
Applicability of commodity, low cost, single board computers
for Internet of Things devices

Steven J. Johnston*, Mihaela Apetroaie-Cristea, Mark Scott and Simon J. Cox,
Faculty of Engineering and the Environment,

University of Southampton, UK.
Email: *sjj698@zepler.org

Abstract—We can expect the number of Internet of Things
(IoT) devices to rapidly increase, in part due to the availability
of low cost powerful hardware. These advances in hardware
introduce a new class of computer – the commodity low-cost
Single Board Computer (SBC); for example the Raspberry Pi.
These devices are capable of running a full operating system
and are accessible to non-technical users.

In this paper we demonstrate the feasibility of using
this class of computer to construct IoT devices without deep
technical knowledge of embedded systems. Our IoT device is
targeted at real world data collection and is the basis of a
deployed device.

We discover that although the existing SBC hardware
on the market varies dramatically, much of it is very ap-
plicable to IoT scenarios. Generally their default out of the
box configuration supports one or more Linux variants, high-
level programming languages and standard hardware libraries.
They are very configurable and attractively priced – we predict
a growth in using this class of computer particularly for
IoT prototypes; disposable compute or low hardware volume
scenarios.

In the future we can expect hardware improvements and
enhanced operating systems taking into account the issues
surrounding IoT devices, such as SD card storage corruptions,
power consumption and improved failure detection.

Index Terms—Weather; IoT; low-cost; commodity; SBC;

1. Introduction

Ubiquitous Internet enabled embedded systems, often
referred to as the Internet of Things (IoT) is experiencing
rapid growth. Some sources predict the number of IoT
devices will exceed 26 billion by the year 2020 [1]; this
number excludes PCs, smart phones and tablets. Many of
these devices will be mass produced, however, there will
be a subset of the IoT devices, designed by non-technical
users, partly due to the availability of low cost hardware.
The emergence of the low cost Single Board Computer
(SBC) has been accelerated by a series of Raspberry Pi
devices, currently sold in their millions. There are many
similar boards on the market, for example Odroid, Udoo
Neo, PINE64 [2] [3] [4], and newer hardware is being

released continually. These low cost devices have a rich set
of features and offer a powerful compute capability. The
popularity of these devices has effectively introduced a new
class of computer- the commodity low-cost SBC. The SBC
is a complete, miniature computer,for example with sockets
for an external display, network, expansion capabilities via
USB and PCB headers for external circuit boards or sensors.
This can be compared to other IoT devices which are often
custom-built for the task they are performing.

The aim of this paper is to investigate the applicability
of SBC’s for IoT devices, focusing on the build complexity
and technical skill-set required. We will use an exemplar
weather monitoring IoT device, capable of gathering data
from multiple sensors and transmitting it to an online cloud-
based application; the Met Office WOW citizen science
project[5].

The proposed device is built from currently available,
commodity, low-cost hardware, suitable for mass deploy-
ment, and is programmable in a mainstream high level
programming language.

2. Background

The concept of having all the peripherals on a single
board, resulting in a SBC is not new [6] and many micro-
controllers are embedded into SBCs, often referred to as
development boards. For example the Arduino UNO is a
development board for the ATmega328 [7]. The Arduino
platform offers a great deal of libraries for a wide range of
hardware but ultimately the CPU and processing capabilities
combined with the lack of a full TCP/IP stack make it
unsuitable for this particular IoT exemplar.

More powerful microcontrollers exist and are often re-
ferred to as a System on a Chip (SoC) although the distinc-
tion between them is blurred. The term microcontroller often
refers to low memory, low performance single chip devices
whereas a SoC usually supports an operating system such
as Linux or Windows; although this is not a definition.

The plummeting cost of powerful SoC devices make
them a popular alternative choice to a basic microcontroller.
Table 1 shows a selection of common SoC processors.

