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Abstract: Invasive tree species are a significant threat to native flora. They modify the environment
with their allelopathic substances and inhibit the growth of native species by shading, thus reducing
diversity. The most effective way to control invasive plants is to prevent their spread which requires
identifying the environmental parameters promoting it. Since there are several types of invasive
plant databases available, determining which database type is the most relevant for investigating
the occurrence of alien plants is of great importance. In this study, we compared the efficiency and
reliability of point-based (EUROSTAT Land Use and Coverage Area Frame Survey (LUCAS)) and
polygon-based (National Forestry Database (NFD)) databases using geostatistical methods in ArcGIS
software. We also investigated the occurrence of three invasive tree species (Ailanthus altissima,
Elaeagnus angustifolia, and Robinia pseudoacacia) and their relationships with soil, hydrological, and
climatic parameters such as soil organic matter content, pH, calcium carbonate content, rooting depth,
water-holding capacity, distance from the nearest surface water, groundwater depth, mean annual
temperature, and mean annual precipitation with generalized linear models in R-studio software. Our
results show that the invasion levels of the tree species under study are generally over-represented
in the LUCAS point-based vegetation maps, and the point-based database requires a dataset with a
larger number of samples to be reliable. Regarding the polygon-based database, we found that the
occurrence of the invasive species is generally related to the investigated soil and hydrological and
climatic factors.

Keywords: invasive tree species; LUCAS; forest units; ArcGIS; biological invasion; Ailanthus altissima;
Elaeagnus angustifolia; Robinia pseudoacacia

1. Introduction

Mapping and predicting the occurrence and potential distribution of invasive plants
are of global significance. Alien species pose a heavy burden to natural ecosystems,
displacing native species and transforming natural communities [1,2]. One of the main
issues conservationists face is biological invasion [3]. In addition to natural areas, invasive
plants also invade agricultural [4] areas and have a dramatic impact on urban areas [5,6],
generating enormous extra costs to national economies all over the world [7].

Early detection and monitoring of existing populations of invasive species, and the
prediction of areas potentially exposed to their expansion are the most important steps of a
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successful invasion control strategy [8–10]. To understand the environmental parameters
(soil, hydrological, and climatic characteristics) determining the distribution of these species,
and to model and predict their future spread, up-to-date and detailed spatial data are
necessary [11,12].

Tree of heaven (Ailanthus altissima), Russian olive (Elaeagnus angustifolia), and black
locust (Robinia pseudoacacia) show a rapid spread in Eurasian countries. Biological inva-
sion is a very complex phenomenon, driven by various geographical factors (e.g., soil,
hydrological, and climatic conditions; traffic, railway, and ecological networks; and land
use change), and thus its comprehensive understanding requires a holistic approach that
also considers geographical aspects [13–16]. To map and predict the potential habitats of
invasive plant species, we need to know the relationships between geographical factors
(covariates) and their impact on plant occurrence [10,14,15,17,18]. The spatial and thematic
accuracy of habitat modeling for invasive species depends to a large extent on the spatial
accuracy of botanical surveys and other (soil, hydrological, climatic) input databases used
for modeling. To be able to use these databases for modeling hazard mapping, we need to
determine which types of database results provide the most reliable information. Currently,
point maps based on citizen science-based data collection of invasive plants are increasingly
used to explore the environmental context of biological invasions. However, the scientific
utility of these so-called fragmented big databases (such as Global Biodiversity Information
Facility and iNaturalist) is severely limited by the fact that they provide only point infor-
mation on the occurrence of the plants under study, their sample points are not uniformly
distributed, and they do not provide any further information on points where a certain
plant species does not occur [19]. To remedy this problem, we constructed country-scale
point occurrence maps, known as the National GIS Database of Invasive Plant Species
of Hungary (NDIPS), of the three investigated invasive tree species, showing the status
of invasions for each Land Use and Coverage Area frame Survey (LUCAS) field survey
point (non-invaded: no invasive species visible; invaded: at least some individual plants of
a given species are visible on the LUCAS photos). For our analyses, LUCAS points that
do not contain invasive plants also provide useful information due to the uniform point
distribution of the LUCAS data obtained from LUCAS photos [14,15].

In this study, we investigated the occurrence of three invasive tree species (Ailanthus
altissima, Elaeagnus angustifolia, and Robinia pseudoacacia). Among woody plants, these
species present the highest risk of biological invasion in Hungary [20,21].

