representation. This takes the place of the Hamiltonian repre

senting the fluctuating interactions between the local system and the surrounding 
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Applicability Conditions of the Hydrodynamical Model 407 

fluid, or the fluctuating self-interactions. Thus the power (or the dissipation of 

energy per unit time) due to the action of f becomes 

(2 ·6) 

This fact permits us to regard a~/at and f as the thermodynamical flow and deriving 

force, respectively. Hence the ratio of the Fourier transform of f to that of a¢/dt 
can be treated as the "impedance" of the system, so that the fluctuation-dissipation 

theorem3
) can be described as follows; 

- - Iw l -, 

(f(k, w) f* (k', (I)') ) = coth- i. (lm 1"-'(0) a (!~ - k') a (w - w') , 
2T 

(2·7) 

where II is the Fourier transform of 17 and f(k, w) that of f(x, t); 

This theorem holds as far as f can be regarded as a random function, i. e., the 

oscillations in the interval t < ~o can be disregarded. Hence the theorem (2·7) must 

be used in the frequency range Iwl::S (l/~o). In other words, the right-hand side of 

(2·7) must be multiplied by a cut-off factor· for the range 1(V1~(l/~o). Since 

~o~ (lIT) as seen in Appendix A, the frequency range of (2·7) becomes the 

interval from (- T) to (+ T), so that we can always approximate the factor 

coth(lwi/2T) by (2Tllwl). Thus one gets 

- - 2?'T 
(f(k, w) f* (k', w') ) ~ r:1 a (k- k') a (w- w'), (2·8) 

in which we have put :; = 1m 1"-'<0' On the other hand, we are only concerned 

with free mesons in the range 1 w I :S rn, so that :; ~-o for 1 (t) I :S rn. 

In the present formalism based on (2·7) or (2·8), the parameter:; is only a 

phenomenological one unless we calculate it by means of the Green function within 

the framework of the exact Hamiltonian. Of course, we know the way to obtain 

the parameter ( from the exact Hamiltonian. Although it is very difficult to cal

culate ( exactly, it may be of some significance to obtain:; from the exact Hamil

tonian by conventional perturbation theory. Thus we get the rough formula (see 

Appendix B) 

(~27r2gs2T2 

~7r2(gv/rn)2T4 

(ps-coupling) 

(pv-coupling) 
(2 ·9) 

to the lowest order of the coupling constant (gs or gv) for the meson-nucleon system. 

Here we have used the approximation T ~ rn and M, M being the nucleon mass. At 

first sight one may distinguish the types of elementary interaction by the T-depen

de nee of ( or the autocorrelation function (ff*). Nevertheless, such a difference 
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408 c. Iso, K. Mori and M. Namiki 

might be washed out due to the damping effect that may multiply ( by a factor 

of the form [1 +A(gv/m)2T2J-l which brings the T-dependence of ( in the case of 

the pv-coupling to that in the case of the ps-coupling for high temperatures. 

Moreover, we may get the real part of II of order T 2
, so that the meson wave 

would· propagate with effective mass ""'" T. 

It is true that the theory is relatively simple if one calculates the various 

quantities by making use of the interaction Hamiltonian (2·5), but it may be more 

convenient to formulate the theory by introducing an effective Hamiltonian in paral

lelism to the familiar form A ¢4 of elementary interaction. For this purpose we 

replace f in (2·5) by A(¢2)¢X, where (¢2) "'-' 4nT2 (T';7 m) is a density-like quantity 

of the meson fluid and X represents the fluctuating potential. If we normalize the 

autocorrelation function of X as follows; 

ex (k, w) X* (k', w') ) = (} (k- k')(} (w- WI), 
G' 

(2 ·10) 

then the dimensionless quantity (A T2) becomes 

(2·11)* 

(A T2) is nothing but the (dimensionless) effective coupling constant of interactions 

between the meson field and the heat bath (i.e. the meson fluid as a medium). 

It is noted that (A T2) is a slowly varying function, as In (Tim), of T, but (A T2) 

vanishes for T$m. The interaction Hamiltonian has then the form 

(2 ·12) 

In the Schrodinger representation. 

§ 3. Relaxation phenomena in the meson cloud 

We have shown in the first section that one can take a small cell, whose size 

is (l/T) at least, as a local system of the meson cloud in question. \Ve now talk 

about the relaxation phenomena in a small cell in its rest coordinate system, in 

which one can use the non-covariant expression obtained in I for the various quan

tItIes. It is of practical convenience to calculate the various transport coefficients 

and the relaxation times associated with them in a large system (having the volume 

V) in which all thermodynamical parameters, i.e., temperature, pressure and so 

on, are everywhere just the same slowly varying functions with the same constant 

gradients as those in the local system at a given point. In what follows, it is 

assumed that T';7 m. 

The heat conductivity /C is defined by Fourier's law 

* We have replaced the factor (1/(f)) in the right-hand side of (2·8) by (liT) without an 
T 1 

appreciable change of order, because such a factor appears in the integrals of form i d(f)--;; e-,u/T ... 

in the calculation of various quantities. 
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Applicability Conditions of the Hydrodynamical Model 

1 
q =-IC-VT 

T ' 

409 

(3 ·1) 

where q IS the heat flow. In the previous paper I we have obtained the formula 

IC= ) !f(x-x')d3 x', (3,2) 

where 

(Xl 

1 (. 
K(~~-x') =-T-,\ ({gl(X', 0), gl(X, t)} )odt. (3·3) 

o 

Here the operator [:h (x, t) is a component of the momentum density operator 

( ) 
d.(-t-' ( ) p'i-fii Pt-f1 t ).'-) ( ) 

gi x,t = 'P ' x, t-2~-- ~--2 .-y;' x, t 
l - l 

(3 ·4) 

and the symbol < {A, B} )0 stands for 

< {A, B} )o=T1.{Po~(AB+BA)} -vacuum term, 

where po is the density matrix in thermal equilibrium with temperature T. The 

operator (1/t/2) ¢(±)are the plus and· minus frequency parts of ¢. As is easily 

shown, the function K is a function of the difference x - x', so that the quantity 

