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Numerous volcanic scoria (VS) cones are found in many places worldwide. Many of them have not yet been investigated, although
few of which have been used as a supplementary cementitiousmaterial (SCM) for a long time..e use of natural pozzolans as cement
replacement could be considered as a common practice in the construction industry due to the related economic, ecologic, and
performance benefits. In the current paper, the effect of VS on the properties of concrete was investigated. Twenty-one concretemixes
with three w/b ratios (0.5, 0.6, and 0.7) and seven replacement levels of VS (0%, 10%, 15%, 20%, 25%, 30%, and 35%) were produced.
.e investigated concrete properties were the compressive strength, the water permeability, and the concrete porosity. Artificial
neural networks (ANNs) were used for prediction of the investigated properties. Feed-forward backpropagation neural networks
have been used. .e ANN models have been established by incorporation of the laboratory experimental data and by properly
choosing the network architecture and training processes. .is study shows that the use of ANN models provided a more accurate
tool to capture the effects of five parameters (cement content, volcanic scoria content, water content, superplasticizer content, and
curing time) on the investigated properties. .is prediction makes it possible to design VS-based concretes for a desired strength,
water impermeability, and porosity at any given age and replacement level. Some correlations between the investigated properties
were derived from the analysed data. Furthermore, the sensitivity analysis showed that all studied parameters have a strong effect on
the investigated properties. .e modification of the microstructure of VS-based cement paste has been observed, as well.

1. Introduction

Concrete is the most widely used building material around
the world because of the economic and widespread avail-
ability of its constituents, its versatility, its durability, and its
adaptability [1]. Ordinary Portland Cement (OPC) concrete
is a composite material, and its constituents are cement
mixed with water, fine-grained aggregate (sand), and coarse-
grained aggregate consisting of natural gravel or crushed
stones [2]. .e considerable amount of carbon dioxide
(CO2) liberated during the production of Portland cement,
the most commonly used hydraulic cement, is of a greater
concern. On average, about 1 tonne of CO2 is liberated per
tonne of Portland cement produced [1].

.e use of mineral admixtures such as pozzolans in
concrete is nowwidespread due tomany economic, ecological,

and performance-related benefits [3, 4]. .e term “pozzolan”
is originally from the town of Pozzuoli, northeast of Naples in
Italy, where pozzolanic deposits from Vesuvius’ volcano were
found [5].

Pozzolanic materials can be classified as natural and ar-
tificial pozzolans. Natural pozzolans could be considered the
first cementitiousmaterials used for the production of artificial
stones, ancient mortars, and concretes, 3000 years ago [6].
Natural pozzolans may be further subdivided into two main
groups: (i) those derived from volcanic rocks (volcanic scorias,
pumices, etc.); (ii) others derived from rocks and earths [7]. An
overview on the use of volcanic scoria as cement replacement
can be found in the paper recently published by the author [8].
Although there are numerous works on using natural poz-
zolan as a substitute for cement, few studies investigating on
volcanic scoria have been reported in the literature.
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Many new prediction methods were developed in the last
decades to investigate the compressive strength and durability
of concrete containing supplementary cementitious materials
(SCMs). However, there is no prediction model for concretes
containing volcanic scoria as cement replacement. Some
previous efforts to develop a predictive model for VS-based
concrete used statistical methods that did not seem sufficient
for different compositions of concrete. .e objective of this
work is to develop an empirical model to predict the com-
pressive strength, porosity, and water permeability of concrete
containing VS as cement replacement using ANNs. .is
prediction could be considered useful for concrete mix de-
signers. For this purpose, twenty-one concrete mixes have
been prepared with seven replacement levels and three dif-
ferent w/b ratios. Multiple linear regression (MLR) analysis
has been used for comparison. In addition, some relationships
among the investigated concrete properties have been estab-
lished. Some estimation equations have been derived, as well.

.e importance of this paper is to encourage countries
having ample sources of scoria to investigate their potential
use as cement replacement and thus making a greener
concrete. .e current paper focusses not only on one aspect
but also it deals with both strength and durability of concrete
containing VS as cement replacement. Moreover, technical
information on the Syrian pozzolan is scarce, and this paper
is part of the first comprehensive research that addresses the
investigation of Syrian volcanic scoria. Furthermore, the
paper might be particularly interesting for the regions where
volcanic scoria is abundant, such as Harrat al-Shaam, which
covers parts of Syria, Jordan, and KSA. Regions of similar
geology may also get benefits from this study.