A. altissima has very low ecological requirements, and it can grow on low-productivity,
nutrient-poor debris soils; for that reason, it is often planted in cities to absorb carbon
dioxide and airborne particulate matter [6]. Because of its low habitat requirements, it can
even be found in pavement cracks in cities [22]. In addition, previous research confirms
that in the large Polish city of Wrocław, A. altissima is concentrated on urban heat islands
where the air temperature is a few degrees higher [6]. However, it spreads easily from
urban areas and invades other disturbed vegetation and natural forests without a closed
canopy [23]. Furthermore, A. altissima produces allelopathic substances that inhibit the
growth of other plants, and its shading effect is also significant [24–26]. E. angustifolia is
mainly used for the afforestation of saline and debris soils because its soil requirements are
extremely undemanding. In addition, it has been used extensively in field protection forest
strips [23]. In treeless habitats, it overshadows light-demanding species and causes the
decline of many rare and protected plants. E. angustifolia lives in a symbiotic relationship
with nitrogen-fixing bacteria, thus promoting nitrogen accumulation in the soil, which
promotes the establishment and emergence of nitrogen-favoring weed species [23]. In addi-
tion, similar to A. altissima, R. pseudoacacia produces allelopathic substances that transform
the abiotic conditions of the habitat, thus displacing native species from the surrounding
areas [24]. All three species are, therefore, major contributors to the transformation of their
environment, leading to a loss of diversity of native species [3,23,24,26,27]. In many cases,
mapping the occurrence of invasive species is very expensive and requires much work,
and as a consequence, such research attempts are rather limited. Paź-Dyderska et al. (2020)
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suggested applying land use maps and databases of invasive plants to reduce costs [5].
According to this suggestion, we used different qualitative and quantitative geographi-
cal databases to identify the main geographical (climatic, hydrological, and soil) factors
(driving forces) that determine the occurrence of alien plants in Hungary [14,15].

In this study we sought to answer the following research questions:

• What is the reliability of different data sources (point- or polygon-based vegetation
datasets) for the monitoring of biological invasion? What soil, hydrological, and
climatic parameters influence the occurrence of the considered invasive species?

• How different are the results obtained by comparing point and polygon-based vegeta-
tion databases and environmental data?

2. Results
2.1. Comparing the Reliability of Point and Polygon-Based Invasion Maps

The number of invaded LUCAS points was the highest for R. pseudoacacia, whereas
E. angustifolia was detected in the lowest number of LUCAS points (Table 1).

Table 1. Number of all invaded and non-invaded LUCAS points in the study area for the three
investigated tree species in 2012, 2015, and 2018.

Ailanthus
altissima

Elaeagnus
angustifolia

Robinia
pseudoacacia

Number of all invaded LUCAS
points within the total forested

area in Hungary
82 38 1086

Number of all non-invaded
LUCAS points within the total

forested area in Hungary
3349 3389 2345

Compared to the 2021 NFD statistics used as reference data, the level of invasion of
the investigated tree species was generally over-represented on the LUCAS point-based
vegetation maps. The smallest difference (only approximately 7%) was found for the
tree species with the largest proportion of area (R. pseudoacacia), while E. angustifolia was
30 times over-represented in the invaded LUCAS points identified from field photographs,
and A. altissima was over-represented by more than 100 times compared to the actual
reference data (Table 2).

The area covered by R. pseudoacacia was underestimated by 9% in the total forested area,
while the area covered by E. angustifolia was underestimated by 0.04% and the area covered
by A. altissima was underestimated by 0.9% in the polygonal occurrence map compared to
the NFD statistics reference data. Thus, our results show that all polygon-based vegetation
maps underestimate the area invaded by all species.

A comparison of point and polygon-based invasion maps shows that the LUCAS
points invaded by R. pseudoacacia coincide with the polygons most invaded by this species
(Appendix B).

In the case of A. altissima and E. angustifolia, the LUCAS points invaded by the species
were also found within polygons (forested areas) not invaded by the species. This finding
suggests that individuals of all investigated invasive tree species are often mixed with other
species and occur along forested edges or in patches along roadsides and channels.
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Table 2. Percentage of Hungarian forested areas invaded with the three investigated invasive species
according to (A) LUCAS point-based data (where 100% = 3432 LUCAS points), (B) NFD forest unit-
based occurrence (where 100% = 18, 759 Km2), and (C) reference National Forestry Database (2021)
statistical data where (where 100% = 18, 759 Km2).

