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Applicability of geometrical optics to in-plane
liquid-crystal configurations
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We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically aniso-
tropic media typically found in in-plane liquid-crystal configurations with refractive indices no=1.5 and ne
=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation
of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a
good agreement between ray and wave optics, a maximum change in optical properties should occur over a
distance of at least 20 wavelengths. © 2010 Optical Society of America
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In geometrical optics, optical laws are obtained in the
limit where the wavelength of the light vanishes.
Also, the material properties are allowed to change
with position, provided that the change is sufficiently
small over the distance of a wavelength. One impor-
tant question that has not received much attention so
far is how much change in the material properties
per unit wavelength is allowed in geometrical optics.
In this Letter, our purpose is to provide some insight
into this subject for typical in-plane (dielectric nongy-
rotropic) liquid-crystal configurations with refractive
indices no=1.5 and ne=1.7 and give a first approxi-
mation to the maximum change in material proper-
ties per unit wavelength that is allowed in geometri-
cal optics.

If the wave character of light is taken into account,
a widely used approach consists of expanding the
wave amplitude in terms of 1/ �ik0�, called a Debye
expansion (cf. [1], p. 7). When we substitute this ex-
pansion into the Maxwell equations, we obtain a set
of first-order partial differential equations that are
called the transport equations [2]. In geometrical op-
tics, the optical wave field satisfies the zeroth-order
transport equation. The transport equations of
higher order are difficult to solve, and they do not
provide additional physical insight into the modeling
of anisotropic media. In that sense, the use of the
transport equations does not form an attractive route
to investigate the applicability of geometrical optics.
Other criteria for the applicability of geometrical op-
tics, such as Fresnel zones discussed by Kravtsov and
Orlov (cf. [1], p. 80), are also difficult to apply in prac-
tice.
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A different approach to investigate the validity of
geometrical optics can be deduced from the following
consideration. Consider an anisotropic medium in
which the director (i.e., the local optical axis) is ro-
tated gradually by an angle of 90° over a distance L,
see Fig. 1. Then L is the distance over which a maxi-
mum change in optical properties occurs (for fixed
principal refractive indices). We define the dimen-
sionless wavelength by � /L, where � is the wave-
length of the light. In the limit where � /L→0, a me-
dium has homogeneous material properties. The
limit where � /L→� corresponds to a discontinuity in
the material properties. For sufficiently small � /L,
geometrical optics and wave optics agree. The main
question is then up to what value of � /L we are al-
lowed to apply geometrical optics.

To answer this question, we study the effect of a di-
rector profile in the xz plane on the propagation of an
incident plane wave. For simplicity, we consider an
uniaxially anisotropic medium, but the approach de-
scribed in this Letter can also be applied to biaxially
anisotropic media. The director profile is given by

d̂�x,z� = cos ��x,z�x̂ + sin ��x,z�ẑ, �1�

with the angle ��x ,z� defined by

��x,z� =
�

4�1 − cos�2�x
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where D is the thickness and T is the period of the
director profile. The corresponding dielectric permit-
tivity tensor is given by
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where ��=ne
2−no

2 and the ordinary and extraordinary
indices of refraction are defined no=1.5 and ne=1.7
(TL213 liquid crystal), respectively. One period of the
director profile d̂�x ,z� is depicted in Fig. 2 for T=20
and D=20. We choose this fictitious director profile
because it has the general properties we are looking
for; the director is gradually rotated by 90° over a dis-
tance D /2 in the z direction halfway each period (e.g.,
at x=30) and twice each period in the x direction at
z=D /2. In this case, the gradual rotation of d̂ is de-
fined by goniometric functions but could also be de-
fined by, e.g., linear functions. Finally, we see that
the director is in the x direction for z=0, z=D, and
x=kT, with k�N. The surrounding medium (z�0
and z�D) is isotropic with n=1.0. This optical sys-
tem is somewhat similar to that of an in-plane-
switching liquid-crystal cell [3].

We will use the advanced ray-tracing procedure
discussed in [4] to simulate how an incident plane
wave propagating in the z direction and polarized in
the x direction is affected by the periodic director pro-
file. Figure 2 shows the curved-ray paths of extraor-
dinary light rays inside one period of the director pro-
file.

An explanation for the diverging behavior can be

Fig. 1. (Color online) Rotation of the director by 90° over a
distance L. Hence L is the distance over which a maximum
change in optical properties occurs.

Fig. 2. (Color online) Periodic director profile (indicated by
the bars) for x� 
T ,2T� with the ray paths of extraordinary
light rays indicated by the curved lines. The light rays are

at normal incidence with the plane z=0.
found in the fact that light bends toward regions of
high refractive index. We can explain this by exam-
ining an effective index of refraction neff at each po-
sition �x ,z� of extraordinary light rays with propaga-
tion direction ŝe�x ,z�= ẑ. Then we have neff�x ,z�
=	no

2ne
2/cos2���no

2+sin2���ne
2 with � given by Eq. (2).

