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ABSTRACT: Application codes in a variety of areas are being updated for performance

on the latest architectures. We describe current bottlenecks and performance improvement

areas for applications including plasma physics, chemistry related to carbon capture and

sequestration, and material science. We include a variety of methods including advanced

hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto-

parallelization compilers.
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I. INTRODUCTION

In this paper we examine three different applications and

means for improving their performance, with a particular em-

phasis on methods that are applicable for many/multicore and

future architectural designs. The first application comes from

from magnetic fusion. Here we take an important magnetic

fusion particle code that already includes several levels of

parallelism including hybrid MPI combined with OpenMP. In

this case we study how to include advanced hybrid models that

use multi-threaded MPI support to overlap communication and

computation. In the second example, we consider a portion of

a large computational chemistry code suite. In this case, we

consider what parts of the computation are good candidates for

GPU acceleration, which is one likely architectural component

on future Cray platforms. Here we show performance imple-

mentation and improvement on a current GPU cluster. Finally,

we consider an application from fluids/material science that is

currently parallelized by a standard MPI-only model. We use

tools on the XT platform to identify bottlenecks, and show how

significant performance improvement can be obtained through

optimizing library utilization. Finally, since this code is MPI-

only, we consider if this code is amenable to hybrid paralleliza-

tion and discuss potential means for including hybrid code via

automatic hybridization tools.

II. FUSION APPLICATION

A. GTS — A massively parallel magnetic fusion application

The fusion application chosen for this study is the Gyroki-

netic Tokamak Simulation (GTS) code [27], which is a global

3D Particle-In-Cell (PIC) code to study the microturbulence

and associated transport in magnetically confined fusion plas-

mas of tokamak toroidal devices. Microturbulence is a very

complex, nonlinear phenomenon that is generally believed to

play a key role in determining the efficiency and instabilities

of magnetic confinement of fusion-grade plasmas [9]. GTS

has been developed in Fortran 90 (with a small fraction coded

in C) and parallelized using MPI and OpenMP with highly

optimized serial and parallel sections; i.e., SSE instructions or

other forms of vectorization provided by modern processors.

For this paper GTS simulation runs have been conducted

simulating a laboratory-size tokamak of 0.932m major radius

and 0.334m minor radius confining a total of 2.1 billion

particles using a domain decomposition of two million grid

points on Cray’s XT4 and XT5 supercomputers.

In plasma physics applications, the PIC approach amounts to

following the trajectories of charged particles in self-consistent

electromagnetic fields. The computation of the charge density

at each grid point arising from neighboring particles is called

the scatter phase. Prior to the calculation of the forces on

each particle from the electric potential (gather phase) —

we solve Poisson’s equation for computing the field potential,

which only needs to be solved on a 2D poloidal plane1. This

information is then used for moving the particles in time

according to the equations of motion (push phase), which is

the fourth step of the algorithm.

B. The Parallel Model

The parallel model of GTS has three independent levels: (1)

GTS uses a one-dimensional (1D) domain decomposition in

1Fast particle motion along the magnetic field lines in the toroidal direction
leads to a quasi-2D structure in the electrostatic potential.



the toroidal direction (the long way around the torus). This

is the original scheme of expressing parallelism using the

Message Passing Interface (MPI) to perform communication

between the toroidal domains. Particles can move from one

domain to another while they travel around the torus — which

adds another, a fifth, step to our PIC algorithm, the shift phase.

This phase is of major interest in the upcoming sections. Only

nearest-neighbor communication in a circular fashion (using

MPI Sendrecv functionality) is used to move the particles

between the toroidal domains. It is worth mentioning that

the toroidal decomposition is limited to 64 or 128 planes,

which is due to the long-wavelength physics that we are

studying. More toroidal domains would introduce waves of

shorter wavelengths in the system, which would be dampened

by a physical collisionless damping process known as Landau

damping; i.e. leaving the results unchanged [9]. Using higher

toroidal resolution only introduces more communication with

no added benefit. (2) Within each toroidal domain, we divide

the particles between several MPI processes, and each process

keeps a copy of the local grid2, requiring the processes within

a domain to sum their contribution to the total charge density

on the grid at the end of the charge deposition or scatter

step (using MPI Allreduce functionality). The grid work (for

the most part, the field solve) is performed redundantly on

each of these MPI processes in the domain and only the

particle-related work is fully divided between the processes.

Consequently, GTS uses two different MPI communicators;

i.e., an intradomain communicator which links the processes

within a common toroidal domain of the 1D domain de-

composition and a toroidal communicator comprising all

the MPI processes with the same intradomain rank in a

ringlike fashion. (3) Adding OpenMP compiler directives to

heavily used (nested) loop regions in the code exploits the

shared memory capabilities of many of today’s HPC systems

equipped with multicore CPUs. Although of limited scalability

due to the single-threaded sections between OpenMP parallel

loops and also due to NUMA effects arising from the shared

memory regions, this method allows GTS to run in a hybrid

MPI/OpenMP mode. Addressing the challenges and benefits

involved with hybrid MPI/OpenMP computing — i.e., taking

advantage of shared memory inside shared memory nodes,

while using message passing across nodes — and applications

of new OpenMP functionality (OpenMP tasking in OpenMP

3.0 [3]), is described in the next sections. These advanced

aspects of parallel computing should be applicable to many

massively parallel codes intended to run on HPC systems with

multicore designs.

Figure 1 shows the grid of GTS following the magnetic

field lines as they are twisting around the torus as well as

the toroidal domain decomposition of the torus. The two

cross sections demonstrate contour plots of density fluctua-

tions driven by Ion Temperature Gradient-Driven Turbulence

2Recently, research has been carried out to investigate different forms of
grid decomposition schemes — ranging from the pure MPI implementation
to the purest shared memory implementation using only one copy of the grid,
and all threads must contend for exclusive access [20].

Fig. 1. GTS’ toroidal domain decomposition with magnetic field lines and
density fluctuations

(ITGDT) [17], which is supposed to cause the experimentally

observed anomalous loss of particles and heat at the core

of magnetic fusion devices such as tokamaks. Blue and red

areas in the cross sections denote lower (negative) and higher

(positive) fluctuation densities, respectively. These fluctuations

attach to the magnetic field lines — a typical characteristic of

plasma turbulence in tokamak reactors.

In the following, we focus on one particular step of GTS

— the shifting of particles between toroidal domains — and

discuss how to exploit new OpenMP functionality, which will

be substantiated with performance results on our Cray XT

machines at NERSC at the end.

C. The GTS Particle Shifter & how to fight Amdahl’s Law

The shift phase is an important step in the PIC simulation.

After the push phase, i.e., once the equations of motion for

the charged particles are computed, a significant portion of the

moved particles are likely to end up in neighboring toroidal

domains. (Ions and electrons have a separate pusher and shift

routines in GTS.) This shift of particles can happen to the

adjacent or even to further toroidal domains of the tokamak

and is implemented with MPI Sendrecv functions operating

in a ring-like fashion. The amount of shifted particles as well

as the number of traversed toroidal domains depends on the

toroidal domain decomposition coarsening (mzetamax), the

time step resolution (tstep), and the number of particles per

cell (micell); all of which can be modified in the input file

processed by the GTS loader.

The pseudo-code excerpt in Listing 1 highlights the major

steps in the original shifter routine. The most important steps

in the shifter are iteratively applied and correspond to the

following: (1) checking if particles have to be shifted, which

is communicated by the allreduce call — Lines 3 to 10 in

Listing 1; (2) reordering the particles that keep staying on

the domain — Line 23 in Listing 1; (3) packing and sending

particles to left and right by MPI Sendrecv calls — Lines 13

to 20 and Lines 26 to 32 in Listing 1; and (4) incorporating

shifted particles to the destination toroidal domain (the two

loops at the end of the shifter) — Lines 35 to 43 in Listing 1.