2. Background

2.1. Artificial Neural Networks. Artificial neural networks
(ANNs) are algorithms simulating the human neurons. .ey
are forms of artificial intelligence, which attempts to simulate
the networks of the nerve cell (neurons) of the biological central
nervous system [9]. An artificial neuron, also called a unit or
a node, takes several input connections (dendrites in the bi-
ological neuron) which are assigned certain weights (analogous
to synapses). .e unit then computes the sum of the weighted
inputs and applies an activation function (analogous to the cell
body in the biological neuron). .e result of the unit is then
passed on using the output connection (axon function) [10].

In the recent year, such intelligent expert systems have
been successfully applied in many fields of engineering,
among which, they have been extensively used for predicting
the compressive strength of blended cement-based concrete
[11–27]. It was proved that the ANN-based strength pre-
diction model could be successfully used to predict the
strength of concrete for various mix ingredients and at
different curing times. Bilim et al. [15] concluded in their
study that ANNs can be an alternative approach for predicting
compressive strength of ground-granulated blast furnace slag-
(GGBFS-) based concrete. Saridemir [16] has established
ANN models for predicting the compressive strength of
concretes containing metakaolin and silica fume developed
up to 180 days of curing. .e results have shown that ANNs

have a great ability for predicting the compressive strength of
metakaolin and silica fume-based concretes. Udhayakumar
et al. [17] concluded also that a neural network-based strength
model could be used successfully to find out the strength
development of fly ash-based concrete with the curing time.
Chithra et al. [18] have carried out a comparative study
between ANN and MLR for predicting the compressive
strength of concretes containing nanosilica and copper slag.
.e results have revealed that, in terms of the regression
coefficient R2 and MSE, ANN models have provided better
results than MLR. Other studies have used ANNs for pre-
dicting some durability-related properties of concrete [28–
35]. .ey concluded that ANN models could be used effec-
tively in predicting the concrete durability properties.

ANNs are able to model nonlinear relations between
a set of inputs and corresponding outputs. .e data set used
to develop the ANN models are divided into subsets
(i.e., training set, testing set, and validation set). .e present
paper deals with the prediction of the compressive strength,
water permeability, and porosity of concrete using ANNs.
MLR analysis has been used for comparison. .e predicted
concrete properties have been plotted versus the experi-
mental results obtained in the laboratory.

.e neural network uses the backpropagation (BP)
procedure..e backpropagation learning algorithm, designed
to train a feed-forward network, is an effective learning
technique used to exploit the regularities and exceptions in
the training sample [36, 37]. Backpropagation neural network
(BPNN) which will be used in this research can be considered
the most fundamental and widely used method among the
ANN methods. It generally consists of multiple layers: an
input layer, one or more hidden layers, and an output layer
Hidden layers may contain a large number of hidden neurons
(processing units). Activation propagation is forwarded from
the input layer toward the output layer, and then the algo-
rithm compares the network outputs with known targets as it
is a supervised learning algorithm and propagates the error
backward. Weights and biases are updated based on calcu-
lated errors in order to meet the target.

.e most common activation function is the sigmoid
function, which is a continuously differentiable function that
satisfies the relation, as follows [9]:

f αi( ) � 1

1 + exp(−ai), (1)

where α is a constant used to control the slope of the
semilinear region [16].

.e activation function is applied to bind the network
input and output of the different layers to a specific range
that the network can efficiently handle. .e logistic sigmoid
activation function with a scaling range between 0 and 1 was
found to be the best settings for the present application.

By repeating the procedure described above until the
error is acceptably small or no marked improvement is
noted, the final output can be obtained [38].

2.2. Multiple Linear Regression. Multiple linear regression
(MLR) is a statistical method whose general purpose is to
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generate relationship between several independent variables
and a dependent variable [39]. In MLR, the predicted value
of a single dependent variable Y is a linear transformation of
one or more independent variables X such that the sum of
squared deviations of the observed and predicted Y is
a minimum. With five independent variables, as in the
present paper, the prediction of Y is expressed by the fol-
lowing formula:

Y � b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5, (2)

where bi values are called regression weights and are cal-
culated in a way that minimizes the sum of squared de-
viations and Xi are the independent variables.