In this paper we focus only on SBCs that are capable of
running a fully featured operating system (OS). The main

TABLE 1. EXAMPLE SYSTEM ON A CHIP (SOC) HARDWARE

SoC Cores
/

Clock

GPU I/O

S805 4 x
1.5

GHz

ARM
Mali-
450

ADC, GPIO, SPI, I2C, UART,
USB, DDIO/SD/MMC, PWM,
SDXC/SDHC/SD, I2S, SPDIF,

HDMI, PCM, Ethernet
BCM2837 4 x

1.2
GHz

Broadcom
Video-
Core
IV

GPIO, SPI, I2C, UART, USB,
CSI, DSI, PWM, PCM/I2S, DMA,

Timers, Interrupt Controller

AM3358 1 x 1
GHz

SGX530 ADC, GPIO, SPI, I2C, UART,
CAN, USB, SDIO/SD/MMC,

McASP RTC.
i.MX
6Solo

1 x 1
GHz

Vivante
GC880
for 3D

and
Vivante
GC320
for 2D

ADC, GPIO, SPI, I2C, UART,
USB, ESAI, I2S/SSI, Ethernet,
FlexCAN, NAND Cntrl, PCIe,

MIPI HSI, S/PDIF Tx/Rx, HDMI,
LVDS

Exynos
5422

4 x
2.1

GHz
and 4
x 1.5
GHz

ARM
Mali-
T628
MP6

ADC, GPIO, I2C, SPI, UART,
USB, HDMI, SDIO/SD/MMC,
PWM, LCD, MIPI CSI2, eDP,

PCM, I2S, S/PDIF, PMIC, DMA
Controller, MCT

reason is to remove the requirement for low-level program-
ming languages and encourage portability as new hardware
becomes available. Popular operating systems usually have
good documentation, code examples and support forums to
assist with device development. By definition an IoT device
will need Internet connectivity; using a full OS ensures ac-
cess to industry standard secure protocols and vulnerability
updates. Other platforms such as MBed [8] support SSL and
are excellent for IoT devices but are considered out of scope
for this work due requirement for a low level programming
language.

The SBC has to support electronic interfaces to attach
hardware, for example sensors and actuators. For flexibility
we consider the following industry standard interfaces as
a requirement, but this is application specific. Devices that
support these interfaces and features will easily integrate
with the majority of off-the-shelf sensors.

Inter-Integrated Circuit (I2C) or Two Wire Interface
(TWI) is a serial bus capable of hosting multiple master
and multiple slave devices using just two connections.

Serial Peripheral Interface (SPI) is a serial bus capable
of hosting a single master with multiple slave devices per
bus and has a lower power consumption than I2C.

Pulse-Width Modulation (PWM) is not an interface, but
is rather a technique to encode a message by varying the
power supplied by a digital pin and is often implemented in
hardware.

Universal Asynchronous Receiver/Transmitter (UART)
refers to the hardware that converts parallel to serial com-
munications and is often simply called serial, it is actually
the communication standards over UART to which people

TABLE 2. SUMMARY OF WEATHER STATION SENSORS

Sensor Interface Hardware
Wind vane Analog Switched resistors

Anemometer GPIO Interrupt Reed switch
Rain gauge GPIO Interrupt Reed switch

UV intensity Analog ML8511
Humidity &
temperature

2-wire serial SHT15

Barometric pressure I2C BMP180
Luminosity I2C TSL2561

are generally referring; the most common are RS-232 and
RS-485.

Controller Area Network (CAN) is a message-based
protocol defined by ISO 11898-1 that allows multiple master
device communication and was designed over the last 30
years for in-vehicle electronic networking.

An Analog to Digital-converter (ADC) is a device that
converts a continuous analog voltage to a digital number. It
is important to ensure that the analog signal is sampled at a
high enough resolution to ensure that analog variations are
not lost.