!C is independent of x. Hence we rewrite (3·2) as 

co 

1 (. , 
IC=Vy--J <{~\(O), Pl(t)} )odt, (3·5) 

o 

where P IS a component of the total momentum operator 

(' 

Pi(t) = J gi(X, t)d3 x 
v 

of the meson cloud. Since the integrand of (3·5) is the response function for an 

unit pulse, its damping time is nothing but the relaxation time for disturbing the 

temperature, i.e., the relaxation time associated with the heat conduction. 

Concerning the shear and bulk viscosities, we have the well-known phenomeno

logical equation 

(3·6) 

among the stress tik, the static pressure ps, and the deformation velocity* f7 iUk, 

where 7)(s) and 7)(11) are the coefficients of shear and bulk viscosities, respectively. 

The formulas for 7)(8) and 7)(11) are given by 

(3 ·7) 

* Uk is the local velocity. 
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410 C. Iso, K. Mori and M. Namiki 

(3 ·8) 

where the operator 

(3·9) 

is a component of the total stress tensor operator. Here Tik is connected with the 

meson field as follows; 
----» +- -4 +-

Tik(X, t) =¢(+)(x, t)~~2if7~ f7k~f7k¢(-)(X' t). (3 ·10) 

We shall show details of the calculation of K exclusively and write only the 

results for 7)(8) and 7)(v)' Following the perturbation theory, the integrand of (3·5) 

can be developed in the series 

ttl tn-l 

({%\(O), ,%\(t)})o= ~l (-i)n.\'dtl )dt2 ••• • \ dtn 

o 0 0 

X( {%\(O), [[- .. [[%\(0), Xr(tl)J, X 1(t2)J,"·J, Xr(tn)J} )0, (3 ·11) 

where Xr (t) is the interaction Hamiltonian in the interaction representation. Taking 

the randomness of X1(t) into account, the series (3 ·11) can be easily summed up 

and becomes the simple expression4
) 

t 

( {f~\ (0), PI (t)} )0= (C%\ (0) J2)0 exp{ - j' dt' (t-t') eft (t')}, (3·12) 

o 

where 

(3 ·13) 

Strictly speaking, the exponent of (3 ·12) must be supplemented with the infinite 

series consisting of higher order terms with respect to the even powers of X I. 
However, one may expect the effects of these terms to be some modification of the 

effective coupling constant like, for example, the damping effects. 

In terms of the Fourier transform eft (w) of d (t'), the time-integral in the 

exponent of (3 ·12) can be rewritten as 

1 (. -
/ Idwci(w)Ll(w,t), 

V 2r. J 
(3·14) 

in which 

,/ ( ) 1 [-itot 1 +. tJ '-' (/), t = ----; 2 e - Uu 

(zw) 
(3 ·15) 
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Applicability Conditions of the Hydrodynamical Model 411 

Here XI (w) is the Fourier transform of XJ (t'). Let us define a characteristic 

time (T of the interaction by 

_~ = ~d (0) =_-=2_ ._\(Pli~)~, __ ~~(J~)J~~o_ 
(J"2 iC iC ([yb 1 (0) J2)0 

(3 ·17) 

Since the time (J" characterizes the initial behavior of (3 ·14), we can proceed to 

evaluation of the integral (3 ·14) in the following way. If (J"Liw';P 1 for the spectral 

width .::1(1) of d ((/), then one gets the asymptotic formula j (w, t) ~rrt()(w) because 

the integral (3 ·14) contains a number of oscillations and, consequently, 

In this case the Lorentzian type of relaxa tion occurs in the relaxation time 

(3·18) 

Inversely, if (J" Liw ~ 1, then we have 

1 (' - t 2 iC 
~7--=~=-C \ dw d (w) j (m, t) ~ ---:i (0) = - ... t2

, 

V2iCJ 2 4~ 

because j (m, t) "'-'t2/2. Hence this is just the Gaussian type of relaxation, whose 

relaxation time
9 

is nothing but the characteristic time (J" of the interaction defined 

by (3·17). 

After some calculations (see Appendix C) one gets the formula for the T
dependence of (J" and .. as follows; 

(3·19) 

where we have used the interaction Hamiltonian (2 ·12) and the fluctuation-dis

sipation theorem (2 ·10) and (2 ·11). The spectral width Jw is of order (1/~0) "" T 

as is expected from the spectral intensity of the autocorrelation function (see discus

sions given under (2·7». Thus we have 

,I 7r ('T2) 1 (Tt.J(t)~ -7- J. - • 

V 10 
(3 ·20) 

This is used as a criterion to judge whether the relaxation phenomena is Lorentzian 

or Gaussian, according as (J" j(t) ';P 1 or ~ 1. Because of (iC / V/ i 0 ) ,......, 1, this criterion 

depends critically on the numerical value of the effective coupling constant (i. T 2
). 
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412 C. Iso, K. Mori and M. Namiki 

If (I. T2) <{ 1, that is, we are concerned with the case of weak coupling; then the 

relaxation is Lorentzian and the relaxation time is naturally.. In this case there 

holds the relation 

If (I. T2) ;;> 1 in the case of strong coupling, we have the Gaussian type of relaxation 

and the relaxation time (T <{ c;o. In this case, however, the effective coupling const9-nt 

I. T2 would be reduced to a value of order 1 due to the strong damping effect. 

This is very plausible. In fact, if (T were much smaller than c; 0, the different regions 

with a size of order (T would attain thermal equilibrium independently of each other 

in local system. This is inconsistent with the notion of the correlation length. 