3. Materials and Methods

3.1. Experimental Part. Twenty-one concrete mixtures have
been prepared using VS-based cements of seven replacement
levels (0, 10, 15, 20, 25, 30, and 35%) and three w/b ratios of
0.5, 0.6, and 0.7. .e volcanic scoria was quarried from
southeast of Damascus (Figure 1)..e investigated properties
(i.e., compressive strength, water permeability, and concrete
porosity) were obtained after five curing ages (i.e., 2, 7, 28, 90,
and 180 days). .e compression test was conducted on
150mm cubic concrete specimens (Figures 2(a) and 2(b)) in
accordance with ISO 4012. Water permeability measured in
terms of depth of water penetration was carried out as per
standard EN 12390-8 (Figure 2(c)). Porosity measurements
were conducted using the vacuum saturation method in
accordance with RILEM CPC 11.3 [40]. Table 1 and Figure 3
summarize the chemical composition of the materials used in
the concretemix and the aggregate grading with their physical
properties. All of the experimental results were employed in
the prediction process using ANNs.

3.2. Network Architecture. Artificial neural network is
a powerful data-modeling tool that is able to capture and
represent complex input and output relationships. .e
design of the ANN model requires identifying the network
architecture (i.e., number of input neurons, output neurons,
hidden layers, and neurons in each hidden layers) and the
network settings (activation function and learning rate).
Artificial neural networks consist of at least three layers,
i.e., an input layer, one or more hidden layer/layers, and an
output layer. .ree ANN models have been established:
ANN1 for predicting the concrete compressive strength,
ANN2 for predicting the concrete water permeability, and
ANN3 for predicting the concrete porosity. .e adopted
network architecture consists of the following:

(i) Five neurons (Ni � 5) in the input layer, which
represent the variables of cement content (CC: kg),
volcanic scoria content (VC; kg), water content (W;
kg), superplasticizer content (SP; kg), and curing
time (t; day)

(ii) One neuron in the output layer, which represents
the value of the corresponding compressive strength
(MPa), water permeability (mm), or concrete po-
rosity (%).

(iii) One hidden layer with 16 or 15 neurons in ANN1
and ANN3 models, respectively, and two hidden
layers with 9 and 7 neurons in the ANN2 model.

Determining the optimum number of the hidden layer
neurons is an important issue in order to predict accurately
a characteristic using ANNs. .e choice of one or two
hidden layers is a common practice because of the ability of
these networks to approximate any nonlinear function and
map any unknown relationships between the input and
output variables. Four-layer ANNs (i.e., two hidden layers)
have superior fitting capabilities over three-layer ANNs
(i.e., one hidden layer); however, three-layer ANNs are
computationally faster and have better generalization ca-
pabilities [41, 42]. .at is why three- or four-layer ANNs
were selected for the present application.

No reasonable theory on how many hidden layer neu-
rons need to be employed for a particular problem has been
established. .us, the best approach to find the optimum
number of hidden neurons is to start with a fewer number of
neurons and then slightly increase the number of neurons.
In the current work, the network models were developed as
follows:

(i) ANN1 was built for predicting the compressive
strength. .e number of hidden neurons that was
selected is 16 (∼3Ni) [43] in one hidden layer. .e
learning rate and momentum were 0.6 and 0.3,
respectively. .is selection was made upon exper-
imenting all the possibilities of increasing hidden
neurons from 10 to 22, learning rate from 0.1 to 0.9,
and momentum from 0.1 to 0.9 for each. .e ex-
perimental data sets are 525, 314, and 316 samples
for compressive strength, water permeability, and
concrete porosity, respectively.

(ii) ANN2 was built for predicting the concrete water
permeability. .e number of hidden neurons that
was selected is 9 in the first hidden layer and 7 in the
second layer. .e learning rate and momentum
were 0.5 and 0.9, respectively. .is selection was
made upon experimenting all the possibilities of
increasing hidden neurons from 7 to 30 in one
hidden layer, learning rate from 0.1 to 0.9, and
momentum from 0.1 to 0.9 for each. .e experi-
mental data set is 314 samples.