General Purpose Input Output (GPIO) is a general-
purpose pin whose behaviour can be controlled by the user
at the run time. Some of these GPIO pins can be configured
to function as Interrupt Request (IRQ) inputs –rising, falling
or both edges of the incoming signal.

3. Weather station

An exemplar IoT weather station must be capable of
monitoring weather conditions outdoors. It will be roof
mounted to achieve a clear airflow and solar powered for
ease of installation.

A range of common sensors with a variety of capabilities
and electronic interfaces are included on the weather station.
Table 2 provides a summary of the sensors, their electronic
interface and hardware specifics.

The wind vane requires an ADC and has eight mag-
netic reed switches arranged in a dial, each reed switch
is connected to a different sized resistor. As the vane
changes direction a magnet moves, making and breaking
the switches, therefore changing the resistance of the circuit.
The magnet is sized such that when halfway between two
reed switches both will be connected. This will give a total
of 16 distinct circuit resistances This is a crude sensor and
with a resolution of 22.5 degrees, but is an excellent example
of a simple analog circuit. A 5 V supply is connected to the
wind vane and the enabled resistors act as a voltage divider.
Reading the voltage using an analog pin indicates which
resistors are enabled in the circuit and hence establish the
wind direction.

The three hemispherical cup anemometer is used to
calculate the windspeed and it requires GPIO pins with
interrupt capability. As the anemometer cups rotate, a single
magnet on the device closes a reed switch completing the
circuit. This particular device has two reed switches result-
ing in the circuit closing twice per revolution. Connecting

one end of the circuit to ground and the other to a GPIO pin,
pulled high we will get an interrupt every time the magnet
passes. For example a wind of 2.4 km/h will result in a single
rotation of the cups and two interrupts every second.

The rain gauge is a self-emptying tipping bucket and
requires GPIO pins with interrupt capability, each time the
bucket empties it moves a magnet past a reed switch which
will close the circuit. In the same way as the anemometer,
these interrupts are counted over time and used to calculate
the rainfall. In this particular gauge the bucket tips every
0.28 mm of rain.

The Ultraviolet (UV) intensity sensor uses an ML8511
detector which is most effective between 280-390nm and
will detect both UVA and UVB. The output is a linear
voltage relating to the UV intensity (mW/cm2), which can
be read using an analog pin and converted to a UV index.

The SHT15 temperature and humidity sensor is a very
reliable low cost sensor with an accuracy of ±0.3 ◦C and
±2.0% relative humidity. The easiest way to communicate
with this sensor is to use two GPIO pins one for the clock
and one for the data. By manipulating the GPIO pins we can
clock commands into the sensor and read the data back.

The BMP180 is a digital pressure sensor which can mea-
sure atmospheric pressure between 950 hPa and 1050 hPa
with an accuracy of 0.12 hPa. An accurate temperature
reading is needed to measure the pressure so the BMP180
can also be used as a temperature sensor. The BMP180 has
I2C serial output and a fixed address and it can be connected
to an I2C bus together with other sensors providing there is
not an address clash.

The TSL2561 luminosity sensor detects infrared and
full-spectrum light and has an I2C serial output. The sensor
can be used for lux calculations and has a configurable
slave address (a total of 3 different address combinations
are possible).

4. Single board computer selection

Selecting a SBC is partly application specific as it
requires the appropriate industry standard features and in-
terfaces to support the selected sensors shown in Table 2.
Table 3 shows a range of single board computers compatible
with Linux variants as well as their supported electronic
interfaces; note newer boards are a regular occurrence.

The most obvious choice of SCB is the Raspberry Pi
3 Model B+ which is shipped in large numbers and has a
huge userbase, offering online support and ensuring bugs are
patched. It lacks an Analogue to Digital converter (ADC)
and so are unsuitable for this particular example, but worth
considering for other IoT applications.

Securing these devices is notoriously difficult [9], [10],
[11]. Secure boot is only supported by newer SBC’s and it
allows a measure of defence against some attacks by only
permitting booting from code that has been signed by an
authorised key [12], making it more difficult for attackers
to introduce malicious code.