Thus we may as well consider (T to be of order C;o due to the strong damping effect 

on the effective coupling constant (i. T2) . 

Although the calculations which lead to the formula (2·9) are very rough, 

one may estimate order of magnitude by using (2·9) with a value of gs or gv 

consistent with one obtained from the low energy meson physics. Thus it is reason

able to put the T-dependence of the relaxation time :-0 (:- or (T) in the form 

- '-""'aiT 'o-! , a being of order 1. (3·21) 

This value of .0 means that the mechanism of relaxation depends critically on the 

numerical values of a (that is, (I. T2) -2 or (I. T2) -1) and is perhaps intermediate 

between Lorentzian and Gaussian. At the end of § 2, we have remarked that the 

effective coupling constant (I. T2) will tend to zero as T approaches to m. Thus, 

the Lorentzian type of relaxation occurs for T~m, as expected in dilute meson 

gases. Futher it is noted that (I. T2) 2 may depend on T as In(T 1m). 

For the relaxation times associated with the shear viscosity, we have the 

formulas 

1 

T 

(Gaussian) , 

(Lorentzian) . 

(3·22) 

The relaxation times associated with the bulk viscosity are gIven by the formulas 

(Til ,-....,1': __ 

v/10 (l.T2) 

1 
-- - - - --------~ . 
5(I.T2)2 

1 

T 

1 

T 

(Gaussian) , 

(3 ·23) 

(Lorentzian) . 

As is easily understood, one may use (3·21) as the common formula for the re

laxation times in the above three cases. 

Now we can readily evaluate the time-integral in the formula for the heat 

conductivity /C as follows; 
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Applicability Conditions of the Hydrodynamical Model 413 

for either type (Gaussian or Lorentzian).* Here we have used the expreSSIOn 

'(A'17) 

(see Appendix C). Similarly we get the formulas 

'IC )=--~-~---([d12(0)J2)oTo~ 2a T
3

, I 
s 2VT - 5r.2 

'i(.,) = 3 ~T ([ d 11 (0) J2)0 To ~ :-::2 T
3 

(3 ·25) 

for the coefficients of shear and bulk ViscosItIes, respectively. These expressions 

for the transport coefficients show that their values can also be used as a measure 

of magnitude of fluctuations of the related quantities. 

§ 4. Discussions on applicability conditions of Landau's model 

Now we examine the applicability conditions of Landau's model presented in § 1. 

They are to be satisfied by the temperature of the meson cloud in question. Here 

we first formulate these conditions in the form of inequalities among the several 

quantities, such as the linear dimensions d of the system, the characteristic length 

Xo and time to for the macroscopic changes of T, the Reynolds number R, the 

correlation length ~o, the relaxation time To and so on. We shall use the so

lutions5
) obtained by Landau and others as the functions representing the dependences 

of T on space and time. It is noted that such solutions contain a single space 

variable and a time variable. 

The characteristic length Xo and time to are defined by the relations 

1 1 r---------
------ = V (LI P T) 2 

Xo T IL"" , 

1 1 
--=-IDT/, 

to T 

respectively. Here we have used the abbreviations 

LlIL"=J iJ.,, + UJi U", D= UILP1J.' 

(4 ·1a) 

(4 ·lb) 

where U,J.= (u/V' l-u2
, i/vT-u2

) and P fJ.= (p, l--i·P t ) are the local four velocity 

and the four vector of differentiation, respectively, u being the local velocity. Because 

of the projection character of LlIL" onto the space-like direction, .dw.F" means the 
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414 C. Iso, K. Mori and M. Namiki 

differential operator with respect to the space variable x' in the local rest system, 

while D is the invariant differential operator with respect -to the time variable t' in 

the local rest system. Thus we can rewrite (4 ·la) and (4 ·lb) as follows; 

.. ! __ =! / 1 2 _~[_a7~_+u aT] ' 
xo : v 1-u T - ax at 

(4 ·la') 

~ = ivl / u2 --} [aa~ +u ~~]I, (4 ·lb') 

In terms of the coordinate variables x and t in the center-of-mass system. 

To examine the assumption of the perfect fluid, we must obtain the Reynolds 

number R for viscosity and the number K for heat conduction analogous to R. 

For this purpose let us divide the energy-momentum density tensor TIL); into the 

perfect fluid part and the part due to irreversible processes as follows; 

where 

T lL~j) = P8 afL); + (Ps + E) UfL U v, 

T fL(;) = UfLqV+ UvqfL-PflV' 

(4·2) 

(4·3) 

Here E, qfL and PfLV are the invariant energy density, the heat flow and the viscous 

stress tensor, respectively. The part Tri:) is moreover decomposed in the way 

(4·4) 

where T fL(:) and TJ~) correspond to the heat conduction and the viscosity, respectively, 

as follows; 

T (V)- P 
fLV -- fL\I' (4·5) 

Here we can use the phenomenological equations 

(4·6) 

P fL\I = 7)(v) .::1JL\I (f7 (1. U(1.) 

+ 7)(s) [.::1fL(1. .::1\11'> (P (1. U,,,, +P I'> U(1.) - * .::1fLv (P rt. Urt.) ] (4·7) 

for qfL and P!L\I' However, it is possible to discard the shear viscosity in P ILlJ because 

the quantities f7 1 U 2 and P 2 U1 vanish in the one-dimensional motion of the fluid in 

Landau's model. By making use of the above tensors, we can define the invariant 

Rand K by the following ratio: 

J T(p) E 
R = ---_. fL \I_---~-- = ____ ._ 

IJJL); Tv~)1 37)(v) /P rt. Urt.1 
(4 ·8) 

(4·9) 
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Applicability Conditions of the Hydrodynamical Model 415 

Here it is noted that JfJ-lIT~~)=3ps=c= UfJ-TJ~) U lI due to the equation of state, 3ps=c. 