The maximum of neff lies in the periphery of one pe-
riod, since there neff=ne. In the center we have neff
=no. As a result, a light ray entering the director pro-
file at, for example, x=32 penetrates the region of low
refractive index in the center and then bends toward
the nearby region of high refractive index at the
right. Hence the ray paths show a diverging effect.

At z=D the extraordinary intensity transmittance
factor Te of the rays is calculated (taking into account
single reflections),

Te =
Sz

t

Sz
inc , �4�

where Sz
t is the z component of the transmitted Poyn-

ting vector at z=D and Sz
inc the z component of the in-

cident Poynting vector at z=0. At z=D the rays (a to-
tal number of 1.44	106, each having a weight factor
Te) are collected in intervals of length �x=0.05. Then
the total number of rays collected by an interval is a
measure for the intensity �W/m2�. Hence we obtain a
(scaled) spatial intensity distribution I that is peri-
odic with period T. The result is depicted in Fig. 3.
Clearly we observe peak intensities near the edges of
the period T and a low intensity in the middle.

In what follows, we present results of wave-optics
simulations according to an advanced rigorous in-
house numerical simulation program based on the
FEM developed jointly by Philips Research and Delft
University of Technology [5]. This method enables in
particular the numerical simulation of the electro-
magnetic field inside an inhomogeneous anisotropic
medium.

In the FEM simulations the wavelength of the in-
cident plane wave in the surrounding medium (where
n=1) is 500 nm. The electromagnetic field of the
propagating plane wave is calculated at z=D after re-

Fig. 3. (Color online) Spatial intensity distributions ac-
cording to the finite-element-method (FEM) simulations
and the ray-tracing simulations (GOA) for T=5�. This cor-
responds to a computational domain of 2.5	2.5 
m, as-

suming �=500 nm.
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fraction at the interface. There the ratio between the
z component of the transmitted and incident Poyn-
ting vector is calculated as a function of position x,
and the resulting spatial intensity distribution reads

IFEM�x� =
Sz

t

Sz
inc . �5�

The FEM simulations are performed for different val-
ues of the period T. First, we take T=D=5� and with
�=500 nm, this corresponds to a computational do-
main of 2.5	2.5 
m. The spatial intensity distribu-
tions of the ray-optics and wave-optics simulations
are depicted in Fig. 3. Similar results for T=20�,
T=40�, and T=60� are depicted in Figs. 4–6, respec-
tively.

From the results we conclude that qualitatively,
there is a match between the FEM simulations and
the ray-tracing simulations. Quantitatively, there is
a good match for T=40� and T=60�. However, the
match is not perfect. This is because the FEM simu-
lations include diffraction effects. Diffraction effects
are likely to occur, especially in the region where ray
paths intersect one another. This can be seen in the
right upper corner in Fig. 2, where the FEM simula-
tions show an intensity distribution that resembles a
diffraction pattern. This explains the incongruence
between the FEM simulations and ray-optics simula-
tions in this particular region. We can also see that
the agreement between the FEM simulations and the

Fig. 4. (Color online) Spatial intensity distributions for
T=20�. Then a period of the director profile corresponds to
a computational domain of 10	10 
m.

Fig. 5. (Color online) Spatial intensity distributions for
T=40�. Now the computational domain of the FEM is 20

	20 
m.
ray-tracing simulations improves when T increases.
This observation is in line with what one would ex-
pect, since the ratio � /L decreases with increasing T.
The values for the period T and the corresponding ra-
tio � /L are listed in Table 1.

Based on the results, we formulate the following
criterion. If L�20� or � /L�0.05, ray optics and
wave optics are in good agreement, both qualitatively
and quantitatively. If L�20�, the correlation be-
tween ray and wave optics decreases. However, a
qualitative agreement between ray and wave optics
might still be established for values of L below 20
wavelengths. This criterion applies if L corresponds
to a director rotation of 90°. If L corresponds to a ro-
tation of less than 90°, larger values for � /L are
allowed.

We conclude that we have found a criterion
�� /L�0.05� for the applicability of geometrical optics
for typical inhomogeneous in-plane liquid-crystal
configurations with refractive indices no=1.5 and
ne=1.7.
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Table 1. Values for T, L and Ratio � /L Used
in the Simulations

T ��� L ��� L �
m�
�

L

5 2.5 1.25 0.400
20 10 5.0 0.100
40 20 10.0 0.050
60 30 15.0 0.033

Fig. 6. (Color online) Spatial intensity distributions for
T=60�. The computational domain of the FEM has reached
a maximum of 30	30 
m owing to memory constraints.


