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Abstract—This paper presents the main foundations of Big
Data applied to Smart Cities. A general Internet of Things based
architecture is proposed to be applied to different smart cities
applications. We describe two scenarios of big data analysis.
One of them illustrates some services implemented in the smart
campus of the University of Murcia. The second one is focused
on a tram service scenario where thousands of transit-card
transactions should be processed. Results obtained from both
scenarios show the potential of the applicability of this kind of
techniques to provide profitable services of smart cities, such as
the management of the energy consumption and comfort in smart
buildings, and the detection of travel profiles in smart transport.
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I. INTRODUCTION

A Smart City emerges when the urban infrastructure is

evolved through the Information and Communication Tech-

nologies (ICT) [1]. The paradigm of Internet of Things (IoT)

[2] has enabled the emergence of a high number of different

communication protocols, which can be used to communicate

with commercial devices using different data representations.

In this context, it is necessary an IoT-based platform to

manage all interoperability aspects and enable the integration

of optimal Artificial Intelligence (AI) techniques in order to

model contextual relationships.

In urban environments there is a huge amount of different

data sources. Plenty of sensors are distributed around cities,

most of them installed in indoor spaces. This situation has

brought new analytics mechanisms and tools that provide

insight allowing us to have an effective and collaborative way

to operate the machines [3]. Furthermore, there are numerous

mobile data sources like smart phones, smart-cards, wearable

sensors and, in the case of vehicles, on-board sensors. All

these sensors provide information that makes possible to

detect urban dynamic patterns. Nonetheless, most existing

management systems of cities are not able to utilize fully

and effectively this vast amount of data and, as a result,

there is large volumes of data which is not exploited. In this

direction, many AI techniques in Computer Science have been
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introduced to deal with the processing of huge amount of data

to extract useful information (or termed by knowledge) from

data [4], this trend is known as Big Data.

This paper is intended to analyze the interest of big data

for smart cities. In order to face the above-mentioned aspects

we propose a general architecture for smart city applications,

which is modelled in four layers with different functionalities.

Then, we show some applications of big data analysis in

two scenarios, both dealing with sensed data coming from

both static and dynamic sources. Among other objectives,

the first scenario intends to create a distributed framework to

share large volumes of heterogeneous information for their

use in smart building applications. In this work we focus

on presenting the deployments and implementations carried

out in smart buildings to achieve energy efficiency. For this,

different problems like indoor localization, thermal comfort

characterization and energy consumption modelling have been

solved through the application of big data techniques. The

second example is centered on the public tram service in the

City of Murcia (Spain), looking for giving insight into the great

amount of data generated by the service’s transit cards. In this

scenario, big data techniques are applied to extract mobility

patterns in public transport.

Hence, this paper faces up three aspects of nowadays smart

cities which need to be solved, and for each one of them we

provide some research contributions through the application

of convenient big data techniques. These contributions are:

• The design and instantiation of an IoT-based architecture

for applications of smart cities.

• The approach of an efficient management of energy in

smart buildings.

• The extension of the data analysis for detection of urban

patterns which can be used to improve public transport

applied to the public tram service.

The structure of this paper is as follows: Section II enu-

merates the challenges that current smart cities still have to

face, and proposes a general IoT-based architecture for smart-

city services which is modeled in layers. Section III describes

a first application of smart city where big data techniques

have been applied to get energy efficiency in the buildings

of a Smart Campus. Section IV presents a second smart city

application that addresses the urban pattern recognitions in

public transport. Section V summarizes the main benefits of

applying big data techniques to the two scenarios of smart

cities addressed in this paper. Finally, Section VI gives some

conclusions and an outlook of future work.



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2605581, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

Information Processing

Context Ontology

Distributed KnowledgeManagement

Actuators

Sensors

Interaction / Data & Event Capture

BBDD

Transportation

Sustainability

Security

Smart Buildings

Context Data Consumption/Production

Monitoring & Control

Context Information

Complex Event
Publish-

Subscribe

Intelligent Data 
Processing/Complex Event

Processing/Decision Making

(Filters, DBMS, NNs, Rules, 

Fusion, etc.)

Data

Information

Knowledge

Services Health Assistance

ContextProducer

ContextConsumer

Intelligent Service-Providing Framework

Input Data

Abstraction
XML

RDF

RDF-S

OWL OTHER (DAML, etc.)