Ailanthus
altissima

Elaeagnus
angustifolia

Robinia
pseudoacacia

(A) Proportions of invaded LUCAS
points as a percentage of all LUCAS
points inside the total forested area

in Hungary

2.29% 1.22% 31.65%

(B) Percentage of NFD polygons
invaded with the given species as a

percentage of the total forested area in
Hungary (2009–2018)

0.02% 0.04% 15.7%

(C) Percentage of areas invaded with
the given species as a percentage of
the total forested area in Hungary

(2021) according to the NFD
statistical datasets

0.11% 0.08% 24.48%

2.2. Database-Source Discrepancies in the Relationship between Environmental Variables and the
Occurrence Maps of the Investigated Invasive Species

We observed significant differences in environmental variables between invaded and
non-invaded areas. For A. altissima, we found differences in the organic matter content
of different soil layers. Examining the LUCAS points, the organic matter content was
significantly lower in the 0–30 and 30–60 cm soil layers at the invaded points than at the non-
invaded points. In the case of NFD polygons, (except for the 0–30 cm soil layer), the organic
matter content was significantly higher at the invaded polygons. Soil pH was consistently
significantly higher in invaded than non-invaded areas based on both databases.

Considering the LUCAS points, we found no significant difference in calcium carbon-
ate content; however, for the NFD polygons, calcium carbonate content was significantly
higher at the invaded polygons in the case of A. altissima. Rooting depth was signifi-
cantly higher at the invaded LUCAS points, but we found no significant difference at the
NFD polygons.

In both databases, the water-holding capacity of the soil in the 0–30 and 30–60 cm
layers was significantly lower in the case of A. altissima. Regarding the distance from
surface water, we found contrasting results. Based on the LUCAS database, distances
from surface water were significantly higher in the invaded areas; however, based on
the NFD polygon database, distances from surface water were significantly lower in the
invaded areas. Significant differences in groundwater depth were found only when NFD
polygons were considered. At the polygons invaded by A. altissima, groundwater depth
was significantly higher than at the non-invaded polygons. The mean annual temperature
was significantly higher and the mean annual precipitation was significantly lower in the
case of invasion, considering both databases (Table 3).
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Table 3. Differences between invaded and non-invaded LUCAS points and NFD polygons as a function of the soil, hydrological, and climatic parameters for the
invasive tree species investigated.

Investigated Factors Soil Layers
Ailanthus altissima Elaeagnus angustifolia Robinia pseudoacacia

LUCAS Points NFD Polygons LUCAS Points NFD Polygons LUCAS Points NFD Polygons
p z p z p z p z p z p z

Organic matter content

0–30 cm <0.001 −4.092 0.461 −0.737 0.731 0.344 <0.001 6.376 <0.001 −12.737 <0.001 −167.907
30–60 cm 0.001 −3.215 0.066 1.836 0.018 2.364 <0.001 27.507 <0.001 −6.935 <0.001 −92.761
60–100 cm 0.072 −1.798 <0.001 6.613 <0.001 3.631 <0.001 39.219 <0.001 −6.296 <0.001 −8.646

100–200 cm 0.072 −1.798 <0.001 6.597 0.084 1.726 <0.001 24.315 <0.001 −9.579 <0.001 76.131

pH

0–30 cm <0.001 4.974 <0.001 10.168 <0.001 5.133 <0.001 42.458 <0.001 9.671 <0.001 10.22
30–60 cm <0.001 4.701 <0.001 10.769 <0.001 4.942 <0.001 44.516 <0.001 10.478 <0.001 80.276
60–100 cm <0.001 4.582 <0.001 10.548 <0.001 4.571 <0.001 43.508 <0.001 11.097 <0.001 96.020

100–200 cm <0.001 4.38 <0.001 9.060 <0.001 4.212 <0.001 38.984 <0.001 10.22 <0.001 91.726

Calcium carbonate content

0−30 cm 0.126 1.53 <0.001 7.664 0.080 1.752 <0.001 3.966 0.011 −2.540 <0.001 −71.766
30–60 cm 0.011 2.532 <0.001 9.848 0.145 1.456 <0.001 5.589 0.377 0.883 <0.001 −54.891
60–100 cm 0.501 −0.673 <0.001 9.247 0.126 1.529 <0.001 5.589 0.284 −1.071 0.173 1.364