We interpret briefly the behaviors of the solutions5
) of the hydrodynamical 

equation for T in Landau's model. The space-time distribution of T consists of the 

simple wave occupying the front part and the remaining wave occupying the back 

region, which is called the non-trivial region. In the non-trivial region, the depen

dence of T on x and t is well described by the approximate solution 

and 

1 ( T ) 1 [1 (t + x) 1 (t - x) /1- -( t-+-x )-1- -----(--t= X-)---J--' 
n -To = ---3- _ n J-- + n --J - . n \. J - n --- J-

x 
U=-, 

t 

where J is the initial thickness of the cloud given by 

(4· 9) 

(4·10) * 

To being the initial temperature of the system assumed by Fermi and Landau. In

stead of x and t, it is more convenient to use the variables T and a defined by 

the equations 

(4·11) 

The variable a runs over the interval from a=l to a--O (but =1:0), according as 

the point restricted to the surface T=const. passes through the non-trivial region 

from its central part to its front part. In the region of the simple wave, we have 

the exact solutions 

and 
/-

t+v 3x 
U = ~7=-'--- . 

v 3t+x 

Here it IS convenient to introduce the variables T and 19, defined by 

* In what follows, we shall use the unit m=1. 

(4 ·12) 

(4 ·13) 
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416 C. Iso, K. Mori and M. Nmniki 

where ~ vanes from /1 = 7 - 4vr 3 to p = - CD according as the point restricted to 

the surface T = const. moves from the back boundary of the simple wave regIon 

to the wave front. 

Now we can formulate the conditions· (i), (ii) and (iii) presented in § 1 in 

the following inequalities: 

(i) d?>;o and xo?>;o, 

( ii ) to?> To, 

(iii) R?> 1 and K?> 1. 

These conditions will be examined in the following subsections. 

4·1. Definition of the local system 

(4 . 14a) 

(4·14b) 

(4 . 14c) 

In this subsection we discuss the conditions (4 ·14a) for the possibility of defining 

a local system. As is discussed in § 1, the first condition of (4 ·14a) becomes most 

serious in the initial cloud directly after collision because of its flatness due to 

Lorentz contraction. U sing ~o = (a'IT) obtained in Appendix A, (4 ·14a) becomes 

To~2.5/a'. (4 ·15) 

For several values of at (which is of order 1), (4 ·15) becomes the following 

inequalities 

To~2.5 or Elal>.~4 Bev if a'=I, 

To~2 or ElalJ.~100 Bev if a' =0.5, ) (4·16) 

To~10 or E 1alJ . ~ 1000 Bev if a'=0.25. 

At any rate it is clear that (4 ·16) is not satisfied at extremely high energies. 

Thus it is hardly acceptable to regard the initial cloud produced in extremely high 

energy collisions as a sort of fluid. On the other hand, the assumption that the 

initial cloud is in thermal equilibrium as a whole is, of course, not self-consistent 

because of finiteness « light velocity) of the transmission velocity of disturbances. 

The features as a fluid will appear only after its thickness exceeds the correlation 

length ~o::::--:' (a'IT). In the initial period before some fluid features appear in the 

cloud, the interactions in the cloud are governed by another law apart from hydro

dynamics. The results of such interactions are to be taken into account as the 

initial boundary conditions for the hydrodynamical equation to describe the subsequent 

expansion of th(!! cloud. In other words the initial boundary conditions ought to 

be accepted as partial reflection of high energy interactions in the initial cloud. 

The total energy E of a local system with volume V is 

while the mean square deviation is 
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Applicability Conditions of the Hydrodyn{lmical Model 417 

JE= ~J~3 T5!2 V 1!2. 

1T 

Thus' we get the fractional fluctuation 

!!!};.= 47rV~ T-3/2 V- 1/ 2• 

E 6.49 

. For V = (A/T) 3, the condition, 11E/ E <{ 1, of small fluctuation becomes 

(
41TV 3)3!2 A> ~l. 

6.49 

This is automatically satisfied by the local system whose size is much larger than 

~o. The condition 11E/ E <{ 1 is nothing but that considered by Blokhintsev. 

In the course of expansion, (4· 15) will be satisfied as the system spreads. 

There we must examine the additional condition, that is, the second of (4" 14a) . 

From (4 ·la'), (4·9), (4 ·11), (4 ·12) and (4 ·13), one can easily obtain the charac

teristic length Xo for the macroscopic change of T as follows; 

(non-trivial region), (4·17a) 

(4·17b) 

Thus we get the condition, Xo > ~ 0, in the forms 

:~=(11~JT'(~~) 2:;<·:~r~);.>1 (non-trivial region), (4 0 18a) 

_ 5 (To )~(V:1··+1)+(V3·-1) 
- - l-~ >1 

a'To T 
(simple wave region). (4·18b) 

We first discuss the condition (4 ·18a) in the non-trivial region. 

Tl of temperature allowed by (3 ·18a) is expressed by 

The upper limit 

(4 ·19) 

The power in the right-hand side of (4 ·19) is always a positive number less than 

1, so that Tl increases with increasing To (increasing incident energy). In fact, 

(4 ·19) becomes, for several values of a, 

T1/To= co for a=1

1 a-~' TI/ To = [51.96/ a'To]0.508 for -4' 

Tr/To= [10/ a'To]O.R67 for 
(4 ·20) a=!) 