OCP EXTENSIONSSOUPA

Open Context Platform Ontology

Context Service

Management

Middleware

Technologies

Services

Services
Publish-subscribe

PUSH-PULL

Broadcasting

Figure 1: Layers of the base architecture for smart city services

II. IOT-BASED ARCHITECTURE FOR SMART CITIES

In this section we enumerate the main challenges that most

current smart cities still have to face. Then, motivated by

these challenges, we make a proposal of a general IoT-based

architecture for smart city applications.

A. Challenges of Smart Cities

The global challenges that smart cities still have to face can

be summarized in the following way:

• Sensors integration and abstraction capability. Provide

means to integrate different sensor types in a common

platform taking into account the different technologies,

legacy systems and communication protocols with focus

on IPv6 solutions.

• Individual intelligence and local reasoning. Apart from

data fusion, more complex data processing can be imple-

mented by smart objects.

• Learning and adaptation. Most of the patterns generated

in smart cities are sensitive to contextual changes and

are able to learn and adapt themselves to such changes

as well as to human dynamicity.

• Dynamic human centric services. This work designs and

implements smart mobility and smart building services

that use the patterns generated to provide customized and

efficient services taking into account the dynamicity of

the citizens’ behavior.

• User privacy and security control mechanisms. In the

context of smart cities it is important to manage the way

the user is able to control its data and how they are

exposed to third parties and applications.

B. IoT-based Architecture

Several layers compound the proposed platform that was

created with the goal of serving to many applications of

smart cities. In Figure 1 is depicted this layered IoT-based

architecture, which are detailed below.

1) Technologies Layer: In the basis part of Figure 1 it is

observed that a plethora of sensors and network technologies

provide the input attributes using wireless sensor networks,

wired sensors, gateways, etc. which can be self-configured and

remotely controlled through the Internet. Dealing with our first

application that consists on the instantiation of the architecture

for building management systems (BMS), in this layer it is

gathered information from sensors and actuators deployed

in strategic points of the building. But the aforementioned

data sources in smart cities are not limited to static devices

reporting measurements associated to a particular location,

there are also moving ones capable to deliver measurements

at different points within a geographical area. This is mainly

due to the rapid development of wireless technology, mobile

sensor networks and, above all, the advent of smartphones [5].

Although approaches based on mobile-phone sensing require

a demanding usage of the communication, location and other

attributes of the smartphone, which can bother some people

due to battery draining [6], data captured by static, mobile

and smart-phone sensors can be extended or enriched with the

data generated by several social-media channels - like Twitter

or Facebook - giving rise to a new generation of soft sensors

from which extract relevant knowledge [7]. As a result, an

alternative course of action aims at mining relevant knowledge

from users on the basis of non-intrusive ways to obtain data,

for example, transit cards in public transport scope.

2) Middleware Layer: The first layer provides us with a

wide variety of data, so it is needed a second layer where

all collected data from seamless sources are expressed in the

same way, this is done in the middleware layer. The context

information can be collected in an ontology defined according

to the model that represents the knowledge of the specific

application domain. Thus, for our energy efficiency semantic

model, the devices and building concepts are borrowed by the

SAREF ontology [8]. The agents representation is made using

the DUL ontology [9], while the observation values of the

monitored sensors are represented based on the SSN ontology

[10]. However, when it comes to process the incoming data



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2016.2605581, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

in a real-time manner, it is necessary to use a lightweight

representation. As a matter of fact, [11] describes sensor-data

representation using a simple attribute-value schema for event-

based systems.

3) Management Layer: After having extracted information

from the previous layers, the management layer is in charge

of determining decisions bearing in mind the target services

provided in smart cities. Different big data analytic techniques

can be used for the intelligent decision making processes.

Algorithms like Artificial Neural Networks (ANNs) using

backpropagation methods [12] and Support Vector Machines

(SVMs) [13] are good to solve non-linear problems, making

them very applicable to build energy prediction issues, ranging

from those associated to lighting and heating, ventilation and

air condition (HVAC) [14] to the prediction of the heating

energy requirements [15]. For optimization problems in Build-

ing Management System (BMS) addressing energy efficiency,

Genetic Algorithms (GAs) constitute a commonly applied

heuristic that can be used in several optimization scenarios

such as scheduling cooling operation decisions [16]. Regarding

to the smart public transport application, the extraction of

users behaviors from transition records have been studied by

using different algorithms and techniques like maximum like-

lihood estimation [17], probabilistic models [18], conditional

random fields [19], graphical information system (GIS)-based

processing [20] or Database Management System (DBMS)-

based processing [21].