The shifter routine involves heavy communication due to

the MPI Allreduce and especially because of the ring-like



do i t e r a t i o n s =1 ,N
2! compute p a r t i c l e s t o be s h i f t e d

! $omp p a r a l l e l do
4s h i f t p = p a r t i c l e s t o s h i f t ( p a r r a y ) ;

6! communicate amount o f s h i f t e d
! p a r t i c l e s and r e t u r n i f e q u a l t o 0

8s h i f t p =x+y
MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;

10i f ( s u m s h i f t p = = 0 ) { re turn ; }

12! pack p a r t i c l e t o move r i g h t and l e f t
! $omp p a r a l l e l do

14do m=1 , x
s e n d r i g h t (m)= p a r r a y ( f (m ) ) ;

16enddo
! $omp p a r a l l e l do

18do n =1 , y
s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;

20enddo

22! r e o r d e r r e m a i n i n g p a r t i c l e s : f i l l h o l e s
f i l l h o l e ( p a r r a y ) ;

24
! send number o f p a r t i c l e s t o move r i g h t

26MPI SENDRECV( x , l e n g t h = 2 , . . ) ;
! send t o r i g h t and r e c e i v e from l e f t

28MPI SENDRECV( s e n d r i g h t , l e n g t h =g ( x ) , . . ) ;
! send number o f p a r t i c l e s t o move l e f t

30MPI SENDRECV( y , l e n g t h = 2 , . . ) ;
! send t o l e f t and r e c e i v e from r i g h t

32MPI SENDRECV( s e n d l e f t , l e n g t h =g ( y ) , . . ) ;

34! add ing s h i f t e d p a r t i c l e s from r i g h t
! $omp p a r a l l e l do

36do m=1 , x
p a r r a y ( h (m) ) = s e n d r i g h t (m) ;

38enddo
! add ing s h i f t e d p a r t i c l e s from l e f t

40! $omp p a r a l l e l do
do n =1 , y

42p a r r a y ( h ( n ) ) = s e n d l e f t ( n ) ;
enddo

44}

Listing 1. Original GTS shift routine

MPI Sendrecv at every iteration step in each shift phase,

where several iterations per shift phase are likely to occur.

In addition, intense computation is involved mostly because

of the particle reordering that occurs after particles have been

shifted and incorporated into the new toroidal domain respec-

tively. Note, that billions of charged particles are simulated in

the tokamak causing approximately to the order of millions

particles to be shifted at each shifter phase.

While most of the work on the particle arrays can be straight

forward parallelized with OpenMP worksharing constructs on

the loop level, a substantial amount of time is still spent in non-

parallelizable (single-threaded) particle array work (sorting)

and in the MPI communication which is processed sequentially

by the master thread in our hybrid parallel model. Figure 2(a)

demonstrates in a high-level view the original MPI/OpenMP

! $omp p a r a l l e l
2! $omp m a s t e r

do i =1 ,N
4MPI Al l reduce ( in1 , out1 , l e n g t h , MPI INT ,

MPI SUM,MPI COMM WORLD, i e r r o r ) ;
6! $omp t a s k

MPI Al l reduce ( in2 , out2 , l e n g t h , MPI INT ,
8MPI SUM,MPI COMM WORLD, i e r r o r ) ;

! $omp end t a s k
10enddo

! $omp end m a s t e r
12! $omp end p a r a l l e l

Listing 2. Overlap MPI Allreduce with MPI Allreduce

hybrid approach with its serial and parallel work sections at

each MPI process implemented in GTS. Hence, the expected

parallel speed-up for the shift routine — as well as of any

other parallel program following this hybrid approach — is

strictly limited by the time needed for the sequential fraction

of this section the MPI task; a fact that is widely known as

Amdahl’s law.

The goal is to reduce the overhead of the sequential parts

as much possible by overlapping MPI communication with

computation using the new OpenMP tasking functionality3. In

order to detect overlappable code regions and for preserving

the original semantic of the code, we (manually) look for

data dependencies on MPI statements and surrounding com-

putational statements before code transformations are applied.

Figure 2(b) gives an overview of the new hybrid approach

where MPI communication is executed while independent

computation is performed using OpenMP tasks. It can be

easily seen from Figure 2 that the runtime of our application

following the new approach is reduced approximately (add

OpenMP tasking overhead) by the costs of the MPI communi-

cation represented by the dashed arrow. Below we will present

three optimizations to the GTS shifter:

(1) We overlap the MPI Allreduce call at Line 9 from

Listing 1 with the two loops from Lines 14 and 18. We

preserve the original semantics of the program since the

packing of particles is independent on the output parameter

of the MPI Allreduce call. The transformed code segments

are shown in Listing 3, where we used OpenMP tasks

to overlap the MPI function call. Note, that shifting the

MPI Allreduce call below the two loops does not add extra

overhead. Note, the program leaves that function in case of

sum shift p == 0 and so, the packing statements right

after the MPI Allreduce call in the original code could be

pointlessly executed. However, unnecessary computation is not

the case because of x == y == 0 for each MPI process in

case of sum shift p == 0.

The master thread encounters (due to statement at Line

3 from Listing 3 only the thread with id 0 executes the

3OpenMP version 3.0 introduces the task directive, which allows the
programmer to specify a unit of parallel work called an explicit task which
express unstructured parallelism and define dynamically generated work units

that will be processed by the team [3].



(a) Original MPI/OpenMP hybrid model (b) MPI/OpenMP hybrid model using OpenMP tasks to overlap MPI

Fig. 2. Two different hybrid models in GTS using standard OpenMP worksharing (a) or the newly introduced OpenMP tasks to execute MPI communication
while performing computation (b).

s h i f t p =x+y
2! $omp p a r a l l e l

! $omp m a s t e r
4! $omp t a s k

do m=1 , x
6s e n d r i g h t (m)= p a r r a y ( f (m ) ) ;

enddo
8! $omp end t a s k

! $omp t a s k
10do n =1 , y

s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;
12enddo

! $omp end t a s k
14

MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;
16! $omp end m a s t e r

! $omp end p a r a l l e l
18i f ( s u m s h i f t p = = 0 ) { re turn ; }

Listing 3. (1) Overlap MPI Allreduce in the GTS shifter

highlighted regions) the tasking statements and creates work

for the thread team for deferred execution; whereas the

MPI Allreduce call will be immediately executed, which gives

us the overlap. Note, that the underlying MPI implementation

has to support at least MPI THREAD FUNNELED as thread-

ing level in order to allow the master thread in the OpenMP

model performing MPI calls4.

However, the presented solution in Listing 3 is heavily

unbalanced (because of x 6= y; and the costs for the

MPI Allreduce call is usually lower than the time needed for

the loop computation) and does not provide any work for more

than three threads per MPI process. For this we subdivided

the tasks into smaller chunks to allow better load balancing

and scalability among the threads. This is shown in Listing 4

where the master thread generates multiple tasks with loops to

4To determine the level of thread support from the current MPI library one
can execute MPI Init thread instead of MPI init.

i n t e g e r s t r i d e =1000
2! $omp p a r a l l e l

! $omp m a s t e r
4! pack p a r t i c l e t o move r i g h t

do m=1 , x−s t r i d e , s t r i d e
6! $omp t a s k

do mm=0 , s t r i d e −1 ,1
8s e n d r i g h t (m+mm)= p a r r a y ( f (m+mm) ) ;

enddo
10! $omp end t a s k

enddo
12! $omp t a s k

do m=m, x
14s e n d r i g h t (m)= p a r r a y ( f (m ) ) ;

enddo
16! $omp end t a s k

! pack p a r t i c l e t o move l e f t
18do n =1 , y−s t r i d e , s t r i d e

! $omp t a s k
20do nn =0 , s t r i d e −1 ,1

s e n d l e f t ( n+nn )= p a r r a y ( f ( n+nn ) ) ;
22enddo

! $omp end t a s k
24enddo

! $omp t a s k
26do n=n , y

s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;
28enddo

! $omp end t a s k
30MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;

! $omp end m a s t e r
32! $omp end p a r a l l e l

i f ( s u m s h i f t p = = 0 ) { re turn ; }

Listing 4. (2) Overlap MPI Allreduce in the GTS shifter

the extent of stride. Listing 4 has now four loops because of

the remaining computation in the two additional loops to the

extent of (x MOD stride) and (y MOD stride) respectively.

(2) Applying similar tasking techniques enables us to over-



! $omp p a r a l l e l
2! $omp m a s t e r

! $omp t a s k
4f i l l h o l e ( p a r r a y ) ;

! $omp end t a s k
6

MPI SENDRECV( x , l e n g t h = 2 , . . ) ;
8MPI SENDRECV( s e n d r i g h t , l e n g t h =g ( x ) , . . ) ;

MPI SENDRECV( y , l e n g t h = 2 , . . ) ;
10! $omp end m a s t e r

! $omp end p a r a l l e l
12}

Listing 5. Overlap particle reordering in the GTS shifter

! $omp p a r a l l e l
2! $omp m a s t e r

! add ing s h i f t e d p a r t i c l e s from r i g h t
4do m=1 , x−s t r i d e , s t r i d e

! $omp t a s k
6do mm=0 , s t r i d e −1 ,1

p a r r a y ( h (m) ) = s e n d r i g h t (m) ;
8enddo

! $omp end t a s k
10enddo

! $omp t a s k
12do m=m, x

p a r r a y ( h (m) ) = s e n d r i g h t (m) ;
14enddo

! $omp end t a s k
16

MPI SENDRECV( s e n d l e f t , l e n g t h =g ( y ) , . . ) ;
18! $omp end m a s t e r

! $omp end p a r a l l e l
20

! add ing s h i f t e d p a r t i c l e s from l e f t
22! $omp p a r a l l e l do

do n =1 , y
24p a r r a y ( h ( n ) ) = s e n d l e f t ( n ) ;

enddo

Listing 6. Overlap MPI Sendrecv in the GTS shifter

lap the computation intense particle reordering from Line 23

of the original code in Listing 1 with communication intense

MPI Sendrecv statements from Lines 26, 28 and 30 of List-

ing 1. Since the particle ordering of remaining particles and the

sending or receiving of shifted particles is independently exe-

cuted, the optimized code shown in Listing 5 does not change

the semantics of the original GTS shifter. In the new code from

Listing 5 any thread in the team does the reordering (alone!)

while the master thread takes care of the MPI statements

(again, at least MPI THREAD FUNNELED has to be sup-

ported by the MPI library); which does not keep all the threads

per MPI process busy (in case OMP NUM THREADS
≥ 3), but still significantly speeds up the sequential code as

we will demonstrate at the end of the section.