TI/To= [5.62/ a'ToT·875 for a=ft· 
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41S C. Iso, K. Mori and M. Namiki 

From this we can see that Tl decreases as the observation point moves from the 

central part (a=l) to the front (a~O) in the non-trivial region. But, even at 

the front (a~O), one can always find a value of T smaller than T 1• This fact 

may guarantee the validity, in the non-trivial region, of the hydrodynamical description 

applied to the expansion of the meson cloud produced in extremely high energy 

collisions. 

The condition Xo?~o becomes more severe in the simple wave region. Since 

the power of (To/T) in the right-hand side of (4 ·ISb) is not always positive, we 

must write (4 ·ISb) as 

-~- ~(V3 +1)+(V3-1) ?--- for 7-4v 3 >p> -2+v 3 ( 
5 ) __ l-~ _ T /. . / 

a'To To 

for p=-2+y3, (4·21) 

( t:l15T;)~(V3-+:)-+1(V3-1) ~ .~- for -2 +V/~r > p, 

where all the powers are positive. Although we may find a value of T allowed 

by the first condition of ( 4 . 21) for the range (7 - 4y3 > p > - 2 + v/3), one 

never finds T satisfying the last condition of (4·21) for the range (p<-2+V;-:r) , 

for very high values of To. Consequently, it is concluded that the hydrodynamical 

description of the meson cloud breaks down in the neighbourhood of the wave 

front. 

4·2. Local equilibrium 

Here we examine the condition to? 7'0 (4· 14b) for local equilibrium. The ex

amination is quite similar to discussions given in the preceding subsection for the 

condition Xo? ~o. The characteristic time to defined by (4 ·lb') is given by the 

formula 

to (non-trivial region), 

(simple wave region). 

Thus the condition (4 ·14b) becomes 

~:= (4V}5~~\)~To ( -¥) ,{;:,,:!~) (non-trivial region), 

= 5y3- ( To_) (V3+1~~~~(V3-1) 

aTo . T 
(simple wave region). 

(4·22a) 

(4·22b) 

(4·23a) 

(4 ·23b) 

As is easily seen, the temperature dependence of (to/7'o) is just the same as that of 

xo/ ~ 0, that IS, 
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Applicability Conditions of the Hydrodynamical Model 419 

to _ ( co ) ( 1-a ) (non-trivial region), 
Xo - --f; 4V/ a -a-l 

= (--~~) VS- (simple wave region). 
';:-0 

(4· 24a) * 

(4·24b)* 

This means that the condition to;?> 7"0 can hardly be satisfied in the same region in 

which the hydrodynamical description has already broken down due to the condition 

Xo ~ ';0' Since the physical content of the condition to'? 7"0 is that particles in a local 

system are in local equilibrium, the front particles free from the condition to '? co 

are, of course, not in thermal equilibrium. Consequently, it is conCluded that the 

front particles remember the high energy initial interactions in a very small region' 

and that the distributions of the front particles give us some knowledge about in

teractions at very small distances. 

To mustrate the a-dependence of the condition to,? 7"0 in the nontrivial region, 

it is convenient to define the upper limit T/ of T allowed from (4· 23) by 

T' [ 15 /a J ~\1+~=- V~} 
1 _ V 1+~+2V~ 

To - -(4va -a-1)aTo . 
(4·25) 

For several values of a, one gets 

T//To= (7.5/aTo) 0.5 for a=l, 

T//To= (7.6/aTo) 0.508 for a-.3. -4, 

T//To= (lO/aTo) 0.667 for a=-! 
(4·26) 

T//To= (22.5/aTo) 0.875 for a=~ 

Although the a dependence of T/ is inverse to that of Tl (see (4·20», the validity. 

of the hydrodynamical description is not altered in the non-trivial region. 

The Table I contains the values of (T//To) in the non-trivial region for a=l, 

0.5 and for To=10--100. In the simple wave region, one gets, for reasonable 

values of a, the upper limits of temperature: 

Table. I 

-----.-.--~--.-- .. ----.--.-_\. 
EJab ) ~~ a I 

____ ---+-_.1.-'-'0. ~ i 

~~. I: 

100 

a=l a=0.5 

1012 ev 

~ -----.- --~--------~-~ -------.. ~---~-~-~--.-----.-- .... -~-

1 1/4 1/9 1 1/4 1/9 
. ~----------.-.--~-

0.87 1 >1 >1 >1 >1 

0.55 0.54 0.91 0.78 0.87 >1 

0.34 0.34 0.50 0.55 0.55 0.91 

0.27 0.22 0.27 0.34 0.34 0.50 

1014 ev 

1015 ev 

1016 ev 

* Note that (ro/~o) = (a/a l )::::1. 
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420 C. Iso, K. Mori and M. Namiki 

if a=l, T =8.66 for (3=7 -4v/~f, 

To=8.66 for (3= -2+v/~f, 

if a=0.5, T =17.32 for (3=7 -4v/tf, 

To=17.32 for (3= -2+V/3 , 

4·3. Assumption of the perfect fluid 

It is the purpose of this subsection to examine the assumption of the perfect 

fluid used by Landau. To do this, we must estimate the Reynolds number Rand 

the number K defined by (4·8) and (4·9), respectively. 

By using the formulas5
) 

(4·27) 

for the invariant energy density c and (3·25) for 'le,,), one easily obtains the 

formula 

(4·28)* 

for the Reynolds number in the non-trivial region. For several values of a, (4·28) 

becomes 

= 3.38 (Il) 1.5 

aTo T 
for a=i, 

(4·29) 

=-:~~ (-~~ roB for a=~. 

The formula (4·28) IS closely related with the ratio (to/co) as follows; 

R = 10.14 ( 4 v/;--/ a-I) ( ~_) , ( 4.30) 
15v a :-0 

where the coefficient of (to/:-o) vanes from 0.5 to 0.2 as a decreases from 1 to ~. 