The range of features, on-board peripherals, support
availability and physical size all need to be considered when

selecting a SBC. We selected the Odroid C1+ because of
the availability, cost, size, compute power and its supported
features. In particular, ADC support, a battery backed up
Real Time Clock (RTC) and the same 40 pin header as the
Raspberry Pi 2 & 3 Model B+.

The Odroid C1+ has support for Android and Ubuntu as
well as a range of unofficially supported operating systems
such as ArchLinux Ubuntu Snappy and Debian. This work
uses the official recommended OS; currently Ubuntu 14.04,
Odroid release v1.6. Ubuntu has a package manager so
updates to OS software as well as Odroid specific software
will both come through as distribution updates.

5. Implementation

The sensor hardware in Table 2 was connected to an
Odroid C1+ running Ubuntu 14.04, Odroid release v1.6 with
all updates installed. The sensors are physically mounted
in a metal enclosure, protected from water ingress and
separated from each other to protect against interference; for
example thermal pollution. Internet connectivity is provided
via a RT3070 USB module which has an external 5 dB
omni-directional detachable antenna; this was replaced with
a high gain 24 dB directional antenna. The implementation
has been running for over 12 months and has been updated
with the latest OS updates as they have become available.

The power is supplied by a single south facing Photo
Voltaic (PV) panel, tilted for optimal winter sun. The power
is stored in a deep cycle 20 A h lead acid battery and man-
aged by an EPsolar Tracer1215BN v2.05 power regulator
[13]. The Tracer has a Modbus [14] connection which pro-
vides information about the equipment state, power genera-
tion, power consumption and has on/off timers. Being able to
query the power circuitry means that it is possible to predict
power outages/shortages and either reduce computational
load or power off the Odroid. The PV panel can also be
used as a sensor, the daytime instantaneous power generation
indicates sun intensity and cloud cover.

All the sensor data is gathered using Python [15] scripts.
Python is a very popular high-level programming language,
is available for most operating systems and has an exten-
sive number of libraries. The ML8511, SHT15, BMP180,
TSL2561 all have existing Python libraries making them
very simple to integrate. The analog wind vane, GPIO
interrupt anemometer and rain guage are supported by a
modified version of the Raspberry Pi GPIO library. The
selected hardware is well supported and does not need an in-
depth knowledge of electronics or low level programming,
making prototyping fast.

The device implementation takes advantage of the
Odroid C1+ hardware watchdog timers to monitor free
memory and system load (indication of a crashed OS).
The watchdog timer will reboot the system if the timer
expires, the watchdog daemon constantly resets the timer on
a healthy system, keeping it alive. The watchdog daemon
is very customisable and can look for network outages,
hardware temperature and even execute repair scripts.

TABLE 3. COMPARISON OF LOW COST, SINGLE BOARD COMPUTER DEVELOPMENT BOARDS

Mainboard
(SoC) RAM Storage USB Interfaces Size (mm)

Cost
(≈ USD2016)

ODROID-C1+
(S805)

1GB DDR3
SDRAM

MicroSD Card Slot
eMMC module socket

4 x USB 2.0 Host, 1 x
USB 2.0 OTG

ADC, 40 GPIO, SPI,
I2C, UART, HDMI,
RTC, IR Receiver,
DMC, PLL/OSC.

85 x 56 35

Raspberry Pi 3
Model B+

(BCM2837)

1 GB MicroSD Card Slot 4 x USB ADC, 17 GPIO pins,
UART, SPI, I2C.

85.6 x 56.5 35

Beaglebone Black
(AM3358)

512 MB
DDR3

MicroSD Card Slot
4GB 8-bit eMMC

on-board flash storage

1 x USB host, 1 x
USB miniB

ADC, 66 GPIO, SPI,
I2C, UART, CAN,

PWM, LCD, GPMC,
MMC1, 4 Timers.