100–200 cm 0.344 −0.947 <0.001 4.857 0.005 2.794 0.001 3.445 0.001 −3.233 <0.001 −13.393
Rooting depth <0.001 4.649 0.106 1.619 0.788 −0.268 <0.001 −4.400 <0.001 10.26 <0.001 103.330

Water holding capacity

0–30 cm <0.001 −4.319 <0.001 −8.034 0.084 −1.726 <0.001 −8.480 <0.001 −8.824 <0.001 −92.671
30–60 cm 0.002 −3.143 <0.001 −4.098 0.667 0.431 <0.001 14.249 0.636 0.473 <0.001 5.833
60–100 cm 0.071 −1.806 0.673 0.422 0.023 2.277 <0.001 29.383 <0.001 6.114 <0.001 68.169

100–200 cm 0.127 −1.525 0.396 0.849 0.032 2.143 <0.001 29.541 <0.001 6.647 <0.001 77.741
Distance from surface water <0.001 4.779 0.006 −2.732 0.797 −0.258 0.182 1.336 <0.001 6.928 <0.001 −25.649

Groundwater depth 0.338 −0.958 <0.001 −5.633 0.011 −2.531 <0.001 −21.135 0.004 −2.904 <0.001 −58.832
Mean annual temperature <0.001 3.908 <0.001 6.355 0.004 2.881 <0.001 21.456 <0.001 7.133 <0.001 64.260
Mean annual precipitation 0.010 −2.583 <0.001 −3.707 0.050 −1.96 <0.001 −32.719 <0.001 −10.569 <0.001 −55.131

Legend

The environmental parameters of the invaded points or polygons have significantly higher values than those of the non-invaded points or polygons (at the p <
0.05 significance level)
The environmental parameters of the invaded points or polygon have significantly higher values than those of the non-invaded points or polygons (at the p <
0.001 significance level)
The environmental parameters of the invaded points or polygon have significantly lower values than those of the non-invaded points or polygons (at the p < 0.05
significance level)
The environmental parameters of the invaded points or polygon have significantly lower values than those of the non-invaded points or polygons (at the p <
0.001 significance level)



Plants 2023, 12, 855 6 of 14

Regarding E. angustifolia, we found very different results considering the LUCAS and
NFD polygon databases. For the organic matter content of the soil, we found significant
differences in the 30–60 cm and 60–100 cm soil layers at the invaded LUCAS points.
However, considering the NFD polygons, the organic matter content was significantly
higher in all soil layers invaded by E. angustifolia. The soil pH was also significantly
higher at the invaded LUCAS points and NFD polygons. The calcium carbonate content
was significantly higher at the invaded NFD polygons; however, we found no significant
differences in the 100–200 cm soil layer between invaded and non-invaded LUCAS points.

There were no significant differences in rooting depth between invaded and non-
invaded LUCAS points. However, rooting depth was significantly lower in the invaded
NFD polygons. In the case of water-holding capacity, we found no significant differences
between invaded and non-invaded LUCAS points, but when considering the NFD polygon
database, we found significant differences between invaded and non-invaded polygons.
In the 0–30 cm soil layer, the water-holding capacity was significantly lower, whereas in
the 30–60, 60–100, and 100–200 cm soil layers, the water-holding capacity was significantly
higher at the invaded polygons. Distance from surface water did not show a significant dif-
ference considering either database. Groundwater depth was significantly lower and mean
annual temperature was significantly higher in the case of invasion with both databases.
The mean annual precipitation was significantly lower in the invaded areas in the polygon
database, but we did not find a significant difference in the point database (Table 3).