(iii) ANN3 was built for predicting the concrete po-
rosity. .e number of hidden neurons that was
selected is 15 (�3Ni) in one hidden layer. .e
learning rate and momentum were 0.3 and 0.4,
respectively. .is selection was made upon exper-
imenting all the possibilities of increasing hidden
neurons from 7 to 22, learning rate from 0.1 to 0.9,
and momentum from 0.1 to 0.9 for each. .e ex-
perimental data set is 316 samples.

.e architecture of the ANN models is shown in
Figures 4–6. Levenberg–Marquardt backpropagation was
used as a training function and hyperbolic tangent sigmoid
was used as a transfer function. .e learning rate, which
identifies the amount of adjustments to connection weights
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during training, was determined based on the network
performance. .e learning rate and momentum were ad-
justed for each ANN to get the best performance. .e data
set was divided into three subsets as follows: 70% for
training, 15% for testing, and 15% for validating. .e

correlation coefficient (R) obtained for training, testing,
validating, and overall data for each ANN are shown in
Table 2.

.e artificial neural networks have been established
using MATLAB software, Neural Network Toolbox. .e
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Figure 1: Macrograph of (a) the investigated volcanic scoria and (b) the EDX analysis.

(a) (b) (c)

Figure 2: Photos of (a) the cubic concrete specimens, (b) the compression test, and (c) the water permeability set-up.

Table 1: Chemical composition of the ingredients used in the concrete mix.

Chemical composition (mass, %)
Materials

VS Clinker Gypsum Dolomitic aggregate Natural sand

SiO2 46.52 21.30 0.90 0.42 93.39
Al2O3 13.00 4.84 0.07 0.38 0.57
Fe2O3 11.40 3.99 0.10 0.10 0.24
CaO 10.10 65.05 32.23 31.40 1.70
CaOf — 2.1 — — —
MgO 9.11 1.81 0.20 20.46 0.20
SO3 0.27 0.25 45.29 0.18 1.15
Loss on ignition 2.58 — 21.15 46.48 2.52
Na2O 2.14 0.60 — 0.06 0.06
K2O 0.77 0.28 — 0.30 0.05
Cl− <0.1 0.05 — 0.021 0.017
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Figure 4: ANN1 model for predicting the compressive strength of VS-based concrete.
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Figure 5: ANN2 model for predicting the water permeability of VS-based concrete.

Advances in Civil Engineering 5



regression analysis has also been carried out using MATLAB
software.

.e validity of the constructed models was evaluated
using the following criteria:

(i) Root mean squared error (RMSE): the error that
arose during the training, testing, and validating in
ANN models can be evaluated by the RMSE, which
can be calculated using the following function:

RMSE �

�������������������������������������
1

n
∑n
i�1

(experimental value− predicted value)2

√√
.

(3)

(ii) .e RMSE is used in evaluating the average vertical
distance between the data points and the corre-
sponding points on the fitting straight. When the
RMSE value is smaller, the ANN model is better.

(iii) Mean absolute percentage error (MAPE): the av-
erage of the absolute percentage error can be cal-
culated using the following function:

MAPE �
1

n
∑n
i�1

experimental value− predicted value

experimental value

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣  × 100%.

(4)

(iv) R-square coefficient (R2): the R-square coefficient is
the absolute fraction of variance of a model. R2 can
be calculated using the following function:

R2
� 1− sum of squares of residuals

sum of squares of predicted values
. (5)

When R2 is closer to 1, this means, there is a closer
relationship between output and targeted output.

(v) Durbin–Watson statistic (DW): this statistic crite-
rion is used to verify the existence of multi-
collinearity. It varies between 0 and 4..e acceptable
range of 1.5 to 2.5 indicates that the established
models are unaffected by problems related to
multicollinearity.