86.4 x 53.3 50

Udoo Neo (i.MX
6SoloX)

512 MB or
1 GB DDR3

SPI Flash onboard,
MicroSD, 8-bit SDIO

interface

1x USB 2.0 A Host
1x USB OTG

ADC, 36 x GPIO pins,
UART, 2X CAN Bus,

PWM, I2C, SPI

85 x 59.3 50 - 65

ODROID-XU4
(Exynos 5422)

2 Gbyte
933MHz

MicroSD, eMMC 1 x USB 2.0, 2 x USB
3.0

ADC, 42 GPIO, SPI,
I2C, UART, PWM,
RTC I2S, HDMI,

PMIC.

82 x 58 x
22

74

The sensor data is collected, timestamped and written
to files on the SD card ready for transmission to backend
services. This means that sensor polling can be performed at
a different rate to the data upload and any network outages
do not result in data loss. Initially the sensor data collection
script was executed at boot and operated in an infinite loop.
The watchdog timer checked to ensure that the script was
working by checking the process ID; this was later changed
to use cron [16] to allow for more scripts with different
execution frequencies.

The sensor data is uploaded to two different online
backend systems. First, the Met Office WOW citizen science
project which receives sensor data as HTTP posts with
parameters. The WOW project is under development and
currently accepts a limited selection of sensor data, it is a
good example of how IoT device data can be used when
deployed at scale.

The second destination is a cloud hosted Apache Hadoop
[17] cluster, which is a software framework capable of
using a compute cluster as distributed storage and com-
pute. There is a strong ecosystem of supporting modules
for data analysis but more importantly it is supported by
multiple cloud providers (Amazon Elastic MapReduce and
Microsoft HDInsight) as well as an on-site solution, for
example HortonWorks. All the sensor data is transmitted
to the Hadoop cluster via a Windows Server Service bus
[18] which is identical to the cloud based Windows Azure
Service Bus [19]; a hosted commercial service. The data
is transmitted using the Python Apache Qpid Proton library
[20]. This reduces transmission bandwidth requirements and
demonstrates scalability to support large numbers of IoT
devices.

6. Discussion

The boards shown in Table 3 offer a wide range of
interfaces, peripherals and plenty of compute power. Not
all boards are created the same and it is important to

select carefully, for example if an ADC is required. All the
peripherals included on a board have an impact on the power
requirements, for example the Raspberry Pi 3 Model B+
recommends 2.5 A @ 5 V and the ODROID-C1+ requires a
minimum 0.7 A @ 5 V. This does not mean that the Rasp-
berry Pi 3 Model B+ continuously draws 12.5 W, but rather
is an indication of the expected peak current draw; these
recommendations also assume that peripherals such as WiFi
dongles and a keyboard will be connected – all requiring
power. A device that has a heavy power requirement will
have limited application as an IoT device. The Odroid C1+
without any peripherals connected, consumes ≈ 1.6 W once
booted with the stock Ubuntu 14.04 (v1.6). The first two
minutes of boot consume ≈ 80 mA h. By comparison the
Raspberry Pi 2 Model B+ consumes ≈ 1.8 W once booted
with the stock Raspbian Jessie. The first two minutes of boot
consume ≈ 60 mA h. Connecting a RT3070 chipset USB
WiFi dongle consumes a further 750 mW.

The Odroid supports CPU frequency scaling, changing
the CPU frequency it is possible to reduce the power require-
ments when the CPU load is not high. The Linux Kernel
has implemented cpufreq [21] since Kernel v3.4 and it is
enabled by default. The default OS install configuration
keeps the CPU frequency at its maximum. Changing the
governor to ondemand keeps the device responsive but
keeps the frequency low when not required. For example
the idle CPU frequency can be reduced to 312 MHz in our
weather station, without an impact on performance. Profiling
the CPU scaling shows that even with sensor polling scripts
and data uploads via WiFi the CPU remains at 312 MHz for
over 80% of the device uptime. This could be an indication
that the SoC is overly specified for the IoT task. Applying
CPU frequency scaling to the Odroid C1+ reduced the power
consumption by ≈ 10%.