4) Services Layer: Finally, the upper layer (Figure 1) shows

some examples of smart city services that can be provided

following the proposed architecture. Thus, this architecture

can be applied to provide applications of smart cities like

environmental monitoring, energy efficiency in buildings and

public infrastructures [22], environmental monitoring [23],

traffic information and public transport, locating citizens,

manage emergencies, saving energy and other services. These

actions can either involve citizens or be automatically set.

III. SMART CAMPUS OF THE UNIVERSITY OF MURCIA

The University of Murcia (UMU) has three main campus

and several facilities deployed throughout different cities in

the Region of Murcia. One of these campus is currently

serving as pilot of two European Projects, the SMARTIE

[24] and the ENTROPY [25] project. The goal of this use

case of smart city is to provide a reference system able

to manage intelligently the energy use of the most relevant

contributor to the energy use at city level, i.e. buildings. The

BMS implemented as part of this smart campus adapts the

performance of automated devices through decisions made by

the system and the interaction with occupants in order to keep

comfort conditions while saving energy. We start by the most

representative source of energy consumption at building level:

HVAC systems.

A. System Overview

Using a BMS system, it is possible to predict users future

behaviour from their recorded activities that are measured

with sensors. This information allows us to provide convenient

environments looking for keeping their comfort while saving

energy. The first need for a building to become smart is to

know location of occupants. Once solved the indoor localiza-

tion problem, it is time to propose a solution to the energy

efficiency of buildings associated to the thermal comfort

provisioning service related to the HVAC management. For

this, energy consumption models of the building need to be

generated and used to implement the optimization mechanism

able to maximize comfort at the same time that energy

consumption is minimized. Therefore, the different problems

addressed in this scenario of smart city through the application

of big data techniques are:

1) Indoor localization estimation.

2) Building energy consumption prediction.

3) Comfort provisioning and energy saving through an

optimization problem.

In the following subsections these problems are described

with more details, as well as the techniques implemented and

the results obtained.

B. Indoor Localization Estimation

As well as considering the information concerning to the

identification and location of the building’s occupants, it is

necessary to reach the required accuracy in the location in

order to provide the indoor services in a comfortable and

energy efficient way. Our technological solution to cover the

localization needs (i.e. those required by smart buildings to

provide occupants with customized comfort services) is based

on a single active RFID system and several Infra-Red (IR)

transmitters. In Figure 2 we can observe the data exchange

carried out among the different technological devices that

compose our localization system.

IR transmitter

Monitored RFID tag

Reference RFID tag

{IDIR j, IDtag 1}

Data collection software

RFID Reader

{IDIR i, IDtag M}

{IDIR j, IDtag 1, RSSItag 1}

…
{IDIR i, IDtag N, RSSItag N}

{IDIR i, IDtag M, RSSItag M}IDIR i

IDIR j

IR transmission

RFID transmission

IP transmission

Zone 1 (IDIR i) Zone 2 (IDIR j)

Tag 1

Tag N

Tag M

…

{IDIR i, IDtag N}

Figure 2: Localization scenario

The final mechanism implemented to solve the indoor

localization problem is shown in Figure 3. In this figure, we

can see that the first phase of the mechanism is the space

division through the installation of IR devices in the walls

of the building area where localization wants to be solved.

Therefore, for each space division, there is an IR identifier

value (IDir) associated to this region. For each one of these

regions, we implement a regression method based on Radial

Basis Functions (RBF) networks. The RBF estimates user

positions given different RFID tags situated in the roof. Then,
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after the position estimation using the RBF network, a Particle

Filter (PF) is applied as a monitoring technique, which takes

into account previous user position data for estimating future

states according to the current system model.