4. Results and Discussion

4.1. Compressive Strength Development. Results of the
compressive strength development test are plotted in
Figures 7–9. As expected, all concretes showed an increase in
strength with curing time. Concretes specimens containing
VS0 had higher compressive strengths at any curing time
compared to VS-based binder concretes. In addition, the
compressive strength of VS-based concretes decreased with
the volcanic scoria replacement level for all curing times. .is
could be explained by (i) the reduction of cement content in
the mix with the increase of VS content; i.e., the dilution effect
and (ii) the slowness of the pozzolanic reaction [40]. However,
due to the continuation of this reaction and the formation of
a secondary C-S-H, a greater degree of hydration was
achieved resulting in strengths after 90 and 180 days which
were comparable to those of VS0-based specimens [40].
Furthermore, the compressive strength decreased signifi-
cantly with the increase in w/b ratio.

4.2. Water Permeability and Concrete Porosity. Results of
water penetration depth and porosity tests are illustrated in
Figures 10 and 11, respectively, for all binder types, curing
age, and w/b ratios. Water penetration depth can be con-
sidered as an indication of permeable and impermeable
concrete. A depth of less than 50mm classifies the concrete
as impermeable and a depth of less than 30mm as imper-
meable under aggressive conditions [44]. None of concretes
even with w/b � 0.5 was found to be impermeable before 28
days of curing. However, concretes containing VS20 to VS35
can be considered as impermeable after 28 days of curing
and as impermeable under aggressive environments after 90
days of curing, according to Neville [44]. In addition, none
of concretes with w/b � 0.7 was found to be impermeable
under aggressive environments even after 180 days curing.
Porosity of all mixes decreased with curing time. Further-
more, porosity of the concretes containing binders with high

t
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Figure 6: ANN3 model for predicting the porosity of VS-based
concrete.

Table 2: Correlation coefficients (R) of artificial neural network
models.

ANN model

Correlation coefficient (R)

Training Testing Validating
Overall
data

ANN1 (compressive
strength)

0.99976 0.99937 0.99953 0.99968

ANN2 (water
permeability)

0.99927 0.99732 0.99864 0.99891

ANN3 (porosity) 0.99972 0.99951 0.99873 0.99954
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replacement levels of VS demonstrated much lower porosity
as compared to the VS0-based concrete.

.e reduction in the water permeability and porosity
could be attributed to the pozzolanic reaction between the
glassy phase in volcanic scoria and the CH liberated from
hydration of C3S and C2S [40]. .is was also confirmed by
the SEM and EDX analysis.

4.3. Correlations between Compressive Strength and
Permeability-Related Properties. Some correlations between
compressive strength and each of water permeability and
porosity of the investigated concretes are plotted in

Figures 12 and 13. .ese correlations were calculated for the
entire population of test results. As shown in Figures 12 and
13, there are no reasonable relationships between the
compressive strength and each of permeability-related
properties of VS-based binder concrete. .is supports the
fact that strong concrete does not always ensure durable
concrete. For instance, VS25-based binder concrete has
lower compressive strengths, but higher water imperme-
ability compared to VS0-based binder concrete at almost all
curing times.

4.4. Correlations between Water Permeability and Porosity.
.e relationship between the water permeability and po-
rosity is given in Figure 14. Definite correlations with a re-
gression coefficient (R2) of 0.92 were observed between the
water permeability and porosity, such that one can be
predicted from the knowledge of the other. .e correlation
between the fitted parameters can be graded excellent when
R2 ≥ 0.85 [45]. Such similar relationship may need to be
developed for other types of concrete aggregates, different
volcanic scoria types, and other curing conditions.