It is possible to disable unwanted peripherals to reduce
the power consumption. The Odroid’s four USB ports run
off a USB hub which is potentially inefficient, particularly
when running only one USB peripheral. When debugging

the device in situ it is convenient to connect a USB keyboard
and mouse but disabling the ports when not using them can
reduce the power requirements. Disabling on-board periph-
erals can have some unexpected side effects, for example on
the Raspberry Pi 2 & 3 Model B+, the on-board Ethernet
connector is also connected as a USB device to the USB
hub; disabling the USB Hub will disable Ethernet capability.

The weather station is powered by a single Photo
Voltaic panel but this requires lots of physical space and
a favourable exposure to the sky. For fixed installations,
another option is to consider Power over Ethernet (PoE);
802.3af supports up to 15.4 W and 802.3at supports up to
30 W . This provides reliable power and networking over
the same cable and is well suited to external installations.
The Intel Galileo Gen 2 board supports PoE but the other
boards require a PoE splitter which adds further costs.
Many network switches provide PoE (injectors) and have
the ability to power cycle individual ports, making a remote
reboot of failed devices possible.

The most common way to add storage to this class of
SBC is via SD card; the Odroid C1+ supports both SD and
removable eMMC storage. Inherently using an SD card for
IoT devices is a risk as it is not tolerant to power outages;
some efforts have been made to improve reliability [22].
Filesystem corruptions will eventually result in the need
for physical intervention which can be difficult for remote
IoT devices. We force a file system check at every boot on
the weather station but using the supported eMMC would
have been a better solution; the eMMC uses a non-standard
connector, whereas SD cards are compatible with all the
tested boards.

The Odroid C1+ has a battery backed up Real Time
Clock (RTC) which means that the device always has the
correct date and time. Other SBC devices require Network
Time Protocol (NTP) servers to synchronise the time; this
requires an Internet connection. This is problematic since
some WiFi configurations require client devices to have
the correct time in order to connect; WiFi WPA-Enterprise
security needs to check the certificate validity period. The
correct date and time is important on IoT devices, e.g. to
synchronise logs and for timestamped data. This makes a
battery backed up RTC important; the Global Positioning
System (GPS) is another source of date and time.

The Raspberry Pi 3 Model B+ has a WiFi module on-
board, but it does not have an external antenna, the other
boards require a WiFi module. Our implementation is stored
in a metal weather proof box, forcing the need for an
external high-gain directional antenna. Not all WiFi modules
are supported by Linux and some have poor performance.
All our work is performed using the RT3070 USB module
using the rt2800usb Linux kernel module.

Having a collection of peripherals built into an SBC
has its advantages, but becomes an burden if they are
not required for the IoT device. For example; powering a
USB hub for one peripheral, powering WiFi and Bluetooth
when not used, running a Graphics Processing Unit (GPU)
when a display is not connected. Depending on the SBC
implementation, it can be possible to disable peripherals in

software to save power.
The level of maturity of an SBC is important – on-board

peripherals and features are not always accessible from the
OS and bugs need to be addressed. For example, the Odroid
C1+ had issues when first released, the GPIO pin interrupts
were not triggered so the anemometer and raingauge failed
to work. Issues are common across new hardware and
having a huge community such as the Raspberry Pi is an
advantage; there is a higher probability that bugs will be
addressed.

The emergence of newer hardware raises the issue of
portability. Running Linux with standard libraries and pro-
gramming in a high level language will make upgrading the
hardware easier. One way to simplify hardware upgrades
is to pick a Linux distribution which can support a wide
range of hardware, for example OpenWRT [23] The stock
OS installs often include software that may not be desirable
for IoT devices such as windowing environments and are not
configured with IoT devices in mind. Overlay FS [24] has
been built into the Linux kernel since v3.18 and provides a
mechanism to create a read-only root file system and then
overlay a read write file system on top. This technique can
be used to make SD devices more tolerant to unexpected
power outages.