Figure 3: Data processing for location estimation

The PF used in this work is slightly different from its

generic definition (which can be found in [26]). The main

difference of our filter is in the correction stage. In this stage,

the generic definition of the PF applies the resampling using

the Sequential Importance Sampling (SIS) algorithm [26] to

carry out the filtering of such particles which minimize the

deviation of their predicted trajectory. In our implementation,

in addition to apply the SIS algorithm to correct the particles

positions, we also use in this step the information about the

specific IR region at a given instant of time to benefit those

particles which fall inside this area. Therefore, before applying

the SSI algorithm, we filter according to the coverage area of

the IR transmitter identified by the monitoring RFID tag. The

main advantage of this constraint is the faster convergence of

the filter, because extra information is available to carry out

the correction stage of the filter.

C. Building Energy Consumption Prediction

The energy performance model of our BMS is based on the

CEN Standard EN 15251 [27]. This standard proposes the cri-

teria of design for any BMS. It establishes and defines the main

input parameters for estimating building energy requirements

and evaluating the indoor environment conditions. The inputs

considered to solve our problem are the data coming from the

RFID cards of users, the user interaction with the building

automation system through the control panels or the web

access, environmental parameters coming from temperature,

humidity and lighting sensors installed in outdoor and indoor

spaces, the consumption energy sensed by the energy meters

installed in the building, and the generated energy sensed

by the energy meters installed in the solar panels deployed

in our testbed. After collecting the data it is mandatory to

continue with their cleaning, preprocessing, visualization and

correlation calculation in order to find determining features,

which can be used to generate optimal energy consumption

models of buildings (management layer of the architecture

presented in Section II). Over the input set, we perform the

standardization and reduction of data dimensionality using

Principal Components Analysis (PCA) [28], identifying the

directions in which the observations of each parameter mostly

vary.

Regarding the big data techniques that have been already

applied successfully to generate energy consumption models

of buildings in different scenarios (as such we mentioned

in the management layer of the architecture presented in

Section II-B3), we propose to evaluate the performance of

Multilayer Perceptron (MLP), Bayesian Regularized Neural

Network (BRNN) [29], SVM [30] and Gaussian Processes

with RBF Kernel [31]. They were selected because of the

good performance that all of them have already provided when

they are applied to building modelling. All these regression

techniques are implemented following a model-free approach,

which is based on selecting - for a specific building - the

optimal input set and technique, i.e. such input set and tech-

nique that provides the most accurate predictive results in a test

dataset. In order to implement this free-model approach, we

use the R [32] package named CARET [33] to train the energy

consumption predictive algorithms, looking for the optimal

configuration of their hyper-parameters (more information can

be found in [34]). The selected metric to evaluate the models

generated for each technique using test sets is the well-known

RMSE (Root-Mean-Square Error), whose formulation appears

in Eq. (1). This metric shows the error by means of the quantity

of KWh that we deviate when predicting.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (1)

But in order to get a better understanding of the uncer-

tainty of the model, we also show its coefficient of variation

(CVRMSE). This coefficient is the RMSE divided by the mean

of the output variable (energy consumption) for the test set (see

Eq. (2)), giving us a percentage of error adjusted to the data,

not just a number in general terms.

CV RMSE =
RMSE

ȳ
(2)

D. Optimization Problem

Once the building energy consumption is modelled, we

focus on the optimization of the HVAC operation trying

to keep comfort conditions at the same time that energy

consumption restrictions are considered. As starting point, we

establish the comfort extremes considering location type, user

activity and date [35]. Understanding the building thermal

and energetic profiles allows us to quantify the effects of

particular heating/cooling set point decisions. To derive a

heating or cooling schedule, it is necessary to formulate the

target outcome. In our buildings, it is possible to:

1) optimize the indoor temperature during occupation, i.e.

minimize the building temperature deviations from a

target temperature,

2) minimize daily energy consumption, or

3) optimize a weighted mixture of the criteria, a so-called

multi-objective optimization problem.

The definition of building temperature deviation influences

the results strongly: taking the minimum building temperature

will result in higher set point choices and higher energy use

than using, for instance, the average of indoor temperatures.

Constraints on maximum acceptable deviation from target

comfort levels or an energy budget can be taken into account

to ensure required performance. In our optimization problem,
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we apply GA using the implementation provided by R (the

“genalg” package [36]), to provide schedules for heating/cool-

ing setpoints using the predictive building models (comfort and

energy consumption models).

E. Evaluation and Results

1) Scenario of Experimentation: The reference building

where our BMS for energy efficiency is deployed is the

Technology Transfer Centre (TTC) of the UMU1. Every room

of this building is automated through a Home Automation

Module (HAM) unit. It permits us to consider a granularity at

room level to carry out the experiments.