In the simple wave region we have the formula 

(4·31) 

for the Reynolds number. In every region the condition R? 1 is somewhat more 

* It is to be noted that this formula is obtained under the assumption T?m. 
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Applicability Conditions of the Hydrodynamical Model 421 

severe than the condition (to/To) ~1. In fact, we obtain the value R=1,......,10, in 

the non-trivial region, for the values To~100 and (To/T) ~10. In the simple 

wave region, R becomes smaller than in the non-trivial region. Thus we may 

infer that the assumption of the perfect fluid is not so good as supposed by Landau. 

In the non-trivial region, it is easily proved that 

DUlL=O. 

Hence one gets the formula 

K=CXo/IC=2.43(fo/z-o) (xo/fo) , (4·32) 

where (4·1a), (3·24) and (4·27) have been used. Apart from the factor (fo/z-o) 

of order 1, the examination of the condition K ~ 1 is almost that of the condition 

(xo/fo) ~ 1. Although we may have somewhat larger values of K than R, it is 

hardly acceptable to neglect the irreversible process due to heat conduction. In the 

simple wave region, we can show that the heat flow vanishes, that is, 

This means that the motion of the fluid is adiabatic. Thus we obtain an infinite 

K, but it is, of course, impossible to regard the meson cloud as a perfect fluid due 

to the smallness of R. 

4·4. Production of entropy 

In the preceding subsection, we have obtained rather small values for Rand 

K, so that entropy must be produced by the final interactions described by the 

hydro dynamical equation. Such a production of entropy results in an increment of 

the number of particles produced in the final interactions. Here we shall calculate 

only the production of entropy in the non-trivial region. 

Now the thermodynamical equation of the entropy balance is expressed in the 

form 

(4·33) 

where S~irl') is the entropy density four-current produced III irreversible processes. 

Denoting the total produced entropy by l'irr, we get 

(' (' 

~irr= JJ (fllLs~rr) d 3 x dt 

(' (' 

= J J (fllLs~rr) dx dt. (4·32)* 

Dividing V 
"'irl' into the heat part l'f:~! and the viscosity part l'j;:~>, and transforming 

* Note that J d 3x .. · = (~y J dx··· in the one-dimensional motion of the fluid and m= 1. 
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422 c. Iso, K. Mori and M. Namiki 

the integration variable x and t to another pair of variables T and a, we have the 

integrals 

"'>-'~")= rr_l_/C (_l_J P T+DU)2 3(x, t) dTda 
.k-.Jllr JJ T T!.tli li [J. aCT, a) , (4·33a) 

2Jii·''{.= f\ ~ l)(1!)(p((U(()2t(~:-~)dTda, (4·33b) 

where 3(x, t)/o(T, a) is the Jacobian of the transformation from (x, t) to (T, a) 

and is given by 

a (x, t) _ 9J2 -.- -2 ( T ) -1 3(1+(() ( To ) 
aCT, a) -'2T~(1+a-va) 'T~- 1H-V~ In T . (4·34) 

The intervals of the integrations are the range from 1 to a o (~O) for a and the 

range from the initial value Ti to the final one T j for T. We can use ao~(3o = 

7 -4y3 =0.072 to a good approximation, because the equations defining a and (3 

approach each other in the front region as time goes on. T j = 1 will be used as 

an extrapolation, while the upper limit* T/ of temperature, allowed by the con

dition to';}>!" 0, will be identified with T i . (Here we disregard the slight dependence 

of T/ on a.) 

In the non-trivial region, we have the formulas 

(4·35) 

Substituting (3·24), (3·25), (4·34), (4·35) and (4·17a) into (4·33a) and (4·33b), 

one obtains 

>"~/~).~1~T02 (_Ti )2[1+ln( To )2J 
.k-.JIII 2 rr' T' 

IT ..l. O· i 

(4·36a) 

(4·36b) 

It is important that, roughly speaking, the entropy produced in irreversible processes 

is proportional to Ti2, or T02 for constant (Ti/TO). Because the total entropy given 

by Fermi or Landau is proportional to To, it is possible that .rin exceeds the original 

entropy of the fluid part of the meson cloud. The entropy production means that 

the initial energy of the fluid part dissipates into new degrees of freedom, in other 

words, into new produced particles. Consequently we may expect an increment in 

the number of particles due to the final interactions. 

* The choice Ti = T{ is not significant unless T/ <To, When T/> To., One should use To as T i . 
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Applicability Conditions of the Hydrodynamical Model 423 

4·5. Equation of state 

One of the most important assumptions used by Landau IS that the equation 

of state can be put in the form 

3p=c. (4·37) 

As has been shown in I, the form of the equation holds exactly only when par

ticles in meson cloud interact with each other through the first kind of interactions, 

i. e., interactions having dimensionless coupling constants. The second kind* of 

interactions does not necessarily lead to the equation 3p=c, but, in general, to the 

equation 

(4·38) 

where )'S is the interaction Hamiltonian apart from a numerical factor. Here, 

suppose that ). is the coupling constant with the dimension [LIJ. Then the ad

ditional term ).( S) becomes 

';::;' jC)'T t X (the power senes of (i.T!» for l=even, 
1.( .... )= 

c).2T21 X (the power series of (i.2 T21» for l=odd 
(4·39) 

at extremely high temperatures, from the view-point of perturbation theory. At 

first sight we feel as if the violation of the equation 3 p = c is serious. However, 

there is a possibility that. the effects of the above power series may appear as 

damping effects. It is very plausible, though it is difficult to derive a definite con

clusion from the exact calculations. If so, (4·39) may be reduced to 

cA (AT!) 