4.5. ANNandMLRAnalysis. Figures 4–6 show the structure
of ANN models developed to predict the values of com-
pressive strength, water permeability, and porosity of VS-
based concrete..e calculated statistical values are tabulated
in Table 3. .e training has been carried out with 70% of the
samples. RMSE values of 0.3066, 1.9783, and 0.3129, MAPE
values of 1.2106, 2.6357, and 1.4998, and R2 values of 0.9999,
0.9995, and 0.9998 were obtained for prediction of the
compressive strength, the water permeability, and the
concrete porosity, respectively. .e testing has been carried
out with 15% of the samples. RMSE values of 0.3931, 2.4439,
and 0.4050, MAPE values of 1.5470, 4.8220, and 2.0528, and
R2 values of 0.9998, 0.9990, and 0.9997 were obtained for
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Figure 11: Porosity values of VS-based binder concretes of various w/b ratios cured for different times: (a) w/b � 0.5; (b) w/b � 0.6; (c) w/b � 0.7.
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Figure 13: Correlation between porosity and compressive strength of VS-based concretes.
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prediction of the compressive strength, the water perme-
ability, and the concrete porosity, respectively. .e valida-
tion has been carried out with also 15% of the samples.
RMSE values of 0.3899, 4.3322, and 0.4859 and R2 values of
0.9998, 0.9981, and 0.9995 were obtained for prediction of
the compressive strength, the water permeability, and the
concrete porosity, respectively. .e results mentioned above
show that training has given the best performance by
providing a very low MSE and R2 value very close to one.
Furthermore, testing and validation have given an excellent
performance by providing a very low RMSE and R2 value
approximately equal to one. In contrast to the ANN results
(Table 4), RMSE values of 6.11, 4.39, and 17.5, MAPE values
of 20.922, 52.3229, and 59.212, and R2 values of 0.748, 0.82,
and 0.829 were obtained by the MLR analysis for predicting
the compressive strength, the water permeability, and
concrete porosity, respectively. Furthermore, the obtained
DW values for ANN models were between 1.5 and 2.5,
consistent with the ideal range of values. However, the MLR
models had very lowDW values, which ranged from 0.026 to
0.157. .e DW values signify the incidence of null and
positive autocorrelation for ANN and MLR models,
respectively.

Figures 15–17 clearly show that the goodness-of-fit of the
ANN models is superior when compared to the MLR
models. In addition, the statistical values shown above
demonstrate that the prediction of the compressive strength,
water permeability, and porosity of VS-based concrete with
ANN models is highly accurate. .e results related to
compressive strength are in well agreement with those
obtained by Chithra et al. [18], Ferhat Bingol et al. [46], and
Saridemir [47]. However, as no or very little investigations
on the prediction of water permeability and porosity of
concretes containing natural pozzolans were found in the
literature, the results could be comparable with other

concrete durability-related properties, such as chloride ion
permeability [31] and sulfate attack [30].

Furthermore, it is worth mentioning that the accuracy of
ANN models in terms of RMSE, MAPE, R2, and DW can be
arranged in the following order: compressive strength⟶
concrete porosity⟶ water permeability. .e sequence in
MLR models is different from that in ANNs and can be
written as follows when R2 is taken into account: concrete
porosity⟶ water permeability⟶ compressive strength
and can be written as follows when RMSE and MAPE are
taken into account: compressive strength⟶ water per-
meability⟶ concrete porosity.

.e equations obtained by MLR analysis are as follows:

fc(MPa) � 0.1311 × t + 0.1631 × CC + 0.0768

× VC− 0.1509 ×W− 0.0164 × SP,

WPD(mm) � −0.4772 × t− 0.2582 × CC− 0.4815
× VC + 0.9757 ×W + 4.7588 × SP,

Po(%) � −0.0884 × t− 0.292 × CC− 0.359
× VC + 0.5724 ×W + 5.9841 × SP,

(6)

where fc is the compressive strength (MPa), WPD is the
water penetration depth (mm), Po is the concrete porosity
(%), t is the curing time (day), CC is the cement content (kg),

P (%) = 6.3422e0.0124WPD

R
2 = 0.9217
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Figure 14: Correlation between water permeability and porosity of VS-based concretes.

Table 3: Results obtained for ANN models.

Model
Training Testing Validating

R2 RMSE MAPE DW R2 RMSE MAPE DW R2 RMSE MAPE DW

ANN1 0.9999 0.3066 1.2106 1.7605 0.9998 0.3931 1.5470 1.9505 0.9998 0.3899 1.7307 1.6328
ANN2 0.9995 1.9783 2.6357 1.7003 0.9990 2.4439 4.8220 1.8094 0.9981 4.3322 4.7976 1.7467
ANN3 0.9998 0.3129 1.4998 1.5035 0.9997 0.4050 2.0528 1.9018 0.9995 0.4859 2.6921 1.6489

ANN1: compressive strength; ANN2: water permeability; ANN3: concrete porosity.

Table 4: Results obtained for MLR models.