Regarding R. pseudoacacia, significant differences were found between invaded and
non-invaded areas using both LUCAS points and NFD polygons. In the case of the NFD
polygon database, we found significant differences in all the soil and climatic conditions
(except in the calcium carbonate content in the 60–100 soil layer). The same was true in
the case of the LUCAS point database, except for the calcium carbonate content in the
30–60 and 60–100 cm soil layers and the water-holding capacity in the 30–60 cm soil layer.
The organic matter content was significantly lower in the case of invasion in all soil layers
according to the LUCAS database and in all soil layers to the NFD polygon database except
for the 100–200 cm soil layer. In the 100–200 cm soil layer, the organic matter content was
significantly higher at the invaded polygons. When there was an invasion by R. pseudoacacia,
soil pH was significantly higher in both databases. The calcium carbonate content was
significantly lower at the invaded points and polygons in the 0–30 and 100–200 cm soil
layers, and in the case of NFD polygons, the calcium carbonate content was significantly
lower in the 30–60 cm soil layer as well. Rooting depth and mean annual temperature
were significantly higher, and groundwater depth and mean annual precipitation were
significantly lower when the invasion was present in both databases. The water-holding
capacity in the 0–30 cm soil layer was significantly lower in the case of invasion in both
databases. In the other investigated soil layers, the water-holding capacity was significantly
higher (except for 30–60 cm in the LUCAS database, where we did not find any significant
difference) (Table 3).

3. Materials and Methods
3.1. Study Area

The forested areas (i.e., semi-natural forests, secondary forests, and plantations) com-
prise approximately 22.8% of the land in Hungary, the majority of which (64%) is semi-
natural temperate deciduous forest (forests dominated by Quercus petraea, Q. cerris, Carpinus
betulus, and/or Fagus sylvatica) [28,29]. Of the total forested area in Hungary, 11% is covered
by pine plantations, and 25% is planted with Robinia pseudoacacia. According to 2021 data,
Ailanthus altissima covered 0.11% of the total forested area in Hungary, while Elaeagnus
angustifolia covered 0.08% (National Forestry Database 2021) [30]. Continuous forest cover
is mainly found in the mountainous and hilly areas of the country, while in the Great
Hungarian Plain, riparian forests are dominant along rivers (Figure 1), although sandy
areas give rise to an unaccounted percentage of non-native plantations.
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Figure 1. Forested areas (i.e., semi-natural forests, secondary forests, and plantations) of Hungary
(based on the National Forestry Database).

The climate of the Hungarian forests is wet–temperate with a mean annual temperature
of 8.0–10.5 ◦C; and 500–700 mm average yearly precipitation [31]. The main soil types
in hilly forest areas are brown forest soils, while rendzina soils are present in limestone
mountain areas, and ranker soils are present in volcanic and metamorphic areas [32].

3.2. Digital Databases

For the analysis of the spatial distribution (occurrence) of the three investigated inva-
sive tree species within Hungarian forest areas we used point- and forest-unit (polygon)-
based digital maps. Both the point- and polygon-based databases of the different vegetation
monitoring methods provide a picture of the invasion of the entire forest area of Hungary
in 2012, 2015, and 2018.

3.2.1. Point-Based GIS Database of Invasive Plant Species of Hungary

In 2012, 2015, and 2018, 3432 geotagged points inside the forested areas of Hungary
were stored in the EUROSTAT Land Use and Land Cover Survey (LUCAS) database, where
the actual status and change in land use and land cover were determined based on three
yearly field investigations. At each LUCAS point, five field geotagged photos were taken
from the four cardinal directions (N, E, W, and S) and downwards from the point itself [14].
These GPS-recorded (geotagged) field photos from 2012, 2015, and 2018, offer unique
possibilities to identify the level of invasion of each investigated tree species and to monitor
the level of invasion in the forested areas of Hungary. A LUCAS point was considered to
be invaded if we identified at least one individual of the invasive tree species in at least
one of the field photographs. Following the visual interpretation of more than 18,000 field
photographs, we produced a map showing each LUCAS point whether it was invaded by
one of the three invasive tree species investigated (Figure 2).
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3.2.2. Polygon-Based Forest Monitoring Data

We also used the field source data of the invasion surveys of the National Forestry
Database (NFD) of Hungary on the three investigated invasive tree species. The forested
area of Hungary is divided into a few hectares of territory, known as, forest units. The
digital forest map of the NFD used for our research shows the percentage of invasion of
a given species within the spatial units (polygons) of forested areas in Hungary, which
represents only 21% of the whole country. Forest units that were at least 90% invaded
at least once in 2012, 2015, and 2018, were considered invaded polygons, those with 0%
invasion were considered non-invaded polygons (Figure 2), which were half-reduced by
random selection for easier processing during the statistical analysis.