(3) The careful reader might have noticed that the code

excerpt from Listing 1 only shows three MPI Sendrecv while

the original shift routine in Listing 1 depicts four of them.

Since the three MPI Sendrecv statements from Listing 5 are

potentially more time consuming than the particle reordering

(because of the middle MPI Sendrecv of Line 8 in Listing 5

sending a large array), we can overlap the fourth original

MPI Sendrecv of Line 32 in Listing 1 with the data inde-

pendent part of the remaining computation of the shifter, i.e.,

the loop from Line 36 in Listing 1 by using, again, the newly

introduced OpenMP tasking functionality. This results into the

code excerpt from Listing 6, where the second last loop from

Line 36 in Listing 1 has been overlapped with the fourth

MPI Sendrecv of Line 32 in Listing 1. Similar to the previous

code optimization from Listing 4 the master threads creates

multiple tasks for the loop from Line 36 in Listing 1 in order

to keep all the threads in the team busy while the master thread

is responsible for sending and receiving data from neighboring

MPI processes.

To sum up, by applying those three code transformations

we are able to overlap all (iteratively called) MPI functions

from the original shifter routine of GTS from Listing 1. We

are aware of the fact that for different parts of GTS or other

MPI parallel applications such optimizations cannot always

be applied due to complicated data dependencies. However,

the aim of these code examples starting from Listing 4 to

Listing 6 is to discuss these new optimization possibilities

provided by OpenMP tasks. The presented techniques, i.e.,

overlapping (collective) MPI communication with computa-

tion, has not been the design incentive in the first place of the

new tasking model, but we believe that it can play an important

role in many of future HPC systems based on the hybrid

MPI/OpenMP programming models. For the sake of complete-

ness we want to mention that nonblocking collective MPI

communication, e.g., non blocking allreduce communication

(MPI Iallreduce) are in the process of being standardized in

the upcoming MPI 3.0 standard [21]. Nonblocking collective

operations are already provided by libNBC [12], a portable

implementation of nonblocking collective communication on

top of MPI-1 which acts as the reference implementation for

the proposed MPI 3.0 functionality currently under consider-

ation by the MPI Forum. However, libNBC is restricted to a

few HPC platforms and also exhibits some overhead as seen

in previously performed research. In addition, we also see a

benefit in using OpenMP tasking to overlap collective MPI

communication regarding code portability since the optimized

code will run on any system with MPI even if OpenMP support

is not given, whereas libNBC is likely to be having made

available on a new system which might be difficult in a lot

of cases. Finally, it should be remarked that also OpenMP

tasking involves some extra overhead. Which approach —

using OpenMP tasking or new MPI nonblocking collectives

— performs best remains to be seen once the new MPI 3.0

version is available.

In the next section we will present performance results of

the above mentioned code transformations and compare them

to the results gathered when executing the original code.
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Fig. 3. Evaluation of MPI/OpenMP hybrid model with GTC on Hopper.

D. Performance Results

The following experiments have been carried out at

NERSC’s Franklin — a Cray XT4 system having 9572 com-

pute nodes with each node consists of a 2.3 GHz single socket

quad-core AMD Opteron processor (Budapest) — and Hopper

— a Cray XT5, which in the current phase I has 664 compute

nodes each containing two 2.4 GHz AMD Opteron quad-

core processors — machines. The second phase of Hopper,

arriving in Fall 2010, will be combined with an upgraded

phase 1 to create NERSC’s first peta-flop system with over

150000 compute cores. On Franklin we use the Cray Compiler

Environment (CCE) version 7.2.1 and the Cray supported MPI

library version 4.0.3 based MPICH2. On Hopper CCE version

7.1.4.111 and Cray MPICH2 version 3.5.0 is used.

1) Benefits & Limitations of hybrid Computing: Before we

present runtime numbers of the OpenMP tasking optimiza-

tions, we want to address the benefits and limitations of the

hybrid approach on the Gyrokinetic Toroidal Code (GTC) [8],

another global gyrokinetic PIC code, which shares the similar

architecture to the GTS code discussed in this paper, and

uses the same parallel model. Therefore, the following study

for GTC also applies to GTS. Figure 3 illustrates runtime

numbers of four GTC runs using the same input parameters

but varying the MPI/OpenMP ratio. All four runs are using

the same number of compute cores on Hopper. Hence, the first

group represents the runtime of GTC using a total of 192 MPI

processes where each MPI process creates 8 OpenMP threads.

Each group has eight columns reflecting the overall walltime,

which is the aggregation of the remaining seven columns, i.e.,

the PIC steps in GTC. The second group depicts experiments

with a total of 384 MPI processes with 4 OpenMP threads

per MPI process and so forth. Figure 3 clearly demonstrates

that the hybrid approach outperforms the pure MPI approach

(the fourth group in Figure 3) because of the less MPI

communication overhead involved and better usability of the

shared memory cores on the Hopper compute node. However,

this picture also points out the limitations (using 8 OpenMP

threads per MPI process performs similar to the pure MPI

approach) to a certain number of OpenMP threads per MPI

process due to NUMA and cache effects on the AMD Opteron

system. In addition, Figure 3 shows the impact of the shift

routine to the overall runtime which denotes in this experiment

to an average of 47% — therefore, a step in the PIC method

that is worth optimizing.

2) Performance Evaluation of OpenMP tasking to overlap

communication with computation: The diagrams shown in

Figure 4 present four GTS runs with different input files and

domain decomposition executed on the Franklin Cray XT 4

machine. Figure 4(a) gives the breakdown of the runtime for

the GTS shift routine with the torus divided up into 128

domains, where each toroidal section is further partitioned into

2 poloidal sections. The first two bars compare the overall

runtime of the shifter using the optimized version (shown

in dark gray) with the original one (light gray). The other

three groups compare the runtime of the three previously

introduced code pieces using OpenMP tasks with their original

counterparts from Listing 1: ”Allreduce” reflects the timing for

the code shown Listing 4, ”FillingHole” corresponds to the

code from Listing 5 and ”SendRecv” is the measurement for

Listing 6. Those three parts together with other computation

on the particle arrays (as indicated at Line 4 in the original

code shown in Listing 1) add up to the numbers presented

in the ”Shifter” group. Besides that different input settings

(e.g., varying the number of particles per cell) have been used

to generate Figures 4(a) to Figures 4(d), the main difference

is that the number of poloidal domains (npartdom) goes

from 2 to 16. As indicated in the introduction of the parallel

model of GTS in section II-B, all the MPI communication in

the shift phase uses a toroidal MPI communicator, which is

constant of size 128 in the four presented figures. However, as

it can be seen from Figure 4, it clearly makes a difference if

particles are shifted in the 128-MPI-processes-toroidal-domain

of a GTS run with an overall usage of 256 MPI processes

(Figure 4(a)) than in a 128-MPI-processes-toroidal-domain of

a GTS run with a total of 2048 MPI processes (Figure 4(d)).

This is mainly because the MPI processes part of the toroidal

MPI communicator in larger MPI runs of GTS are physically

further away from each other than in a GTS run with fewer

MPI poloidal domains; hence, causing more burden on the

Cray Seastar interconnect to sending messages. The speed

up, or to put it in other words, the difference between the

dark gray bar and the light gray bar, for each phase in the

shifter is the time consumed by the MPI communication which

is overlapped in the newly introduced shifter steps (to sim-

plify matters, neglecting the overhead involved with OpenMP

tasking and assuming that the costs of loops workshared

with traditional ”omp parallel do” statements is the same

as processing those loops workshared with OpenMP tasks.).