Customising the SBC’s default OS can take some work
so another approach is to build your own distribution.
The Yocto [25] project is a build environment which can
target many types of hardware. We built an image for
both the Raspberry Pi 2 Model B+ and the Odroid C1+
using the Yocto project build system. There are two key
advantage of using such a system: i) the base images are
very similar across hardware – we experienced a kernel
version difference, and ii) it is very easy to remove any
unwanted software, drastically reducing the image size and
improving boot time. By adding read-only-rootfs to
the Yocto configuration, both OS image root file systems are
configured as read only, without any additional effort. The
OS images can also easily be configured to get updates from
a custom server, this provides greater control over which
packages get updated and it best suited to large numbers of
IoT devices.

Operating systems, other than Linux variants are worth
consideration, for example Microsoft Windows IoT Core
supports multiple different SBC platforms and is easily
programmed in languages such as C#, but it is unclear how
extensive the hardware libraries will become.

Many IoT situations will have limited or costly Internet
connectivity; for example satellite connections. This imple-
mentation sends data to the WOW service via HTTP which
requires a large data bandwidth, but other data transmission
protocols need to be considered such as REpresentational
State Transfer (REST) and frameworks such as Apache
Thrift [26]

Both SOAP and REST were not created with IoT devices
in mind. By looking at these and other technologies we
can list the top IoT data transmission requirements: Efficient
data transmission packet size - Remote IoT devices using
mobile phone or satellite internet connections need to pre-

serve bandwidth and data transmission costs. Secure reliable
data transmission - Messages need to be resent or batched
for example, where internet connectivity is intermittent. IoT
message persistence - Unsent messages need to be stored
on the IoT device to survive crashes and power outages.
Supported by a wide range of programming languages -
The message needs to be easy to build using a wide range
of languages and hardware used for IoT devices.

Based on these requirements it is clear that we need
more than just a messaging protocol, we need a message
framework, for example, Message Queue Telemetry Trans-
port (MQTT), Messaging and Presence Protocol (XMPP),
Data Distribution Service (DDS), Constrained Application
Protocol (CoAP) and Advanced Message Queuing Protocol
(AMQP) [27]. Our implementation uses AMQP because
it is supported by the Window Service Bus, however fur-
ther work is required to select a framework that is both
lightweight, well supported and offers an adequate level of
security.

7. Conclusion

In this paper we investigated the feasibility of building
an IoT weather station device using commodity off the
shelf hardware and a low-cost single board computer. The
work was undertaken over a period of 12 months and the
final implementation operated reliably, supporting a range
of sensors.

We conclude that many single board computers are
suitable for IoT devices, particularly for IoT prototyping and
development. Throughout this work it is evident that some
effort is required to harden OS distributions specifically for
this class of device and that not all SBCs are created the
same; more hardware is not always better.

The low cost, extensive hardware libraries, community
support and hardware availability make this class of de-
vices applicable for designing, building and testing the next
generation of IoT device. They will have higher power
requirements, suffer from hardware vendor issues, SD card
corruptions and include un-utilised hardware, amongst other
issues which must be taken into consideration.

With hardware prices starting at $15 USD for a powerful,
fully featured computer, it is clear to see that development
in this area will be big. We predict a growth in using this
class of computer particularly for IoT prototypes; disposable
compute or low hardware volume scenarios. This class of
device brings the capabilities of embedded systems to non-
technical users and we can expect much development in this
area.

References

[1] Peter Middleton, Peter Kjeldsen, and Jim Tully. Forecast: The internet
of things, worldwide. 2013.

[2] Hardkernel: Odroid. http://www.hardkernel.com/, 2013. Accessed:
2016-03-11.

