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Abstract

Network processors use increasingly heterogeneous
processing resources to meet demands in performance
and flexibility. These general-purpose processors, co-
processors, and hardware accelerators pose a challenge
to the software developer as application components
need to be mapped to the appropriate resource for op-
timal performance. To simplify this task, we provide
a methodology to automatically derive an architecture-
independent application representation from a run-time
instruction trace. This is done by considering data and
control dependencies between each instruction of the
trace. By using a novel clustering algorithm, called
maximum local ratio cut, we group the instructions ac-
cording to their dependencies and mutual cohesiveness.
The resulting annotated directed acyclic graph (ADAG)
gives insights into the application behavior and its
inherent parallelism (multiprocessing vs. pipelining).
The ADAG can further be used to map and schedule
the application to a network processor system.

1 Introduction

Computer networks have progressed from simple store-
and-forward communication networks to more com-
plex systems. Packets are not only forwarded, but
also processed on routers in order to be able to im-
plement increasingly complex protocols and applica-
tions. Examples for such processing are network
address translation (NAT) [8], firewalls [22], web
switches [3], TCP/IP offloading for high-performance
storage servers [12], and encryption for virtual private
networks (VPN).

To handle the increasing functional and perfor-
mance requirements, router designs have moved
away from hard-wired ASIC forwarding engines.
Instead, software-programmable network processors
(NPs) have been developed in recent years. These NPs

are typically single-chip multiprocessors with high-
performance I/O components. A network processor is
usually located on each input port of a router. Packet
processing tasks are performed on the network proces-
sor before the packets are passed through the router
switching fabric and on to the next network link. This is
illustrated in Figure 1. Commercial examples for such
systems are the Intel IXP2800 [15], IBM PowerNP [1],
and EZchip NP-1 [10].

Due to the performance demands on NP systems, not
only general-purpose RISC processor cores are used,
but also a number of specialized co-processors. It is
quite common to find coprocessors for checksum com-
putation, address lookup, hash computation, encryption
and authentication, and memory management func-
tions. This leads to network processor architectures
with a number of different processing resources. The
trend towards more heterogeneous NP architectures
will continue with the advances in CMOS technology
as an increasing number of processing resources can
be put on an NP chip. This allows for NP architectures
with more co-processors; particularly those which im-
plement more specialized, less frequently used func-
tions.

The heterogeneity of NP platforms poses a partic-
ularly difficult problem for application development.
Current software development environments (SDKs)
are already difficult to use and require an in-depth un-
derstanding of the hardware architecture of the NP sys-
tem (something that traditionally has been abstracted
by SDKs). Emerging NP systems with a large number
of heterogeneous processing resources will make this
problem increasingly difficult as the program developer
will have to make choices on which hardware units to
use for which tasks. Such decisions can have signif-
icant impact on the overall performance of the system
as poor choices can cause contention on resources. One
way to alleviate this problem is to profile and analyze
the NP applications and make static or run-time deci-



sions on how to assign processing tasks to a particular
NP architecture. This process of identifying and map-
ping processing tasks to resources is the topic of this
paper.

Our approach to this problem is to analyze the run-
time characteristics of NP applications and develop
an abstract representation of the processing steps and
their dependencies. This creates an “annotated acyclic
directed graph” (ADAG), which is an architecture-
independent representation of an application. The an-
notations indicate the processing requirements of each
block and the strength of the dependency between
blocks. The basic idea is that we build the application
representation “bottom-up.” We consider each individ-
ual data and control dependency between instructions
and group them into larger clusters, which make up the
ADAG. The ADAG can then be used to determine an
optimal allocation of processing blocks to any arbitrary
NP architecture. Our contributions are:

1. A methodology for automatically identifying pro-
cessing blocks from a run-time analysis of NP ap-
plications.

2. An algorithm to group “cohesive” processing
blocks into processing clusters and a heuristic to
efficiently approximate this NP-complete prob-
lem. The result is an application graph (ADAG)
that is an architecture-independent description of
the processing requirements.

3. A mapping (or “scheduling”) algorithm to dynam-
ically allocate processing clusters to processing
resources on arbitrary network processor architec-
tures.

We present the results for all these points using four re-
alistic applications. One of the key points of this work
is that the ADAG can be created completely automati-
cally from a run-time instruction trace of the program
on a uni-processor system.

The results from this work can help in a number
of ways. The ability to identify cohesive processing
blocks in a program is crucial to support high-level
programming abstractions on heterogeneous NP plat-
forms. Also, quantitative descriptions of the processing
steps in terms of processing complexity and amount of
communication between processing steps are the ba-
sis for any efficient scheduling. Further, the ADAG
representation of an application gives very intuitive in-
sights into the type of parallelism present in the appli-
cation (e.g., multiprocessing vs. pipelining). Finally,
the proposed scheduling algorithm can map packets at
run-time to processing resources, which is superior to
static approaches, which are dependent on an a-priori
knowledge of traffic patterns.