In addition to the NFD polygon-based forest maps, we also used NFD statistical
data as a reference for our research to represent the real proportions of invasion. The NFD
statistics provide a reliable indication of the percentage of the total forested area in Hungary
covered by the invasive tree species under study. These statistics are calculated on the basis
of forest units with an invasion rate of more than 90% and represent the total area covered
by all invasive tree species.

For each of the three species, the invasion of forested areas was expressed as the
percentage of LUCAS points within the total forested area that were invaded, and as the
percentage of the total forested area covered by NFD forest units at least 90% invaded by
the species. The results of these two calculations were compared with the reference NFD
statistical data.

To test the spatial accuracy of the used datasets, the LUCAS point- and NFD polygon-
based occurrence maps of the investigated invasive trees were merged in ArcGIS 10.7
software. The accuracy of the point and polygon-based invasion maps was tested by
calculating the invasion values as a percentage of total LUCAS points for the point-based
map and as a percentage of total forested area for the forest unit (polygon) map, and
then comparing them with the species level land cover data (National Forestry Database
2021) [30], which can be used as reference data.
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The reliability of the databases was tested by calculating for each species how many
invaded LUCAS points fall in the invaded or non-invaded NFD forest unit (polygon) of
the given species and how many non-invaded LUCAS points fall in the invaded or non-
invaded NFD forest units (polygon). Formulas were developed to carry out the calculations
(Appendix A).

3.2.3. Soil, Hydrological, and Climate Databases Used

For the spatial characterization of the environmental (soil, hydrological, and climatic)
variables used for the analysis, Digital, Optimized, Soil Related Maps and Information
in Hungary (DOSoReMI.hu) datasets with resolutions of 100 × 100 m and 250 × 250 m
were used.

The DOSoReMI digital soil database [33] was used to analyze the role of the soil
covariates on occurrences of the three investigated tree invasions. As soil hydraulic prop-
erties, the saturated water content (THS), water content at field capacity (FC), and water
content at wilting point (WP) values from the 3D Soil Hydraulic Database of Europe (EU-
SoilHydroGrids ver1.0) were used [34]. The hydrological parameters taken into account
were groundwater depth [35] and distance from the nearest surface water. The elevation
and topography factors were derived from a publicly available digital elevation model with
a spatial resolution of 30 m or better, while the long-term (1960–1990) climatic averages of
Hungary were obtained from the Hungarian Meteorological Service dataset [36] (Table 4.).

Table 4. Soil, hydrological, and climatic factors considered in this study.

Considered Factor Soil Layer Unit of
Measurement

Spatial
Resolution

(Raster Size)

Soil parameters

Organic matter content

0–30 cm

% 100 × 100 m
30–60 cm

60–100 cm

100–200 cm

pH

0–30 cm

- 100 × 100 m
30–60 cm

60–100 cm

100–200 cm

Calcium carbonate
content

0–30 cm

% 100 × 100 m
30–60 cm

60–100 cm

100–200 cm

Rooting depth - cm 100 × 100 m

Water holding capacity

0–30 cm

[cm3 cm−3]
× 100

250 × 250 m
30–60 cm

60–100 cm

100–200 cm

Hydrological
parameters

Distance from the nearest
surface water - m 100 × 100 m

Groundwater depth - m 100 × 100 m

Climatic
parameters

Mean annual temperature - ◦C 100 × 100 m

Mean annual
precipitation - mm 100 × 100 m
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3.3. Statistical Methods
GIS and Statistical Analysis

Using ArcGIS software 10.7, we overlaid the soil, hydrological, and climatic data
(DOSoReMI database) with the invaded and non-invaded LUCAS points and NFD poly-
gons. This method was used to determine the environmental parameters at the given
points and polygons. A generalized linear model (GLM) was used to determine in which
direction (positive or negative) and to what extent each parameter differs between invaded
and non-invaded points and polygons. The p-value indicates whether the investigated
factor differs between invaded and non-invaded areas; the z value indicates in which areas
(invaded or non-invaded) the soil, hydrological, and climatic factor values are higher. If the
p-value is <0.05, the factor has a significant impact on the occurrence of the given species.
When the z value is <0, the given factor is higher at the non-invaded points and polygons,
and if the z value is >0, the considered factor is higher at the invaded areas. For the GLM,
we used the glm() function in R-studio software 4.0 [37].