. _ r l+B(i.T t
) 

I. ( :; ) = 1 cA' (i.2T21) 

1 + B' (i.2 T2t) 

for l=even, 

(4·40) 

for l=odd, 

where A, A', Band B' are numerical factors of the order 1. The interaction part 

of c would have the same dependence on T. Thus, since i.( 2) attains the same 

T-dependence as c, that IS, 

i.(S)occ 

at extremely high temperatures, the· equation of state (4·38) has the form 

3p= (1 +C)c (4·41) 

* In I the authors talked as if there were always essential differences between derivative 

coupling and non-derivative coupling in the second kind of interactions. This is not necessarily so, 

because such differences would vanish at extremely high energies. The differences appear in the 

case of moderate temperatures and moderate densities. 

Furthermore it may be noted that the additional term in (4·38) vanishes exactly In the 

case of pv-coupling of the nucleon-neutral meson system. This is a direct result due to the 

equivalence theorem. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

2
/3

/4
0
3
/1

8
6
5
8
5
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



424 C. Iso, K. Mori and M. Namiki 

Here C is a constant factor of the order 1. Consequently, this modification of the 

equation of state would result in some changes of the discussions about the hydro

dynamical motion of the fluid, for example, the change of the sound velocity and 

the different power law of c from T4. 

§ 5. Concluding remarks 

In -the last section, we have investigated the consistency of Landau's modd 

applied to the meson cloud which is produced in high energy nucleon-nucleon col

lision, with the applicability conditions derived from the statistical mechanics of 

irreversible processes. The results obtained are summarized in the following way: 

(i) The interactions in the initial cloud can not be described by any hydrodynamical 

equation. The interactions are, in part, reflected in the initial boundary condition 

for the subsequent hydrodynamical expansion. (Such a boundary condition might 

be different from that assumed by Landau.) (ii) After the cloud spreads over a 

region whose size is the order of the correlation length, the hydrodynamical des

cription of the cloud is valid almost everywhere except in the front part of the 

cloud. Here it must be emphasized that the front particles are never in thermal 

equilibrium and consequently they remember the initial interactions in the very 

small region. The front particles would be subject to quite different distribution 

laws from those of the fluid particles, which are given by hydrodynamics or statistical 

mechanics. (iii) The assumption of the perfect fluid is not so good as expected by 

Landau, so that the number of particles increases as a result of the irreversible 

motion in the fluid part of the cloud. (iv) The equation of state, 3p=c, holds 

exactly if the interactions are the first kind (having dimensionless coupling constant), 

while it is necessary to modify this equation as 3p=const. X c for the second kind 

of interactions. 

Although the above analysis is based on the solutions obtained by using Landau's 

assumption, the above conclusions can be applied to interpret the qualitative behavior 

of the meson clouds in question. Consequently, we are inclined to imagine the 

situation for the multiple production of particles in such a way that the produced 

particles will be clearly divided into two parts, one of which is the very high energy 

particles occupying the front part and the other of which is the fluid particles. 

These two parts will also be separated from each other in the experimental data, 

because there must be clear-cut differences between the two parts in the distributions 

of the particle number (for example, K-rr: ratio), of the momentum and of other 

quantItIes. Particularly, the existence of irreversible processes results in the slowing

down of the speed and the increment of the number of the fluid particles. In other 

words, the irreversible processes strengthen the tendency to separate the above 

two parts from each other. 

It seems that such considerations are consistent with the recent experiments6
) 

of cosmic ray performed by the Japanese group and the Bristol group. In these 

experimental data one can find that the energy spectrum of the r-ray number 
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Applicability Conditions of the Hydrodynamical Model 425 

obtained from high energy jets (~1014 e.v.) falls rapidly down and is cut off at 

the energies 1012 e. V.""'" 1013 e.v.. The r-rays in question are produced in the decay 

of neutral pions, so that the energy spectrum of neutral pions has perhaps the same 

form as that of the r-rays. Thus, it may be plausible to regard these neutral pions 

as the fluid particles in our imagination mentioned above. It seems that similar 

evidence is found in the observation of muons in cosmic rays. The gradient of the 

number-energy curve changes critically from a large value to a somewhat small 

value at a definite energy. The muons with energies below this critical value may 

be the fluid particles, while the muons with energies higher than the critical value 

may be considered to be the front particles. Although the experimental evidence 

is not yet established, our considerations may play a role in suggesting how to 

analyse the extremely high energy phenomena. The group of particles with higher 

energies would inform us about the interactions at very short distances. 
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Appendix A. Correlation length and mass How 

There are correlation lengths associated with the various quantities, such as 

the momentum density, the stress density and so on. As an example, we shall 

obtain the correlation length associated with the momentum density. This correlation 

length is defined by the width of the non-vanishing region of the function 

(A·1) 

where gi (x, 0) is a component of the momentum density operator (3·4). Here 

~(x, 0) is expressed by the following Fourier transform; 

where air. and al~ are the well-known annihilation and creation operators. 

tuting (A·2) into (A·1) and using 

( aJ: alr.f> = nlr. a (k - k') , 

} 

(A·2) 

Substi-

(A·3) 

the function ~ (x, x') IS written as a sum of products of the following functions 

or their derivatives: 

A (x-x') = 1 f d
3 

k (n + 1) eik.(X-a~/) 
(27Z')3 J VP+m2 k "2 , 

B (x - x') = _._1 __ r d 3 k - / k2 + rriY (n + 1) ilk.(X-Xf) 

(27Z')3 J V . k"2 , 

(A·4) 
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426 c. Iso, K. Mori and M. Namiki 

where 

(A·5) 

Hence ~ consists of products of two integrals involving n", and products of an 

integral containing nk in its integrand and an nk-independent integral. The product 

of two integrals without nk is cancelled out by the vacuum term. When T';Pm, 

the spatial variation of ~ is mainly determined by the integral containing nb which 

vanishes unless !x-x'l::S (liT). This means that the correlation length is the 

order of (liT). Thus we shall write the correlation length ~o in the form 

~o=a'IT, a' being of the order 1. (A·6) 

It is easily found that the correlation lengths associated with the other quantities 

are of the same order ~ o. 