2) Evaluation. Indoor localization mechanism: Different

tracking processes are carried out in the environments con-

sidered in our tests (the TTC building), applying for this

the implementation of our PF. In Figure 4 an example of

some tracking processes are carried out considering transition

between different spaces of the TTC. For these paths, our

system was configured to acquire data every T = 10 s. Taking

into account the target location areas involved in comfort

provisioning (lighting and thermal comfort, represented in

different colors), and the real and estimated location data

provided by our mechanism.
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Figure 4: Tracking processes with a reference tag distribution

of 1m x 1m

Thus, with a 1m x 1m distribution of reference RFID tags

placed on the roof of the test room, a 65% success percentage

in localization is obtained having an error lower than 1m.

98% of cases have as much 2.5m. of error. Therefore, it

can be safely said that our localization system is able to

track users with a sufficient level of accuracy and precision

for the location requirements associated with the comfort

and energy management in buildings. More details about this

indoor localization system can be found in [37].

3) Evaluation. Energy consumption prediction: In Figure

5(a) it is shown the correlation heatmap between the electrical

consumption of the TTC building and the outdoor environ-

mental conditions. It is observed that energy consumption

1www.um.es/otri/?opc=cttfuentealamo
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Figure 5: Modeling results

correlates significantly (α = 0.95) and positively with tem-

perature, radiation, wind speed variables, vapour pressure

deficit and dew point; and negatively with wind direction

and humidity variables. This means that we can use safely

these variables as inputs of the energy consumption model

of our reference building, because they have clear impact in

the energy consumption. Otherwise, precipitation is so unusual

that they don’t have an association with the output.

Also, a logic differentiation between temporal situations

has been considered in order to label behaviour. Situation 1:

holidays and weekends; situation 2: regular mornings; and,

situation 3: regular afternoons. The non-parametric Kruskall

Wallis test shows that energy consumption differs significantly

between situations (H(2) = 547.7, p < 0.01). Also, the post hoc

pairwise comparisons corrected with Holm’s method retrieve a

p-value smaller than 0.01, supporting the decision of creating

3 different models [38]. Thus, for each of the three situations

identified for the TTC building, we have evaluated not only the

punctual value of RMSE, but also we have validated whether

one learning algorithm out-performs statistically significantly

the others using the non parametric Friedman test [39] with

the corresponding post-hoc tests for comparison.

Let x
j
i be the i-th performance RMSE of the j-th al-

gorithm, for this building, we have used 5-times 10-fold

cross validation, so i ∈ {1, 2, ..., 50} and four techniques,

so j ∈ {1, 2, 3, 4}. For every situation, we find significant

differences (α = 0.99) between every pair of algorithms,
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except for SVM and Gauss RBF (p > 0.01), as it is shown in

Figure 5(b) for the particular case of situation 2.

The three models have in common that BRNN yields a

better result than the other tested techniques, based on the

RMSE metric. Thus, BRNN is able to generate a model with a

very low mean error of 25.17 KWh - which only represents the

7.55% of the sample (this is the most accurate result) in terms

of the CVRMSE. And for the worst case, BRNN provides a

mean error of 43.76 KWh - which represents the 10.29% of

the sample in the reference TTC building - that is acceptable

enough considering that our final aim is to save energy.

4) Evaluation. Optimization mechanism: To evaluate our

GA-based optimization strategy, controlled experiments were

carried out in the TTC building with different occupant’s

behaviours. The results show that we can accomplish energy

savings between the 15% and 31%. Trying to validate the

applicability of our proposal, we have also made experiments

in a different scenario with limited monitoring and automation

technologies, achieving energy saving of about the 23%.

IV. PUBLIC TRAM SERVICE OF MURCIA CITY

The second scenario is focused on the information analysis

related to use of the tram service of the Region of Murcia

[40]. In this case, the main goal was to perform a profiling

process of the trips carried out by the users of such public

service. For that aim, a fuzzy clustering algorithm is used to

automatically extract tram user’s profiles. Bearing in mind the

architecture introduced in Section II, this system is enclosed

in the management layer. The main tasks needed to reach the

goal are explained in the following subsections.