Models
Evaluation criteria Number of data set

samplesR2 DW RMSE MAPE

MLR1 0.748 0.0259 6.11 20.922 367
MLR2 0.82 0.1566 4.39 52.3229 222
MLR3 0.829 0.1423 17.5 59.212 220

MLR1: compressive strength; MLR2: water permeability; MLR3: concrete
porosity.
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VC is the volcanic scoria content (kg), W is the water
content, and SP is the superplasticizer content.

4.6. SensitivityAnalysis ofANNModels. In order to assess the
relative importance of the input variables, sensitivity analysis
was conducted based on the Garson equation [48]. Garson
[48] proposed an equation based on the partitioning of
connection weights:

Ij �
∑m�Nhm�1 wihjm

∣∣∣∣∣ ∣∣∣∣∣/∑Nik�1 wihkm∣∣∣∣ ∣∣∣∣( ) × whomn∣∣∣∣ ∣∣∣∣( )
∑k�Nik�1 ∑m�Nhm�1 wihkm

∣∣∣∣ ∣∣∣∣/∑Nik�1 wihkm∣∣∣∣ ∣∣∣∣( ) × whomn∣∣∣∣ ∣∣∣∣( ){ }, (7)

where Ij is the relative importance of the jth input parameter
on the output; Ni and Nh are the numbers of input and
hidden neurons, respectively; w is connection weights; the
superscripts i, h, and o refer to input, hidden, and output
layers, respectively; and the subscripts k, m, and n refer to
input, hidden, and output neurons, respectively.

Table 5 shows the weights between input and hidden
layers (W1) and weights between hidden and output layers
(W2). Table 6 shows the relative importance of the input
parameters (curing time, cement content, VS content, water
content, and superplasticizer content). It can be noted that
all parameters have a strong effect on the investigated
properties.

As clearly seen in Table 5, curing time was found to be the
most influential parameter with a relative importance of
32.2%, 33.52%, and 51.80% for compressive strength, concrete

porosity, and water permeability, respectively. .e higher
relative importance of curing time can be attributed to the
significant effect of this parameter on the permeability-related
properties of concretes containing volcanic scoria as cement
replacement. As mentioned earlier, a significant gradual
improvement in permeability-related properties can be ob-
tained with an increase in curing time, particularly at ages ≥
28 days [38]. In addition, it is to be noted that other pa-
rameters have also considerable effects on the output values,
particularly those forming the “w/b” ratio, i.e., cement con-
tent, VS content, and water content.

4.7. Microstructural Investigation. Scanning electron mi-
crographs (SEM) of 7 day-, 28 day-, and 90 day-cured VS30-
based pastes are shown in Figure 18. Figure 18(a) clearly
shows a porous and noncompacted structure in seven day-
cured VS30-based paste. However, a denser structure can be
clearly observed after 28 and 90 days of curing (Figures 18(b)
and 18(c)). .is can be attributed to the continuation of the
cement hydration, and formation of cementitious phases,
such as (C-S-H) and (C-A-S-H) through the pozzolanic
reaction between the glassy phase in volcanic scoria and CH
released during the hydration of calcium silicates (C3S and
C2S) [49].

5. Conclusion

In this study, artificial neural networks were used for the
prediction of 2, 7, 28, 90, and 180 days compressive strength,
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Figure 17: Predicted concrete porosity versus experimental concrete porosity for models ANN1 and MLR1.
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water permeability, and porosity of concretes containing
volcanic scoria as cement replacement. MLR was also used
for comparison. Based on the results obtained, the following
conclusions can be drawn:

(1) Volcanic scoria may be more efficient in terms of its
contribution to one property rather than another
one. For example, volcanic scoria makes a significant

contribution to reducing permeability of concrete
despite the lower compressive strength.

(2) In terms of concrete durability, the binders con-
taining ≥ 25% VS were better than the control binder
and globally gave the best performance among all the
replacement levels. Consequently, a significant re-
duction in OPC consumption and greenhouse gas

(a) (b) (c)

Figure 18: SEM of (a) 7 day-cured VS30-based paste, (b) 28 day-cured VS30-based paste, and (c) 90 day-cured VS30-based paste.

Table 5: Weight matrix and weights between input and hidden layers (W1) and between hidden and output layers (W2) for the ANN1
model.