Moreover, we can observe that the benefit of the ”SendRecv”

optimization (Listing 6) also depends on the number of MPI

domains. While Figures 4(a) to Figures 4(c) show no or

only marginal performance benefits, the speed-up due to the

”SendRecv” optimization is about 18% in Figure 4(d) which

represents a 2048 MPI processes run. The tremendous speed

up due to the ”Allreduce” optimization from Listing 5 (more

than 100%) in the 1024 MPI processes run is pleasant, but
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(c) GTS with 128 toroidal domains, each having 8 poloidal domains
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(d) GTS with 128 toroidal domains, each having 16 poloidal
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Fig. 4. Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI process with varying domain decomposition and particles per cell
on Franklin showing that MPI communication can be successfully overlapped with independent computation using OpenMP tasks.

! $omp p a r a l l e l
2! $omp m a s t e r

do i =1 ,N
4MPI Al l reduce ( in1 , out1 , l e n g t h , MPI INT ,

MPI SUM,MPI COMM WORLD, i e r r o r ) ;
6! $omp t a s k

MPI Al l reduce ( in2 , out2 , l e n g t h , MPI INT ,
8MPI SUM,MPI COMM WORLD, i e r r o r ) ;

! $omp end t a s k
10enddo

! $omp end m a s t e r
12! $omp end p a r a l l e l

Listing 7. Overlap MPI Allreduce with MPI Allreduce

is likely to be just a positive outlier and requires further

investigation.

Next, we want to conclude our experiments with a dis-

cussion about the overlapping of MPI communication with

consecutive, independent MPI communication.

3) Overlap communication with communication: Going

one step further in reducing the time spent in sequentially5

executed MPI communication, we want to show early results

of experiments with overlapping of MPI communication with

other MPI communication succeeding in the control flow of

the parallel program that is data independent on the preced-

ing one. Examples in GTS are the consecutive independent

MPI Sendrecv statements in the shifter from above and four

consecutive independent MPI Allreduce calls in the ion pusher

phase.

Figure 5 presents runtime comparisons of succeeding and

independent MPI Allreduce calls with varying messages sizes.

Figure 5(a) and Figure 5(b) show the time it takes with 1024

MPI process (2 OpenMP threads per MPI process), 512 MPI

processes (4 OpenMP threads per MPI process) and 256 MPI

processes (8 OpenMP threads per MPI process) to execute the

code shown in Listing 7, which is highlighted in dark gray

bars and compare it with the costs of processing the code

5In the hybrid MPI/OpenMP programming model the remaining cores are
idle when one core executes an MPI command.
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(b) Allreduce of an array of 100 integers

Fig. 5. Performance evaluation for overlapping execution of two consecutive MPI Allreduce calls on Hopper.

from Listing 7 without OpenMP compiler support, i.e., without

the overlap. Consequently, the number of used CPU cores is

constant (==2048) in these experiments. Figure 5(a) reflects

a run with MPI Allreduce calls of just one integer variable

whereas Figure 5(b) shows results for MPI Allreduce calls

of an integer array of size 100. While no performance gain

can be observed in the experiment with allreduces of size 1

(Figure 5(a)), we can see a slight overlap in Figure 5(b) for

the 4- and 8-OpenMP-threads run. The run with 4 OpenMP

threads is of major interest since it reflects the recommended

MPI/OpenMP ratio for production runs on Hopper, which

can been verified when looking at GTS performance results

on Hopper in Figure 3. However, we also see that no full

overlap could be achieved, but expect better threading support

from upcoming MPI libraries. We are aware of the fact that

100% overlap is impossible to achieve due to the sequential

nature of communication in a single network, but these early

experimental data has already demonstrated that some (to the

programmer invisible) steps of the MPI Allreduce call can

be successfully overlapped. Moreover, with optimal support

of the MPI THREAD MULTIPLE threading level in MPI

libraries such as already implemented in MPICH2 — where

any thread can call MPI functions at any time — we expect

a significant performance gain in (partially) overlapping more

consecutive independent collective MPI function calls (e.g.,

the four consecutive independent MPI Allreduce calls occur-

ring in the ion pusher phase of GTS) in a hybrid programming

model since future systems will have hardware support for

multiple, concurrent communication channels per node [25].

Similar experiments to the one shown in Listing 7 have been

conducted on Hopper with consecutive MPI Sendrecv calls

achieving similar same speed-ups.

E. Conclusion

Summing up, we have demonstrated that overlapping MPI

communication with independent computation by the newly

introduced OpenMP tasking model has a large potential, espe-

cially for massively parallel applications such as GTS scaling

up to several thousands of compute cores. Consequently we

believe that similar strategies can be applied to other massively

parallel codes running on cluster equipped with multicore

processors. As collective and/or point-to-point time increas-

ingly becomes a bottleneck on future HPC clusters comprising

thousands of multicore processors, using threading to keep

the number of MPI processes per node to a minimum and to

overlap — if possible — those MPI calls with independent

surrounding statements is a promising strategy. Furthermore,

we showed early experimental data of overlapping MPI com-

munication with independent MPI communication, which we

believe to be another valuable feature for future multicore HPC

systems. Finally, we point out the presented code transfor-

mations and data dependence analysis have been manually

carried out and could be performed by automated source-

to-source translating compilers such as the ROSE compiler

framework [22] using static analysis techniques to guide subse-

quent code optimizations. The ROSE compiler framework will

be introduced in more detail in section IV-E of the material

modeling application.

III. CHEMISTRY APPLICATION

A. Introduction

Q-Chem is a computational chemistry software that spe-

cializes in quantum chemistry calculations, which includes

Hartree-Fock (HF), density functional theory (DFT), coupled

cluster (CC), configuration interaction, and Møller-Plesset per-

tubation theory. Many of these calculation methods provides

researchers with the ability to accurately predict molecular

equilibrium structures, which entails minimizing energy with

respect to atomic positions. Due to the extreme reliability of

these theoretical predictions, they can be considered suitable

alternatives to experimental structure determination. In this

paper, we focus on the second-order Møller-Plesset perturba-

tion theory (MP2), which initially starts off with the mean-

field HF approximation [1] and treats the correlation energy



via Rayleigh-Schrödinger perturbation theory to the second

order [19]. More specifically, we focus on a MP2 method that

utilizes the resolution-of-the-identity (RI) approximation [18],

in which the incorporation of the RI-approximation into the

MP2 theory (RI-MP2) results in usage of auxiliary basis set

to approximate charge distributions, subsequently reducing the

computational cost of the MP2 method.

Compared to DFT, which is a popular alternative method

used to conduct electronic structure calculations, RI-MP2 does

not suffer from the self-interaction problem [15] and can

account for 80-90% of the correlation energy [14]. Moreover,

geometry optimizations using MP2 methods have generated

equilibrium structures more reliable than HF, popular DFT al-

ternatives and in some cases even CCSD. Unfortunately, there

exists a fifth-order computational dependence on the system

size when the MP2 and RI-MP2 theory is formulated in a basis

of orthonormal set of eigenfunctions that diagonalize the Fock

matrix. Comparatively, DFT methods can demonstrate nearly

linear scaling for reasonably extended molecular systems,

which is a major reason why DFT remains more popular. Thus,

in order to obtain RI-MP2 geometry optimizations for large

molecular systems in a reasonable time, we need to explore

ways to cut down on the computational cost. In this work,

we utilize graphics processor units (GPU) to speed up the

RI-MP2 energy gradient calculations. Similar work has been

conducted on the RI-MP2 energy calculation and a speedup

of 4.3x has been observed in single point energy calculations

of linear alkanes [26]. Compared to the CPU, more transistors

in GPUs are devoted to data processing as opposed to cache

memory and flow control. As such, there exists potential for

massive parallelism within the GPUs and applications that can

be easily formatted into the SIMD (single instruction, multiple

data) instructions can benefit greatly from using GPUs.

B. GPU RI-MP2 gradient algorithm

In this section, we first explain the CPU algorithm used

in Q-Chem, analyze the computational cost associated with

the different steps of the current program, and finally provide

an alternative GPU algorithm. In Q-Chem, the CPU RI-MP2

gradient code works under following constraints: quadratic

memory, cubic disk storage, quartic I/O requirements, and

quintic computational cost with respect to system size. We

adhered to these constraints while optimizing for the com-

putational cost. The initial RI-MP2 gradient algorithm (while

omitting the self-consistent field (SCF) procedure) consists of

seven major steps: (1) RI-overhead: formation of the (P |Q)−1

matrix, (2) construction and storage of the three-centered

integrals in the mixed canonical MO basis/auxiliary basis:

(ia|P ) (3) construction of the CQ
ia matrix, (4) assembly of

the ΓQ
ia (i.e. RI-MP2 correction to the two particle density

matrix), P
(2)
ca (i.e. virtual-virtual correction to the one-particle

density matrix), and P
(2)
kj (i.e. active-active correction to the

one-particle density matrix), (5) construction of ΓRS (i.e.

the RI-MP2 specific two-particle density matrix), (6) ΓQ
ia

transposition, and (7) assembly of the L, P , and W matrices;

solution of the Z-vector equation and final gradient evaluation.