A. Generation of the trip data set

According to the tram experts, information relevant to trip

profiling must include data about: time (in terms of day of

the week and time of the day), origin and destination stations

and approximate age of the traveller. This information is

being continuously recorded in different databases of the tram

service. Nevertheless, certain operations of joining, transfor-

mation and preprocessing (discretization and numerization)

have been performed in order to compile all this information

into a set of tuples susceptible of feeding the subsequent fuzzy

clustering algorithm. The two most remarkable operations are

the following:

On the one hand, according to the infrastructure of the tram

service, users only need to swipe the smart card when they get

into the tram. Hence, the recorded data only comprises trans-

actions at the origin of each user’s trip so it can be regarded as

incomplete. In order to deal with this incompleteness, a well

known solution is the trip-chaining method which focus on

recovering the origin and destination of the trips. In this case,

such a method is based on the assumption that a traveller who

takes the tram at an origin station, OS, ended their previous

trip on that station OS. Due to the event-based nature of the

card records, the Complex Event Processing (CEP) paradigm

[11] was adopted to come up with a palette of event-condition-

action rules to uncover the trips. While the condition part of

the rules performs a match between consecutive records of

the same traveller following the aforementioned trip-chaining

method, the action part generates a new trip tuple (comprising

the origin and destination stations) in case the condition is

fulfilled.

On the other hand, as clustering techniques are based on

distance calculations among data, a set of numbered (and

ordered) geographical areas, each one covering some close

stations are identified by the tram experts. Then, instead of

having nominal values for origin and destination features these

numbered areas make it easier to calculate the distance about

tuples in the clustering process.

In summary, the tuples composing the data set for the

subsequent clustering task are composed by the following

attributes: tte:{travellerAge, dayOfTheWeek, hourOfTheDay,

originArea, destArea}

B. Trip profiling

Clustering mechanisms are suitable when it comes to find

out the most representative trips profiles. For that aim, the

Gustafson-Kessel Clustering Method (GKCM) has been cho-

sen since it is able to identify arbitrarily oriented ellipsoidal

fuzzy clusters unlike, for instance, the Fuzzy C Means clus-

tering Method, which impose spherical shapes to the data

clusters. After the clustering task the identified prototypes

(centroids) will summarize the whole data set of trips. GKCM

requires to be supplied with the quantity of potential clusters

(c). This is an important parameter since it determines the abil-

ity of the potential centroids to represent the real underlying

structure of the data.

Therefore, several GKCM executions were performed with

different values of c and the goodness of the different identified

set of clusters was measured. One of the most used measure-

ment is the one proposed in [41] and denoted here as rcs.

This magnitude quantifying both the total compactness within

clusters and the total separation among them being the greater

the better.

Once the number of clusters c has been decided on the basis

of rcs, GKCM is executed in order to find the c profiles that

best represent the trip data set. Nevertheless, when exceed a

time tpmax or a number of trips ntmax the algorithm is re-

computed in order to detect new profiles which could rise up.

C. Evaluation and Results

The subject of evaluation is the tram service of the region

of Murcia (Spain), which includes 18-km railway and 28

stations (see Figure 6). Figure 7 depicts the set of predefined

geographical areas used in the experiment.

The evaluated dataset contained 378719 trips from 23400

users in November, 2013. For our experiment, the system

was able to uncover 110697 trips. Expert knowledge was

used to define the types of days and times of the day used

in the aforementioned data pre-processing step as [Monday-

Thursday, Friday, Saturday, Sunday] and [0-6, 6-10, 10-12,

12-16, 16-20, 20-00]. As a result, a generated TTe dataset

was split up into 4 different subsets based on the fact that

traveller profiles depend on the day of the week (regarding, for

example, differences of traffic flow between regular workdays
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Algorithm 1: Cluster-based Trip profiling process.

Input: TT : dataset of raw trip tuples.

Output: PTT : Traveller profiles extracted from TT .

1 if tnow − tprev > tpmax ∨ | TT | − | TT prev |> ntmax

then

2 TTe ← preProcessing(TT )

3 foreach c ∈ {2, .., cmax} do

4 clustc = GKCM(TTe , c)

5 if clustc.rcs < rmin
cs then

6 rmin
cs ← clustc.rcs

7 PTT ← clustc.centroids

8 tprev ← tnow
9 TT prev ← TT

10 return PTT
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Figure 6: Line map of the tram service in Murcia.
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Figure 7: Geographical regions for the numerization of tuples’

station fields.

and weekends). Next, the GKCM was launched with each of

these subsets with different number of clusters.