As is mentioned in § 1 and § 2, the hydrodynamical description is to be con

sidered as the asymptotic form in which each region of the order ~o is regarded 

as a point in the fluid. Thus, we can treat the local system, whose size is of the 

order ~ 0, as if it moves like a mass point. This fact permits us to define a meaningful 

mass flow. In fact, the criterion formulated in the footnote on page 599 in I is 

satisfied in our case, because the· right-hand side of this equation is proportional to 

the delta function a(4) (x-x'), when x and x' are space-like, as far as each interval 

of the order ~o is regarded as a point. Hence the mass flow has a definite mean

ing, so that the local velocity can be constructed from the mass flow as in 1. 

Appendix B. Green's function of one meson in a medium 

Here we shall discuss briefly the Green's function of one meson In a medium. 

The Green's function G(x, x') of one meson is defined by 

G(x, x') =Tr{pT (~(x), ~ (x'» } (A·7) 

in a medium represented by the density matrix p. The function G contains the 

one meson propagator in vacuum as 'a contribution of the vacuum term of p. If we 

introduce artificially an external source J (x) of mesons into the Hamiltonian, ~ (x) 

obeys the field equation 

(A-S) 

for the ps-coupling system of meson and nucleon. With the help of J(x), the 

function G(x, x') can also be defined by 

G(x, x') = lim a<~(x» . (A.9) 
J~O aJ (x') 

Thus the function G(x, x') obeys the equation 
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Applicability Conditions of the Hydrodynamical Model 427 

(O-m2)G(x, x') =a(x-x') +limigs--~-tr (r5K(X, x'», 
J~O aJ(x) 

where tr stands for the trace with respect to Dirac's indices and K (x, x') is the 

one nucleon Green's function in a medium defined by 

K(x, x ' )=T1'{p(T¢(x)sb(x»}. (A·IO) 

K contains also the one nucleon propagator in vacuum. If we assume the existence 

of the inverse function K -1 (x, x') of K (x, x'), the last term can be rewritten as 

~~ig8 aJ~X'f-tr(r5K(x, x'» = J flex, x")G(x", x')d
4
x", 

where 

(A·II) 

Here T5 (f, 7j ; x") is the vertex part in a medium and is defined by 

(A·I2) 

The c-number operator (A· 11) is nothing but fl, which appeared in (2·4). 

As has been seen in the above formulation, the calculation of 17 can be con

ducted in a way quite similar to the vacuum field theory. Of course, 17 contains 

the vacuum self-energy of one meson, to be ascribed to renormalization. However, 

n has additional terms which correspond to the effective mass in a medium and 

to the imaginary part representing dissipation. The calculations in perturbation 

theory lead to the value (2·9) to the lowest order. In the case of pv-coupling, 

we can formulate the theory as mentioned here. 

Appendix C. Relaxation times and transport coefficients 

Here we shall interpret in detail the calculations of the relaxation times and 

the transport coefficients. For example, we calculate the heat conductivity and the 

relaxation times associated with it. 

The heat conductivity K is obtained from the formula 

K=-ify- ([j:J1 (0) J2)0'-0' 

where the relaxation time '-0 (.- or (j) is defined by 

1 2 

or 

- ([j:J1 (0), XI (0) J2)0 

([j:J1 (0) J2)0 
(Gaussian) , 

(A·I3) 

(A·I4) 
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428 C. Iso, K. Mori and M Namiki 

._1. __ j 7r (([Pl(.O), XI(O.).J,. [X1(0), Pl(O)J})o 
- -- (Lorentzian) . 

r 2 ([PI (0) r)o 
(A·15) 

Here X J (w ) is the Fourier transform of XI (t) . From the definition (2· 12) and 

one under (3·5), we get 

x [a", a,l" X* (k+k', (v) +ak * aJr,,* X* (-k- k', (v) 

+aJr,ak'* X* (k-k', w) +aJr,*ak' X* (k' -k, w)], 

,,/ _ A (¢2)0 JJ d 3
k dB k' 

/0 I (0) - --- -= ----== 
(277:)2 V2Ck V2cJr,' 

X [akak, X (-k-k', -CJr,-Ck') +ah* ak'* X (k+k', Cll'+C/r,) 

+ ak aJr" * X (k' -k, Ck,-Ck) +a",* a,~, X (k-k', CIr-Ch') J, 

(A· 16b) 

(A· 16c) 

where Ck=VP+m2. In what follows, we use the approximation T,;?m. 

The mean square deviation ([PI (0) J2)0 is easily obatined in the form 

(A·17) 

where the relation [a (k) J,..=o = (V / (277:) 3) has been used. After some calculations, 

we get 

(A·18) 

Thus we obtain the Gaussian relaxation time 

(A· 19) 

Similar calculations lead to 

(A· 20) 

so that one gets 

1 1 
r 

5(AT2)2 T 
(A·21) 

The heat conductivity K is easily obtained from (A ·13) and (A· 19) or (A· 21) . 

The calculations of ~(S) and ~(v) are quite similar to the above. We write only 

the mean square deviations of the stress, that is, 
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([ d 12 (0) J2)0 ~ 5!2 T 5 V, \ 

} 

(A·22) 

([/1n (0)J2)0~~ T 5 V. 
5n2 

Here it IS noted that the quantity d ik (0) is the fluctuating part of the stress. 
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