[3] Udoo Neo. http://www.udoo.org/, 2015. Accessed: 2016-03-11.

[4] Pine 64. https://www.pine64.com/, 2015. Accessed: 2016-03-11.

[5] Met Office WOW. http://wow.metoffice.gov.uk/, 2015. Accessed:
2016-03-11.

[6] Winn L Rosch. Hardware Bible. Que Publishing, 5th edition, 1999.
ISBN 0-7897-1743-3.

[7] Alessandro DAusilio. Arduino: A low-cost multipurpose lab equip-
ment. Behavior research methods, 44(2):305–313, 2012.

[8] ARM MBed. https://www.mbed.com/en/, 2016. Accessed: 03/2016.

[9] Rodrigo Roman, Jianying Zhou, and Javier Lopez. On the features
and challenges of security and privacy in distributed internet of things.
Computer Networks, 57(10):2266–2279, 2013. Towards a Science
of Cyber Security: Security and Identity Architecture for the Future
Internet.

[10] H. Suo, J. Wan, C. Zou, and J. Liu. Security in the internet of things:
A review. In 2012 International Conference on Computer Science
and Electronics Engineering (ICCSEE), volume 3, pages 648–651,
Mar 2012.

[11] R. Khan, S. U. Khan, R. Zaheer, and S. Khan. Future internet:
The internet of things architecture, possible applications and key
challenges. In 2012 10th International Conference on Frontiers of
Information Technology (FIT), pages 257–260, Dec 2012.

[12] J. E. Ekberg, K. Kostiainen, and N. Asokan. The untapped potential
of trusted execution environments on mobile devices. IEEE Security
& Privacy, 12(4):29–37, Jul 2014.

[13] EPsolar. Tracer-1206RN / 1210RN / 1215RN Instruction Manual.
Beijing Epsolar Technology co., LTD. Utility model patent no.
201120064092.1.

[14] Modicon. Modbus Protocol. Trexon Inc, 3-1750 The Queensway
Suite 1298 Toronto ON Canada M9C 4H5, 2000.

[15] Michel F Sanner et al. Python: a programming language for software
integration and development. J Mol Graph Model, 17(1):57–61, 1999.

[16] Daniel P Bovet and Marco Cesati. Understanding the Linux kernel.
O’Reilly Media, Inc., 2005.

[17] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009.

[18] Microsoft. Service Bus for Windows Server (Service Bus 1.1). https:
//msdn.microsoft.com/en-us/library/dn282144.aspx, 2013. Accessed:
2016-03-11.

[19] Tejaswi Redkar, Tony Guidici, and Todd Meister. Windows Azure
Platform, volume 1. Springer, 2011.

[20] Service Bus for Windows Server (Service Bus 1.1). https://qpid.
apache.org/proton/, 2015. Accessed: 2016-03-11.

[21] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand gov-
ernor. In Proceedings of the Linux Symposium, volume 2, pages
215–230. sn, 2006.

[22] Kim Jaegeuk. The F2FS system. http://git.kernel.org/cgit/linux/
kernel/git/jaegeuk/f2fs.git/. Accessed: 2016-03-11.

[23] Florian Fainelli. The openwrt embedded development framework.
In Proceedings of the Free and Open Source Software Developers
European Meeting, 2008.

[24] Andy Whitcroft. OverlayFS documentation. https://git.kernel.org/
cgit/linux/kernel/git/apw/overlayfs.git/. Accessed: 2016-03-11.

[25] Elizabeth Flanagan. The yocto project. The Architecture of Open
Source Applications, 2:347–358, 2012.

[26] Apache Thrift. https://thrift.apache.org/, 2016. Accessed: 2016-03-11.

[27] International Organization for Standardization. ISO/IEC 19464:2014
information technology Advanced Message Queuing Protocol
(AMQP) v1.0 specification. ISO/IEC, 2014.