Figure 6 provides proportional wall times for each one of

the aforementioned steps for different glycine-n molecules for

n = 1, 2, 4, 8, and 16 with cc-pVDZ correlation-consistent

basis sets. All of these initial simulations were conducted on

the Greta cluster, which consists of AMD quad-core Opteron

processors. From the figure, we can see that as the system size

increases, time spent in step 4 becomes proportionally larger.

For example, for glycine-16 (115 atoms) input, 83% of the

total RI-MP2 routine wall time is spent in step 4. Subsequently,

we focus our effort to reduce the step 4 computation time.

For large size molecules, step 7, which finalizes the gradient

evaluation occupies the next largest step time and we list the

total times in Table I for various glycine molecules.

Next, we further analyze what is actually happening in the

step 4 portion of the code. Step 4 consists of assembly of ΓQ
ia,

P
(2)
ca , and P

(2)
kj matrices, which are obtained from BLAS 3

matrix matrix multiplications and entail quintic computational

efforts due to iterations over all i and j. In addition, there

exists three quartic I/O steps, which are needed to construct

the core quantities described above as unfortunately for large

molecules, we cannot fit all the necessary data into CPU

memory all at once and thus need to read and write into

temporary files stored in the hard drive as the code progresses.

Here is a more detailed look at the algorithm involved in this

step [5], which is also included in the CPU RI-MP2 paper.

We have converted this step 4 CPU routine to CPU+GPU

CUDA C routine. For our numerical simulations, we have

used the Tesla/Turing GPU cluster at NERSC, which is a

testbed consisting of two shared-memory nodes named Tesla

and Turing. Each are Sun SunFire x4600-M2 servers with

8 AMD quad-core processors, 256 GB shared memory with

the two nodes sharing an NVidia QuadroPlex 2200-S4, which

contains four NVidia FX-5800 Quadro GPUs, with each GPU

having 4GB of memory and 240 CUDA parallel processor

cores.
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Loop over active occupied orbitals, i
Load (ia|P ) ∀ a, P , given i from disk

Loop over batches of active occupied orbitals, ob

Loop over j ∈ ob
Load CP

jb ∀ b, given j from disk

Make (ia|jb) = ΣP (ia|P )CP
jb ∀ a, b

Make tab
ij = (ia||jb)/∆ab

ij ∀ a, b
Accumulate tab

ij ∀ a, b, j ∈ ob, given i
Increment ERI−MP2+ = 1

4 tab
ij (ia||jb)

Increment Pca+ = Σbt
ab
ij tcb

ij ∀ a, c, given ij
Increment ΓP

ia+ = Σbt
ab
ij CP

jb ∀ a, P , given ij
End Loop over j ∈ ob

Loop over batches of active virtual orbitals, ob
Extract tab

ij ∀ a ∈ vb, b, j ∈ ob, given i
Write tab

ij ∀ a ∈ vb, b, j ∈ ob, given i to disk

End Loop over batches of active virtual orbitals, ob

End Loop over batches of active occupied orbitals, ob

Write ΓP
ia ∀ a, P , given i to disk

Loop over batches of active virtual orbitals, vb
Load tab

ij ∀ a ∈ vb, b, j ∈ ob, given i

Loop over a ∈ vb
Extract tab

ij ∀ b, j, given (ia)
Increment Pkj+ = Σbt

ab
ik tab

ij ∀ j, k, given (ia)
End Loop over a ∈ vb

End Loop over batches of active virtual orbitals, vb
End Loop over active occupied orbitals, i

Fig. 7. Detailed look at the algorithm behind step 4

For all simulations, we have used CUDA Toolkit and SDK

v2.3. For matrix matrix multiplications, we initially used

the CUBLAS 2.0 library but later on switched to Vasily

Volkov’s GEMM kernel given that CUBLAS cannot be called

with the asynchronous API. This is a big downside of the

current CUBLAS library and accordingly it disallows us to

concurrently copy data from CPU to the GPU (and vice versa)

while using any of the CUBLAS matrix matrix multiplications.

In our code, we are only interested in the double precision

matrix matrix multiplications given that extra precision is

TABLE I
STEP4, STEP7, AND TOTAL WALL TIME IN SECONDS

n = 1 n = 2 n = 4 n = 8 n = 16

step4 2.1 21.5 485.3 4993.8 80913.1
step7 21.6 112.1 455.6 1737.9 11532.5
total 66.0 264.7 1289.1 7102.4 96901.9

important in most quantum chemistry calculations. Double-

precision general matrix multiply subroutines (DGEMM) are

considerably slower than the single-precision general matrix

multiply subroutines (SGEMM) (at least for non-Fermi archi-

tecture GPUs) as we obtain a maximum value of around 75

GFLOPS using the GPU as opposed to reports of around 350

GFLOPS for SGEMM. For the CUBLAS DGEMM routine,

performance numbers varied greatly depending on whether the

dimensions of the input matrices were multiples of 16 or not.

For example, upon multiplying a 4340 x 915 matrix A with

915 x 915 matrix B, we found the performance number to be

53.04 GFLOPS. On the other hand, upon multiplying a 4352
x 928 matrix A with 928 x 928 matrix B, we obtained 74.36
GFLOPS. In comparison, using Volkov’s DGEMM kernel

gave us smaller variation (73.50 and 74.77 GFLOPS for the

aforementioned cases). It’s unclear why the numbers vary so

greatly in the CUBLAS DGEMM routine but we suspect it

might be related to the fact that global memory loads and

stores by threads of a half warp (16 threads) and accordingly,

these transactions are not being properly coalesced in the

CUBLAS DGEMM routine for matrices whose dimensions

are not multiples of 16.

The step 4 algorithm can be seen in figure 7. Given that the

number of active occupied orbitals is greater than the number

of active virtual orbitals, the most computationally intensive

part of the step 4 routine occurs during the loop over j ∈ ob.

Most of this paper will concentrate on the algorithm inside this

loop. Within the j ∈ ob loop, the CPU code was transformed

into a CPU + GPU code in a following way in our initial

implementation. First, the matrix CP
jb was read from hard drive

for a given j. Afterwards, the matrix, which is stored as a

one-dimensional vector, was transferred from the CPU to the

GPU memory via the PCI Express using the cudaMemcpy

CUDA kernel call. Because Tesla/Turing has a PCI Express

1.1 with only 8 lanes, the data transfer bandwidth peaked only

at around 1.4 GB/sec. A new NERSC GPU cluster called Dirac

is equipped with PCI Express 2.0 with 16 lanes so we expect

the data transfer bandwidth to be much higher in this cluster

(5 − 6 GB/sec). Unfortunately, Dirac is still undergoing its

initial configurations and unavailable to users at this moment.

Once the data is in the GPU, we call the DGEMM kernel

and obtain (ia|jb) with the matrix matrix multiplications. For

subsequent operations inside the loop, we need not transfer the

data stored in the GPU memory back to the CPU given that we

can conduct all of our operations inside the GPU. In general,

transferring data back and forth over the PCI Express lane is

costly and should be avoided as much as possible. Fortunately

in our program, we only need to transfer the GPU data back to

the CPU at the end of the loop when our work is finished. At

the end of our first implementation, the total computation cost

inside this loop for a given iteration is as follows: Ttot = Tread

+ Ttransfer + Tmm1
+ Tmm2

+ Tmm3
+ Trest, where Tread is

the time it takes to read the matrix from the hard drive to the

CPU memory, Ttransfer is the time it takes to transfer matrix

data from the CPU to the GPU memory, Tmmi
is the time it

takes to conduct the ith matrix matrix multiplication routine,



and Trest is the time it takes to conduct other operations within

the GPU. For almost all input sizes, Trest becomes trivial as

it consists of less than 1% of Ttot.

From this initial implementation, we have made further

optimizations in the CPU + GPU step 4 routine. First,

we move the j = 0 CP
jb file read routine and the j = 0

cudaMemcpy routine outside of its initial loop. Accordingly

inside the loop, we can concurrently execute the first matrix

matrix multiplication (i.e. Make (ia|jb)) in the GPU with the

loading of the second j = 1 CP
jb from the hard drive. This

is possible because in CUDA, control is returned to the host

(i.e. CPU) thread before the device (i.e. GPU) has completed

its task, which allows programmers to overlap CPU work

with GPU work. This feature comes in extremely handy

especially when the GPU work is sufficiently long enough.