4. Discussion

The relationship of the investigated plant species to the soil, hydrological, and cli-
matic conditions investigated is highly variable. In a few cases, according to the LUCAS
point database and NFD polygon database, we found different results. In general, when
considering the NFD polygon database, we found more significant differences in the soil,
hydrological, and climatic parameters than when considering the LUCAS point database.
We found the most variation in the results in the case of E. angustifolia, where the invaded
LUCAS points were the least variable. Most similarities were found in the case of R. pseu-
doacacia, for which the highest number of invaded points was observed. Consequently, the
reliability of the point database increases with the amount of data and is only reliable if
sufficient data are available.

Several studies note that the main weakness of crowd-sourced, geotagged, photo-
based vegetation maps is that the spatial density of field data is very diverse, that is, very
spatially fragmented data [38–40]. However, the LUCAS database is based on spatially
uniform survey points with uniform data density, and therefore, the representativeness of
the data is higher compared to crowd-sourced vegetation databases. The analysis of the
LUCAS geotagged photos [14] together with other databases allowed us to compare the soil
characteristics between the invaded and non-invaded LUCAS points. For all investigated
tree species, the estimated invasion rates based on the ratio of invaded LUCAS points to
the total number of LUCAS points within the forested areas were higher than the actual
invasion rates of the species in the reference statistics for forested areas in Hungary. This can
be explained by the fact that while the reference data showed the percentage cover (surface
cover) of each invasive tree species, the geotagged photographs of the LUCAS-based
database also identified many invaded points. At these points, the species occurrence is not
homogeneous, for example, on the edges of forest patches dominated by other species, on
roads, ditches, etc. Our results, therefore, suggest that point-based databases are a spatially
more accurate representation of invasive species dispersal pathways than polygon (forest
unit) patch-based vegetation databases [41]. In our previous study [15], we observed the
largest difference between the spatial characteristics of invaded forest units (polygons) and
invaded LUCAS points for A. altissima and E. angustifolia [15] spreading along roads and
railways [15], which supports that point-based databases can be very useful for generating
dispersal models. Conversely, the difference between the spatial pattern of homogeneous
patches and point occurrences is smaller for R. pseudoacacia, as this species is planted over
large areas in Hungary, regardless of its harmful effects on the native flora.

Similar to other studies [13–15], we found that the investigated soil, hydrological, and
climatic factors had a large impact on the occurrence of the studied invasive plant species.
A. altissima was found mainly on degraded soils with a low organic matter content [23]. This
does not necessarily mean that it prefers soils with low organic matter content, but in these
areas, it has few or no competitors and thus can easily establish [42]. Our results confirm
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that A. altissima tolerates calcareous soils as well, which also have a higher pH due to the
high calcium carbonate content. The rooting depth of A. altissima was found to be higher
at the invaded LUCAS points than at the non-invaded LUCAS points. This is somewhat
surprising, as the poor quality, debris-laden soils where A. altissima is commonly found
only allow for a shallow rooting depth. The soils favored by A. altissima are characterized
by a reduced water-holding capacity, and furthermore, the mean annual precipitation is
significantly lower in its preferred habitats. It follows that this plant tolerates drought well
and has good water absorption capacity [10,15]. As A. altissima prefers warmer and drier
habitats, global warming may facilitate the spread of this alien plant in the future [43]. This
finding is supported by the fact that the distribution of A. altissima in Wrocław, for instance,
is concentrated on urban heat islands [6].

We found that E. angustifolia is most abundant in soils with high organic matter
content, high pH, and high calcium carbonate content [13,23]. In the habitats favored by
E. angustifolia, the water-holding capacity was lower near the topsoil; however, it was
higher in the other layers. Therefore, this plant absorbs water from the deeper soil layers
and from the groundwater. We did not find any significant correlation with distance from
surface water; however, previous studies have confirmed that this plant is associated with
surface waters [13]. Rooting depth was lower at the polygons invaded by E. angustifolia, so
this plant is tolerant of shallow soils. This property makes this invasive plant suitable for
the reforestation of degraded areas [23].