In Figure 8, the cluster validation ratio rcs is shown for

every TTe subset, being the lower value the better. As it can be

observed, while the optimal cluster partition is reached at c =
5 for the Monday-Thursday subset, for the remaining subsets

minima rcs values are reached at higher number of clusters

c. In other words, a higher number of profiles is needed to

represent the weekend trips. This is reasonable given that most
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Figure 8: Cluster-validation rate for different cluster partitions.

people postpone leisure activities to the weekend and given

that there exist a quite variety of leisure activities that can be

done at different hours of the day.

As Table 1 shows, GKCM extracts five profiles for Monday-

Thursday trips. Profiles 1 and 2 correspond to young people

travelling in the morning to go towards one of the university

zones from the station close the inner city. Besides, profile

5 represents a kind on traveller going back home from the

university from 4 to 8 PM. Finally, profiles 3 and 4 correspond

to middle-young age people (28-33 years) that take the tram

around the outskirts and city center environments. These could

reflect people going from residential areas.

Lastly, the heatmap shown in Figure 9 represents the mem-

bership of the Monday-Thursday trips to the defined profiles.

If we interpret this plot as a time-framed sequence, a great

amount of the traffic focuses on the right side of the line, which

connects the city center and the university areas. Nevertheless,

such load is more spread along the whole line during the

evening.

V. DISCUSSION

In this paper we propose a general IoT-based architecture

which can be implemented for different applications of smart

cities. This architecture is modeled in four layers, being the

third one - the management layer - the layer where big data

techniques are implemented to provide the different services

offered then in the corresponding service layer (last layer).

The big data paradigm can be understood through the lens of

7 V’s [42] (challenges). Regarding the application of different

big data techniques to the specific scenarios of smart cities

presented in this paper, we have overcame the challenge

of velocity by collecting data hourly in the smart building

application (consumption of energy, outdoor environmental

conditions) and even in sorter intervals of time for the public

transport application (many people validates their transit cards

within seconds). Although we haven’t tackled volatility, it

is clearly a goal when looking for the real-time smart city

because behavioural scenarios like ours change depending on

many social aspects. The veracity of the data is guaranteed by

the exhaustive pre-processing steps included in the modeling

process. We have extracted value, making sense of the wide

mentioned variety of data, and with the described analysis
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Profile Age Origin Area Dest. Area Time of the day

P1 23.37 City Center Campus I 0-6

P2 25.74 City Center Campus I 6-10

P3 28.22 Outskits II City Center 12-16

P4 32.77 Outskits I Outskits II 6-10

P5 22.20 Campus I City Center 16-20

Table 1: Monday-Thursday trips’ profiles.

(P3) (P5)(P2)(P1) (P4)

Figure 9: Tram-line heat-map of the five profiles for Monday-Thursday trips.

Smart City
Application

Data Information Knowledge Services

Smart Campus

IR Sensors. RFID

tags. Environmental

Sensors. Weather

Station. Presence

Sensors. Energy

Consumption

Meters. Weather

Forecast

Data Transformation

through SAREF

ontology [8], DUL

ontology [9] and

SSN ontology [10]

Data Modelling.

Predictive

Regression (RBFs,

SVM, ANN, RF,

ARIMA). Tracking

algorithm (PFs).

Optimization

Mechanism (GA)

Indoor localization.

Building energy

consumption

prediction. Energy

saving through the

HVAC operation

optimization

Public Tram Service
Mobile Sensors.

Smart Cards

CEP-based filtering.

Event Processing in

Action [11]

Fuzzy Clustering

Infrastructure

monitoring. Mobility

patterns.

Table 2: Main features of the two architecture instantiations

and techniques, we have validated their usability for solving

different problems of smart cities with high accuracy.

In both applications tackled in this paper, the huge volume

of historical data is being stored using a NoSQL data base.

At the moment, the storage system is been adapted so as to

be compliant with the FI-WARE architecture2, that intends to

ease the development of novel applications based on the Future

Internet. In particular, the Orion Context Broker (OCB)3 and

the COMET4 modules are used in order to store in a NoSQL

repository the historical data comprising the measurements

from the different data sources.