Next, we switch the order in evaluation of Pca and ΓP
ia for a

reason that will be explained subsequently. Because these two

quantities are not dependent on one another, we can safely

switch the order. Finally, we overlap evaluating Pca with a

copy routine that transfers the j = 1 CP
jb from the CPU to

the GPU, keeping in mind that this data was read from the

file read routine that overlapped the first GPU matrix matrix

multiplication. In order to conduct asynchronous copies, we

have to use the CUDA driver API called cudaMemcpyAsync.

We switched the order of the matrix matrix multiplications

(Pca and ΓP
ia in order to avoid a data race condition that

would have resulted from using the GPU data CP
jb as both an

input to a matrix matrix multiplication as well as a copied

data from the CPU. It’s important to note that in order to

utilize cudaMemcpyAsync, we need to use page-locked host

memory, which is a memory allocated on the host side via

CUDA routine (e.g. cudaMallocHost). This memory should

be conserved as too much usage results in overall degradation

in performance. Figure 8 is a flowchart of the new CPU -

GPU routine that summarizes the important algorithm. The

portion of the pseudo-code only relevant to aforementioned

discussion is shown here.

At the end of our second implementation, the total wall

time inside the loop for a given iteration is as follows: Ttot ≃
max(Tmm1

, Tread) + Tmm2
+ max(Tmm3

, Ttransfer) + Trest.

We need not worry about the cost of initial Tread and Ttransfer

for j = 0 case given that the total number of iteration inside

the loop is large enough that this cost becomes negligible. As

system size increases, the quintic matrix matrix multiplication

calculations should dominate over the quartic I/O reads and

transfers and accordingly, these costs will go away in principle.

Unfortunately in Tesla/Turing, the lack of local scratch results

in poor I/O performance (100 − 150 MB/sec in worst case)

and subsequently, Tread becomes greater than Tmm1
for many

of our input molecules. For relatively smaller molecules, the

cache memory size is large enough that most of the data that

has been read in the ith (outermost loop) iteration is kept inside

the cache, resulting in better I/O performance and Tmm1
>

Tread. But for a system in which the size is not large enough

Loop over batches of active occupied orbitals, ob

Load CP
jb ∀ b, for j=0 from disk

move CP
jb ∀ b, for j=0 from CPU to GPU

Loop over j ∈ ob
Make (ia|jb) = ΣP (ia|P )CP

jb ∀ a, b (GPU)

Load CP
(j+1)b ∀ b, given j + 1 from disk (CPU)

Make tab
ij = (ia||jb)/∆ab

ij ∀ a, b (GPU)

Accumulate tab
ij ∀ a, b, j ∈ ob, given i (GPU)

Increment ERI−MP2+ = 1
4 tab

ij (ia||jb) (GPU)

Increment ΓP
ia+ = Σbt

ab
ij CP

jb ∀ a, P , given ij (GPU)

Increment Pca+ = Σbt
ab
ij tcb

ij ∀ a, c, given ij (GPU)

move CP
(j+1)b ∀ b, for j + 1 from CPU to GPU

End Loop over j ∈ ob

Fig. 8. Step 4 CPU - GPU algorithm

such that the quintic computation does not dominate the wall

time over the quartic I/O processes, the latter remains to be

a problem on Tesla/Turing. One solution to combat for poor

I/O performance is to conduct two different reads inside the

loop with each of these reads loading one half of the matrix

respectively. The second read can be overlapped with other the

2nd GPU routine inside the loop such that we can further hide

the cost incurred by the CPU. Effectively, max(Tmm1
, Tread) +

Tmm2
will become max(Tmm1

, Tread1
) + max(Tmm2

, Tread2
).

There are some improvements in the performance numbers as

file read is separated as such. We surmise that these problems

will go away on the new Dirac cluster with improved I/O

performance.

We can obtain a rough estimate and determine when Tread

will be comparable to Tmm1
in a following way. The matrix

CP
jb has a dimension (NVirtbra, X), where NVirtbra = number

of virtual orbitals and X = number of auxiliary basis functions.

If we assign B to be the I/O bandwidth for a read operation in

GB/sec, Tread = 109B / (8·NVirtbra·X). Furthermore, matrix

(ia|P ) has dimension (NVirtbra, NVirtbra) and accordingly,

the total number of FLOP in the matrix matrix multiplication is

equal to 2(NVirtbra)(NVirtbra)(X). If we designate Bflop to be

the matrix matrix multiplication GFLOPS, Tmm1
= 109Bflop /

(2·NVirtbra·NVirtbra·X). As a result, when Tread = Tmm1
, we

have the following equality: B =
4Bflop

NV irtbra
. For mid to large

size molecules such as glycine-8 and glycine-16 (58 and 115

atoms altogether), NVirtbra = 467 and 915 respectively. Given

that our peak DGEMM numbers are around 75GFLOPS, we

would need for input read bandwidth to be greater than

642MB/sec in glycine-8 and 327MB/sec in glycine-16 to avoid

I/O being the bottleneck. For the new NVidia Fermi chips, the

DGEMM performance expects to be larger and accordingly,

we will need better I/O performance as well so that the I/O

cost remains hidden.

Provided that we have excellent I/O available to us, there
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Fig. 9. Four main routines wall times in step 4 for glycine-8 molecule

exists another additional room for improvement. The term

(ia|jb) represents the two-electron integral where indices

represent virtual and active molecular orbitals. As such, (ia|jb)
is just a matrix transpose of (ja|ib) and we can reduce the

number of computation of these terms by half by storing the

(ia|jb) terms. Since these terms cannot be kept in memory

due to their large size, we can overlap GPU routines with

CPU routines that transfer data from the GPU to the CPU

memory and finally to the hard drive to keep the CPU costs

hidden. In practice, this can be done without incurring too

much additional computational cost and would result in Tmm1

reducing to 0.5Tmm1
. Unfortunately, our algorithm would

require additional quartic I/O steps and exceed the cubic disk

storage requirements, which might be problematic.

C. Results

For our results, we focus on the step 4 simulation time for

glycine-8 molecule. We compare the results obtained from the

Tesla and Turing (TnT) cluster with the ones obtained from

the Franklin (Cray XT4) cluster, which consists of 2.3GHz

single socket quad-core AMD Opterons. Specifically, we look

at the four most time-consuming routines in step 4: loading

CP
jb, making (ia|jb), making Pca, and making ΓP

ia.

From figure 9, we see that the I/O performance in Franklin

is much better than in TnT (over 7 times faster) mostly

due to existence of local scratch on Franklin. In the GPU

routine, the load in CP
jb is overlapped with the GPU making

(ia|jb) routine as mentioned in the previous section and

thus, the bottleneck becomes the I/O CPU read in the case

of glycine-8. Specifically, max(Tread, Tmm1
) = max(912.4,

357.8) = 912.4 seconds. Just by looking at the matrix matrix

multiplication routines, there exists about 6 times improvement

in the DGEMM performance going from CPU to GPU. The

total step 4 wall time for simulations conducted on Franklin

(CPU), TnT (CPU), and TnT (CPU + GPU) are 4945, 6542,

and 1405 seconds respectively. The discrepancy in wall time

between Franklin (CPU) and TnT (CPU) comes not ony from

CP
jb load but from other I/O routines not seen from 9. As it

stands, there exists about 4.7x performance improvement in

moving from CPU to the CPU + GPU routine on TnT. In

the hypothetical situation where I/O bandwidth performance

is as good in TnT as in Franklin, the CPU+GPU wall time

would drop down to around 850 seconds, which would indicate

around 5.8x improvement from the Franklin cluster and 7.7x

improvement from the current TnT cluster.

In summary, we have accelerated the Q-Chem RI-MP2 code

by utilizing both the GPU and the CPU. We identified step

4 as being the main bottleneck in the program and used

concurrent file reads with GPU matrix matrix multiplications.

We have also overlapped data transfer from the CPU memory

to the GPU memory with additional GPU matrix matrix

multiplications by using pinned memory. Overall in the TnT

cluster, I/O file read times far exceed the matrix multiplication

routines for mid to large size molecules. As seen from the

results obtained from simulating glycine-8 on the Franklin

cluster, which has local scratch, we expect the I/O read time to

be cut to zero (due to the overlap with the GPU calculations)

for clusters with better I/O.

IV. FLUID/MATERIALS APPLICATION

A. The ALE-AMR fluid/solid mechanics application for mate-

rial modeling

ALE-AMR is a new fluid/solid mechanics code that is used

for modeling materials at a wide range of temperatures and

densities [16]. This code solves the fluid equations with an

anisotropic stress tensor on a structured adaptive mesh using an

ALE (Arbitrary Lagrangian Eulerian) method combined with

a structured dynamic adaptive mesh interface. Its basic method

for combining ALE with AMR is based on an algorithm first

suggested by Anderson and Pember [2]. Here, AMR stands

for Adaptive Mesh Refinement. The structured adaptive mesh

library provides much of the parallelism in ALE-AMR by

dividing the work into patches that can be farmed out to

various processors that communicate using MPI. Additional

parallelism is provided by implicit solver libraries. How to

best exploit the parallelism in these libraries is the major focus

of this section.