Neuron

W1 W2

Input
Output

Time (day) Cement content (kg) VS content (kg) Water content (kg) SP

1 −2.105944022 1.075228351 1.255199036 0.438755839 −0.030683697 1.279718465
2 0.144053427 −0.972020695 0.742996724 1.753640631 −1.340918263 −1.208902522
3 1.732934016 0.61985474 −1.155641212 −1.283690471 3.243864115 0.460723363
4 0.903445767 0.372764295 1.572839487 −0.87906307 1.904073089 0.705296001
5 0.938501968 −1.091473696 −2.116933639 −0.459056052 1.573936415 1.53887134
6 0.344253977 −0.597794971 0.779210827 1.235683476 2.059459437 0.961634634
7 −1.024890536 −1.466697926 −1.591821924 −1.081779779 1.829483202 0.698867474
8 −0.064928174 −1.591852569 1.716382139 1.62579402 −2.437814145 −0.331804241
9 −1.498209432 0.875620108 −0.423664145 −1.895854904 2.039710262 0.545700344
10 −0.233072918 −1.362387421 1.333842112 −1.465558 1.098041189 −0.562090401
11 −0.936088182 2.726784678 −1.120598625 −2.150579249 −0.530783246 0.108067552
12 −11.888422 0.182734218 0.268691589 0.167278196 0.141190095 −4.372180414
13 −0.214986128 −1.611586142 1.972556139 −1.4704395 1.201024837 −0.399869245
14 1.564288124 0.63694431 1.050612614 −0.532653652 0.778724302 0.192780767
15 0.430315807 −0.418860675 0.04929488 −0.345348435 −1.723849754 2.899735928
16 −0.007106844 −1.904352783 −1.119167674 1.319502798 0.223633621 2.309346307

Table 6: .e relative importance of input parameters.

Concrete property
Relative importance of the input parameters

Time (day) Cement content (kg) VS content (kg) Water content (kg) SP

Compressive strength 32.2% 16.2% 14.8% 14.9% 21.9%
Water permeability 33.52% 18.97% 20.74% 12.86% 13.92%
Porosity 51.80% 8.59% 11.64% 12.16% 15.81%
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emissions can be obtained. .erefore, incorporation
of more than 25% VS can be adopted in the design of
ecoconcrete.

(3) Incorporation of volcanic scoria in concrete has
significant effects on the properties of concrete,
particularly durability-related properties. .e water
penetration depth and the porosity of VS-based
cement concrete demonstrated better performance
as compared to plain concrete, especially at curing
age of 28 days and longer.

(4) A comparison between ANN and MLR methods
depicts that ANNs can be used to predict the in-
vestigated concrete properties, effectively.

(5) .e values predicted by ANNmodels are close to the
experimental results. Statistical values, such as
RMSE, MAPE, R2, and DW which are used to
evaluate the feasibility of the ANN and MLRmodels,
have demonstrated that ANNmodels are all accurate
methods for predicting the compressive strength,
water permeability, and porosity of VS-based con-
crete. .eir higher accuracy and applicability have
made them a desirable substitute for the conven-
tional regression methods. MLR models are less
accurate than the ANN ones. .erefore, by adopting
ANN models, there is no need to go through time-
consuming and costly laboratory tests to obtain the
investigated properties of VS-based concrete.

(6) Results have indicated that ANNmodels are not only
practical for predicting the compressive strength but
also highly efficient for predicting the water per-
meability and porosity of VS-based concrete.
Comparison between ANNmodels andMLRmodels
in terms of RMSE, MAPE, R2, and DW statistics
showed that ANNs provide better results than those
of MLR in prediction of all investigated properties.
For instance, R2 values of 0.748, 0.82, and 0.829 were
obtained by the MLR analysis for predicting the
compressive strength, the water permeability, and
concrete porosity, respectively, while these values, by
contrast, were close to one in all ANNs models.

(7) Sensitivity analysis showed that all studied param-
eters in this work (curing time, cement content, VS
content, water content, and superplasticizer content)
have considerable effects on the properties of con-
crete containing VS as cement replacement. How-
ever, curing time was found to be themost influential
parameter with relative importance of more than
30%.

(8) Investigating the volcanic scoria cones that have not
been exploited yet is highly recommended. In ad-
dition, making more sustainable and durable con-
crete using volcanic scoria is highly encouraged.
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