On the whole, both instantiations of the architecture de-

scribed above are summarized in Table 2. In the next subsec-

tions we summarize the main benefits obtained after applying

the most suitable big data techniques to the two scenarios of

smart cities addressed in this work.

A. Benefits of Big Data Applications in Smart Buildings for

Energy Efficiency

Here we summarize the main findings extracted from all the

experiments and analysis carried out during the application of

big data techniques to the smart campus of the UMU.

2https://www.fiware.org [Available Feb. 2016]
3http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-

orion-context-broker [Available Feb. 2016]
4https://github.com/telefonicaid/fiware-sth-comet. [Available Feb. 2016]

1) The resolution of the indoor localization problem.

Applying regression techniques based on RBFs and a

tracking algorithm applying PFs to data coming from

RFID and IR sensors installed in buildings, it was

possible to solve the indoor localization problem with a

mean accuracy of 1.5 m. Then, indoor localization data

can be used to provide customized services in buildings.

2) The resolution of the building energy consumption

estimation. Applying PCA and BRNN techniques to

data related to outdoor environmental conditions and

energy consumption of buildings, it was possible to gen-

erate energy consumption predictive models of buildings

with a very low mean error of 43.76 KWh - which only

represents the 10.29 % of the sample - in the worst case.

Then, energy consumption predictions can be used to

design the optimal strategies to save energy in buildings.

3) The resolution of the optimization problem related to

the maximization of thermal comfort and minimiza-

tion of energy consumption in buildings. Applying

optimization methods based on GAs to optimize the

energy consumption of buildings meanwhile comfort

conditions are satisfied, and after including user localiza-

tion data and user comfort preference prediction, it was

possible to get energy savings in heating of about 23%

compared with the energy consumption in a previous

month without any energy BMS.
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B. Benefits of Big Data Applications in Urban Pattern Recog-

nition to Improve Public Tram Service

After applying Big Data techniques to the urban pattern

extraction in the public tram service, all the results from

the experiments allowed the service staff to draw up quite

interesting conclusions. These are summarized below:

1) Regarding the resolution of the trip extraction. The

formal discovery of the stations’ load in terms of trips’

origin and destination would allow the service provider

and the city council to better plan the whole public

transport service of the city. This way, the more impor-

tant stations might be considered as “hub“ points where

commuters can easily transfer from tram to another

kinds of transport. Moreover, such an information could

be also useful so as to forecast future infrastructure

needs in each part of the tram line (e.g. location and

number of places of new parking lots for bicycles close

to tram stations).

2) Concerning the resolution of the urban profiles

generation. Experiments pointed out the importance

of undergraduates as tram users. Hence, most of the

traffic load concentrated in the line between the city

center and the campuses. This was really helpful in

order to design promotional campaigns for these type

of travellers. Moreover, results also confirmed that the

line segment towards the shopping-mall areas was under-

used. Thus, campaigns to promote the use of the tram

to go shopping was also considered.

VI. CONCLUSIONS AND FUTURE WORK

This paper displays the benefits of applying big data tech-

niques over data originated by IoT-based devices deployed in

smart cities. A general architecture modelled in four layers is

proposed to be applied in smart city applications considering

big data issues. As part of this overview, a differentiation

between static and mobile data sources is made, proposing

for each one of them suitable techniques to extract relevant

knowledge from their data. Then, we describe two big data

applications for smart city services. Specifically, the services

of energy efficiency and comfort management in the buildings

of a smart campus, and the public transport service of a city.

In the first scenario of smart city we have demonstrated that,

after applying appropriate big data techniques to problems

like indoor localization, energy consumption modeling and

optimization, we are able to provide mean energy savings of

23% per month, while indoor comfort is ensured. Regarding

to the urban pattern recognition carried out using data related

to the public tram service of the city of Murcia, experiments

were performed to confirm that the proposed patterns ended

up being of great interest for the service provider in order to

better understand how travellers make use of the transportation

system. This was fairly useful in order to come up with better

planning protocols and more tempting promotional campaigns.

The ongoing work is focused on the inclusion of people

behaviour during the operational loop of this kind of systems

for smart cities. Thus, for the case of smart building appli-

cations, users will be encouraged to participate in an active

way through their engagement to save energy. On the other

hand, in the case of the public tram service, data coming

from crowdsensing initiatives will be integrated to improve

the estimation of the urban mobility patterns.
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