The current version of ALE-AMR supports a variety of

physics models that are introduced via operator splitting,

and a new sophisticated algorithm for material failure and

fragmentation. The code can model a variety of materials

including plasmas, vapors, fluids, brittle and ductile solids, and

the effective viscosity of most materials can be represented.

Plans are underway to include surface tension effects. Most

recently a new diffusion based model for heat conduction and

radiation transport has been added to the code. The code is

currently being used as a major component in the design of

targets for the National Ignition Facility (NIF), which is the

world largest laser. The code is also being applied to model

experiments at the National Drift Compression Experiment

(NDCX) in Berkeley and other high-energy facilities in France

and Germany. Unlike the GTS code described earlier, this code

does not already have OpenMP mixed into the MPI code. So

the question for it is bifold: what ways are possible to speed up

the code without changing the MPI parallel model and would

the code benefit from a hybrid programming model such as

MPI with OpenMP.



B. Diffusion Solver Speed-up

1) Introduction: Recent work on this code includes the de-

velopment of heat conduction and radiation transport physics

modules. These effects are important to many of the NIF

target configurations that produce large temperature gradients

in the target materials. Both of these physical effects are

modeled using the diffusion equation which is discretized by a

newly developed AMR capable Finite Element Method (FEM)

solver [10]. The use of a FEM diffusion solver to model heat

conduction and radiation transport is well studied [23] as is the

integration of these physics modules into a hydrodynamic code

[24]. However, the extension of these methods to AMR grids

is novel, as such there are some interesting issues encountered

in the parallel behavior of this approach.

In the following section we will give an introduction to

the methods employed by the AMR capable diffusion solver

recently introduced into ALE-AMR. This will be followed by

a description of some parallel computation issues that we have

recently experienced and an explanation of the approaches

we used to debug these issues and improve the worst case

performance drastically.

2) AMR Capable Diffusion Solver: To work with ALE-

AMR a solver must be capable of operating on the multi-

level, multi-processor, block structured, patch-based SAMRAI

data representing the ALE-AMR field variables. The FEM,

however, requires data in a single level composite mesh format.

It is possible to use the SAMRAI data to form a fully

connected composite mesh, however, this is not necessary.

The hierarchical block structured nature of the SAMRAI data

makes it possible to form a relatively simple mapping between

the SAMRAI indices and the indices of a flattened composite

mesh. This mapping can be formed without the need of

creating and storing the composite mesh. The connectivity of

most nodes in this mesh can be found trivially. The nodes and

cells at coarse-fine interfaces, however, are significantly more

complicated. Extra connectivity data about these special nodes

and cells is stored to complete the composite mesh mapping.

At the beginning of an ALE-AMR simulation, the composite

mesh mapping is formed on the initial grid. Whenever the grid

changes through Lagrangian motion or AMR, the composite

mesh mapping is updated to reflect the changed grid. Using

this mesh mapping it is possible to obtain the global id

numbers for all of the nodes in a given cell. However, the

cells at the coarse-fine interfaces have extra nodes due to

the refinement. Those extra nodes require basis functions

to represent the solution within the cell and basis functions

that maintain continuity across the coarse-fine interface are

advantageous. We build on the transition element work found

in [11] to create a family of elements suitable for our purposes.

Using the composite mesh mapping and this family of

transition elements it is now possible to apply the FEM within

the framework of ALE-AMR. We now turn our attention to

the solution of the following diffusion equation.

∇ · δ∇u + σu = f (1)

Applying the standard Galerkin approach yields the following

linear system approximation

Au + b = f

A = Mσ − Kδ

(Mα)ij =
∫
Ω

αφiφjdΩ
(Kα)ij =

∫
Ω

α∇φi · ∇φjdΩ
b = 0

(2)

where M is the mass matrix, K is the stiffness matrix,

and an insulating boundary yields b = 0. The integrals

are approximated over the elements with a family of mass

lumping quadrature rules and the global mass and stiffness

matrices are assembled using connectivity data obtained from

the composite mesh mapping. We solve the resulting system

of equations using the HYPRE [4] BiCG solver and the Euclid

[13] preconditioner.

Both heat conduction and radiation transport can be mod-

eled with relative ease using this diffusion solver. For heat

conduction the equation can be time evolved implicitly by

using the solver at each time step yielding

Cv
T n+1

−T n

∆t
= ∇ · Dn∇Tn+1 − αTn+1

δ = Dn, σ = −α − Cv

∆t
Tn, f = −Cv

∆t
Tn

(3)

where Cv is the specific heat, T is temperature represented at

the nodes, D is the heat conductivity, and α is the absorptivity.

The variables δ, σ, and f are the diffusion equation parameters

from (1). Similarly the diffusion approximation to radiation

transport can be implicitly time evolved yielding

E
n+1

R
−En

R

∆t
= ∇ · λ( c

κr
)∇En+1

R + κ̃p(B
n − cEn+1

R )

Cv
T n+1

−T n

∆t
= −κ̃p(B

n − cEn+1
R )

δ = λ( c
κr

), σ = −κ̃pc −
1

∆t
, f = − 1

∆t
− κ̃pB

n

(4)

where ER is the radiation energy represented at the nodes,

λ is a function used to impose flux limiting on the diffusion

approximation, c is the speed of light, κr is the Rosseland

opacity, κ̃P is a modification to Planck opacity which is used

to linearize the equation as in [23], and B is the blackbody

intensity.

3) Parallel Issues: This diffusion solver and accompanying

physics modules have been put through a variety of unit tests,

accuracy checks, validation studies, and performance analyses

some of which can be found in [10]. The solver performs well

in all of these tests, however, when employed to solve larger

parallel problems in 3D, the solver performance often degrades

to the point that it is unusable. To illustrate this problem

we report some timing data we gathered while attempting to

understand this problem on a 3D point explosion simulation

with a uniform 2-level AMR mesh.

As this table shows, the solver performance can be reason-

able in some situations as with the 27x27x27 mesh, and be

terrible in other situations as with the 81x81x81 mesh. The

performance also seems to be reasonable with only 1 CPU

allocated to the problem, but becomes rapidly worse as more

CPUs are added.

In order to better understand this problem, we use

Open—SpeedShop, a performance analysis tool developed



wall clock time (s)

number of CPUs 27x27x27 mesh 81x81x81 mesh

1 21 73

2 15 420

4 9 816

8 7 960

TABLE II
WALL CLOCK TIMINGS OF THE ALE-AMR CODE SOLVING THE POINT

EXPLOSION PROBLEM ON A 2-LEVEL AMR MESH. USING THE 27x27x27

MESH, THE PERFORMANCE IS QUITE REASONABLE. HOWEVER, WHEN

USING THE 81x81x81 MESH WITH MORE THAN 1 CPU, PERFORMANCE IS

SERIOUSLY DEGRADED.

by the Krell institute and recently installed at the NERSC

facility. This tool instruments a code to gather data on how

often a program is executing different areas of the code,

as well as collecting data on characteristics like time spent

in parallel communication. Using this data it is possible to

gain insight into where a program is spending the most wall

clock time and the resources that each part of the program

consumes. Specifically, we ran ’usertime’ experiments in

Open—SpeedShop and viewed the ’hot called path’ of the

ALE-AMR both for normal and degraded performance. The

hot call path is the call stack of the program that is most

often encountered, and a good indicator of the code bottleneck.

Below we provide hot call path data that we obtained from

these experiments Figure 10. This data turns out to be quite

illuminating, as it seems that in the degraded case the program

is spending most of the wall clock time in HYPRE during the

preconditioner formation. The normal case spends most of the

time constructing and evaluating Jacobians which we expect

to have a high computational cost in any FEM, and may be a

future target for optimization in the ALE-AMR code.

These results suggest that we need to understand what is

happening inside of HYPRE that is causing such performance

degradation. Fortunately, HYPRE has some options that can

give us a glimpse into how it is operating. We began enabling

debug messages to get a better sense of what HYPRE is

doing. This quickly told us that the solver iteration count was

not changing significantly between the normal and degraded

simulation cases. This implies that the time spent per HYPRE

iteration is drastically different in the two cases. This leads us

to consider the possibility that the systems being formed in the

degraded case are in some way far more expensive to solve. In

order to better understand this possibility we modified ALE-

AMR to output the system A matrix and plot the sparsity

pattern. We also set up Euclid to print out the matrix it is

generating for the preconditioner. These sparsity plots show

that the preconditioner matrix has a large amount of non-zero

fill. This can be a manageable problem in serial since there

is no communication to worry about. However, in parallel

this large amount of non-zero fill can be devastating as many

of the new non-zeros will require communication during the

preconditioner formation.