The soil organic matter requirement of R. pseudoacacia is very low; therefore, it can
spread effortlessly in areas where soils are poor in organic matter. As a result, R. pseudoacacia
can establish dense stands, even in extremely harsh conditions such as those provided in
sandy drylands, and by transforming these nutrient-poor areas into nitrogen-rich habitats,
it displaces the diverse community of native grassland specialists and creates space for a few
weed species [23,24,44]. Since R. pseudoacacia is very efficient at taking up organic matter
from the soil, the low organic matter content found in invaded areas may be the result of
this plant having already exploited these soils. Our results show that R. pseudoacacia prefers
calcareous soils and favors deeper soils; however, previous studies have found that it is also
suitable for reforesting degraded areas [45,46]. In invaded areas, we found that the water-
holding capacity near the topsoil was lower, but it was higher in the deeper layers than in
non-invaded areas. This suggests that R. pseudoacacia absorbs water from the deeper soil
layers, even from the groundwater. In relation to climatic conditions, this invasive species
prefers warmer and drier habitats; thus, climate change may have a positive impact on its
spread [43]. The hydrological results show that R. pseudoacacia has a high water demand;
however, if the water-holding capacity of the soil is appropriate or the groundwater level is
not too low, low precipitation is not a hindrance for this species.

Our results can be used to compare point-based crowd-sourced, and polygon-based
distribution maps of the invasive tree species investigated. In our study, we demonstrate
the applicability of point- and polygon-based vegetation datasets for the analysis of spatial
characteristics of biological invasions and the determination of environmental background
variables of invaded areas for a Hungarian case study.

5. Conclusions

Our results support the results of previous studies that the occurrence of the inves-
tigated invasive tree species is highly dependent on the considered soil properties and
hydrological and long-term climatic parameters. Consequently, the effects of these environ-
mental conditions and climate change should be considered when planning the control of
these invasive species.

In relation to the usability of the two databases (point- and polygon-based) it was
found that the polygon database provides more consistent results on the occurrence of
the investigated species using the DOSoReMI database. Polygon-based maps are spatial
in extent, and therefore show a better relationship with the DOSoReMI database. The
LUCAS point-based database can also be used to determine the relationship between
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environmental characteristics and the occurrence of invasive plants if sufficient data are
available. However, field-based investigations are also highly important to prevent further
invasions of these species in the future.
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Appendix A

NACCI(1,2,3) =

[
OUTI(1,2,3)

ALLNI(1,2,3)

]
× 100

ACCI(1,2,3) =

[
INI(1,2,3)

ALLI(1,2,3)

]
× 100

NOAI(1,2,3) =

[
INI(1,2,3)

ALLNI(1,2,3)

]
× 100

NAI(1,2,3) =

[
OUTI(1,2,3)

ALLI(1,2,3)

]
× 100

where NACCI(1,2,3)= an invaded LUCAS point inside an invaded NFD polygon of Hungary,
ACCI(1,2,3)= a non-invaded LUCAS point inside a non-invaded NFD polygon of Hungary,
NOAI(1,2,3)= a non-invaded LUCAS point inside an invaded NFD polygon of Hungary,
NAI(1,2,3)= an invaded LUCAS point inside a non-invaded NFD polygon of Hungary,
ALLNI(1,2,3)= non-invaded LUCAS points in all survey years inside the total forest areas
of Hungary, ALLI(1,2,3)= invaded LUCAS points in all survey years, inside the total forest
areas of Hungary, OUTI(1,2,3)= non-invaded NFD polygons in all survey years, INI(1,2,3)=
invaded NFD polygons in all survey years.

Appendix B

Ailanthus altissima Elaeagnus angustifolia Robinia pseudoacacia

N % N % N %

ACCURATE DATA

A non-invaded LUCAS
point inside a

non-invaded NFD
(polygon) of Hungary

(NACCI)

3349 100% 3389 100% 2165 92.32%

An invaded LUCAS
point inside an invaded

NFD polygon of
Hungary (ACCI)

3 3.66% 0 0% 475 43.74%

http://www.geo.u-szeged.hu/invasive/index_en.html
http://www.geo.u-szeged.hu/invasive/index_en.html


Plants 2023, 12, 855 13 of 14

Ailanthus altissima Elaeagnus angustifolia Robinia pseudoacacia

N % N % N %

INACCURATE
DATA

A non-invaded LUCAS
point inside an invaded

NFD polygon of
Hungary (NOAI)

0 0% 0 0% 180 7.68%

An invaded LUCAS
point inside a

non-invaded NFD
polygon of Hungary

(NAI)

79 96.34% 38 100% 611 56.26%
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