At this point, we must better understand how the Euclid

preconditioner works in order to illuminate what is occurring

Fig. 10. Hot call path obtained by the Open—SpeedShop tool. This represents
a case where the program is running with the degraded performance issue.

in the degraded case. One method for the solution of a linear

system with a matrix A is to decompose the matrix into lower

and upper triangular parts L and U so that A = LU . Using this

decomposition it is efficient to solve LUx = b with a simple

front and back solve technique. In 3D simulations the A matrix

can be quite large with a sizable diagonal bandwidth, which

makes computing and using this decomposition prohibitively

expensive. This is due to the fact that in computing the

LU decomposition, all of the zero values from the farthest

diagonal band to the main diagonal will be filled with non-

zeros, yielding L and U matrices with little sparsity.

The Euclid approach to this problem is to form Incomplete

L̃ and Ũ (ILU) approximations that maintain some degree of

sparsity. The simple front and back solve technique is then

used to as the inversion operation of a preconditioner for A.

This improves the conditioning of the matrix system thereby

accelerating convergence to the solution. The trade-offs in this

approach are between the computation cost of computing and

applying the incomplete matrices and the rate of convergence

to the solution. Generally, when L̃ and Ũ are closer to the

actual L and U thus having less sparsity, the convergence is

faster, but the cost of computing and applying L̃ and Ũ is

higher.

It is now possible to consider remedies to the degraded
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Fig. 11. Sparsity plots of the A matrix and the corresponding matrix created
by Euclid for preconditioning. Notice the large amounts of additional non-zero
entries in the preconditioner.

performance issue using this understanding of the ILU al-

gorithm that is used by Euclid. The problem is caused by

excessive non-zero fill in the degraded case, so altering the

fill parameters in Euclid seems a fruitful path. As a first cut

at this problem, we simply set Euclid to disallow any non-

zero fill by using the ’level 0’ option, forcing the sparsity

of the L̃Ũ matrix to be the same as in the A matrix. This

option may not be optimal in all cases as the preconditioner

will be a more crude approximation to A and the HYPRE

solver may need more iterations to converge. However, this

approach should at least alleviate the excessive zero fill

problem. To test this understanding, we re-ran the series of

point explosion simulations on the 81x81x81 2-level AMR

mesh that previously led to degraded performance.

num. CPU wall clock time (s)

1 67

2 43

4 28

8 23

TABLE III
WALL CLOCK TIMINGS OF THE ALE-AMR CODE SOLVING THE POINT

EXPLOSION PROBLEM ON AN 81x81x81 2-LEVEL AMR MESH. IN THE

MULTIPROCESSOR CASE THE RUNTIME HAS BEEN IMPROVED

CONSIDERABLY (10X - 40X) BY SETTING THE EUCLID PRECONDITIONER

TO AVOID ANY NON-ZERO FILL.

This timing data shows that the degraded performance

has been significantly improved and the problem now scales

reasonably with the number of CPUs. Another run through

Open—SpeedShop shows that the bottleneck in this case now

resides in the Jacobian computation as was the case with non-

degraded performance. These are both indicators that the this

particular performance issue has been addressed, and barring

any other issues, the diffusion solver is ready to run large 3D
parallel simulations.
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Fig. 12. Looking at a fixed number of MPI tasks on a varying number of
processors shows the potential of running OpenMP on the idle cores.

C. Hybrid Parallelisation

Adding an effective hybrid code model is not an easy

task, and in this case consider what the benefits of such a

model would be to ALE-AMR and how one would begin its

implementation. One of the possible benefits, along with speed

up from a hybrid model is memory consumption. A recent

study, [7] in this proceedings shows that the memory reduction

due to hybrid programming with MPI can be significant.

This is likely to be more important for future architectural

designs that have more memory limited cores. However, it is

also known that sometimes adding a hybrid model to a code

can actually slow the code down rather than improving the

performance [6]. As part of choosing where to start adding

hybrid code and to gauge its usefulness, we have performed

the following simple experiments. We take some standard

cases of running the ALE-AMR code with a fixed number

of MPI tasks. We then look at how the code performs with

the same number of MPI tasks, yet with more and more

cores (or nodes). The idea is that if the code slows down

as more cores are added, the OpenMP implementation would

have to be extremely efficient to overcome the degradation.

However, if the code actually speeds up when more nodes or

cores (unused cores) are available, then this code is a good

candidate for hybrid speedup. The hybrid benefit would then

be a combination of the speedup attained by simply adding

more cores (fixed number of MPI tasks) and the new OpenMP

parallelisation.

Adding the OpenMP hybrid model to an existing code can

be a daunting task. Thus, we are exploring ways in which to

make this process easier.

In considering utilizing shared memory parallelism in ALE-

AMR, we first consider optimizing the SAMRAI (Structured

Adaptive Mesh Refinement Infrastructure) software library.

ALE-AMR utilizes SAMRAI for underlying functions of re-

finement/coarsening, load balancing, and MPI communication

of mesh patch elements. While the overlying ALE-AMR code-

base defines computationally intensive physics algorithms, it

relies completely on SAMRAI for the interprocess tier, and

its parallelization can yield considerable benefits to overall



application performance.

D. The ROSE Compiler Framework

The ROSE tool kit [22] is a sophisticated and comprehen-

sive infrastructure to create custom source-to-source trans-

lators developed at LLNL by Daniel J. Quinlan et al.. It

provides mechanisms to translate input source code into an

intermediate representation, called the Abstract Syntax Tree

(AST), libraries to traverse and manipulate the information

stored in the AST, as well as mechanisms to transform the

altered AST information back into valid source code. The

AST representation and the supporting data structures make

exploiting knowledge of the architecture, parallel commu-

nication characteristics, and cache layout straightforward in

the specification of transformations. Due to its efficient con-

struction and (static) analysis capabilities of the intermediate

representation, ROSE is especially well suited for analyzing

large scale applications, which has been a central design goal

for this compiler framework. In addition, ROSE is particularly

well suited for building custom tools for program optimiza-

tion, arbitrary program transformation, domain-specific opti-

mizations, complex loop optimizations, performance analysis,

software testing, OpenMP automatic parallelization and loop

transformations, and (cyber-)security analysis. Further, a large

number of program analyses and transformations have been

developed for ROSE. They are designed to be utilized by

users via simple function calls to interfaces. The program

analyses available include call graph analysis, control flow

analysis, data flow analysis (live variables, data dependence

chain, reaching definition, alias analysis, etc.), class hierarchy

analysis, data dependence and system dependence analysis.

ROSE’s automatic parallelization tool, autoPar, is capable of

multithreading sequential C and C++ code by analyzing for-

loops and amending them with OpenMP pragmas. autoPar

operates on the source code build tree in place of the compiler,

generating translated source files, and compiling and linking

the executable.

E. First Autotuning attempts

Our initial attempts at automatically multithreading SAM-

RAI have been unsuccessful, and have uncovered several

limitations in the current version of autoPar. The autoPar

tool incorrectly translats class name and namespace scope

resolution in SAMRAI’s C++ code. This is not a complete

surprise, especially considering that SAMRAI’s more than 230

thousand lines of C++ code exploits many modern software

design and implementation techniques. Since autoPar is an

evolving part of ROSE, the ROSE development team has

gladly accepted test cases resulting from these initial attempts,

to further improve autoPar. Figure 13 shows the lines of code

and languages in ALE-AMR and the SAMRAI library.

Using autoPar on SAMRAI is a reasonable starting point

due to the fact that SAMRAI is a third-party software library

to be used by client parallel applications. Designed to be

general use code, it promises to be more easily parallelized

than ALE-AMR. However, considering that SAMRAI is 230

Fig. 13. Breakdown of the programming languages used in the ALE-AMR
code and those used in the SAMRAI library for particular releases of the
codes.

thousand lines of C++ code while ALE-AMR is 130, it is

worth investigating the possibility of using autoPar on ALE-

AMR itself.

V. CONCLUSIONS

In this paper we show how significant performance improve-

ment is possible on three different large application codes

by a variety of techniques. We emphasize that these are real

full application codes, and not reduced synthetic or otherwise

adjusted benchmark codes. For the magnetic fusion code, GTS,

we show that overlapping communication and computation is

a very promising approach for a hybrid (MPI + OpenMP)

code that is already optimized. For the quantum chemistry

code, Q-Chem, we show the benefit of using GPU’s for

matrix matrix multiplications and overlapping data transfers

from CPU memory to GPU memory with GPU computations.

For the fluids/material science code, ALE-AMR, we show

the importance of profiling matrix-solver libraries and studied

options in adding threading (OpenMP) to this MPI-only code

including issues associated with using an automated source-

to-source translating compiler.
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