In Section 2, we briefly discuss related work. Sec-
tion 3 discusses the run-time analysis of NP applica-
tions and how we obtain the necessary profiling infor-
mation. To get from the profiling information to an
ADAG representation, we use a clustering algorithm
that is discusses in Section 4. The results of the appli-
cation analysis and the resulting ADAGs are presented
for four applications in Section 5. The scheduling algo-
rithm that maps the ADAGs to processing resources is
presented in Section 6. Finally, Section 7 summarizes
and concludes this paper.

2 Related Work

There has been some work in the area of application
analysis and programming abstraction for network pro-
cessors. Shah et al. have proposed NP-Click [29] as an
extension to the Click modular router [18] that provides
architecture and program abstractions for network pro-
cessors. This and similar approaches require an a-priori
understanding of application details in order to derive
application modules. The problem with this approach
is twofold:

• It assumes that the application developer can iden-
tify all application properties, which requires a
deep understanding and careful analysis of the ap-
plication. This will become an increasing problem
as programming environments for network pro-
cessors move towards higher-level and more com-
plex abstractions. In such systems the application
developer has less understanding on how a piece
of code can be structured to match the underlying
hardware infrastructure.

• No run-time information involved in application
analysis. This is a crucial piece of information to
use in making scheduling decisions. Using static
application information only biases the results to-
wards particular programming abstractions.

Therefore, we feel that it is crucial that application
characteristics can be derived automatically as we pro-
pose in our work.

In NEPAL [21], Memik et al. propose a run-time
system which controls the execution of applications on
a network processor. Applications are separated into
modules at the task level using the NEPAL API and
modules are mapped to execution cores dynamically.
There is an extra level of translation during which the
application code is converted to modules. We avoid
this translation and work directly with the dynamic in-
struction trace to generate basic blocks at a fine grained
level.
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Figure 1: Packet Data Path on Network Router. Packets are shown as shaded boxes. Packet processing is
performed on a network processor that is located at the input port of the system. The NP has a number of
heterogeneous processing resources (processors cores and co-processors).

The problem of partitioning and mapping applica-
tions has been studied previously in the context of grid
computing. Kenjiro et al. [30] present an approach that
is similar to ours, but is used at a very high level to map
an application on several heterogeneous computing re-
sources on the Internet.

Our work is similar to some of the ideas used in trace
scheduling [11] and superblocks [13], but is applied to
a different domain. Trace scheduling aims to generate
optimized code for VLIW architectures by exploiting
more instruction level parallelism. Linear sequences of
basic blocks are grouped to form larger basic blocks
and dependencies are updated. We use a clustering al-
gorithm for this purpose which works on a dynamic
instruction trace after all basic blocks have been iden-
tified.

The exploration of application characteristics, mod-
ularization, and mapping to resources has also been
studied extensively in the context of multi-processor
systems. An example for scheduling of DAGs on mul-
tiprocessors is [20]. In the network processing envi-
ronment, applications are much smaller and a more
careful analysis can be performed. The bottom-up ap-
proach that we propose in Section 4 is not feasible for
very large applications, but yields very detailed appli-
cation properties for packet processing functions. An-
other difference between multiprocessors and NPs is
that NPs aim at achieving high throughput rather than
short delay in execution.

Mapping and scheduling of DAGs or task graphs has
been surveyed by Kwok et al. in [19] and we propose a
scheduling algorithm similar to that introduced by El-
Rewini et al. in [9]. The main difference in both cases

is that we are considering at a heterogeneous process-
ing platform, where tasks can take different amounts of
processing time (e.g., depending on the use of general-
purpose processors vs. co-processors). Similar algo-
rithms have also been used in the VLSI CAD area.
Clustering approaches similar to ours have been sur-
veyed by Alpert et al. in [2]. The methodology of clus-
tering functionality proposed by Karypis et al. in [16]
is similar to ours, but applied to the VLSI domain.

3 Application Analysis

Our goal is to generate workload models that can be
used for network processor scheduling independent of
the underlying hardware architecture. There are a num-
ber of approaches that have been developed for multi-
processor systems, real-time systems, and compiler op-
timization that characterize applications, and our ap-
proach uses some of these well-known concepts. The
main difference is that network processing applications
are very simple and execute a relatively small num-
ber of instructions (as compared to workstation appli-
cations). This allows us to use much more detailed
analysis methods that would be infeasible for large pro-
grams. Also, there are a few issues that are specific
to the NP domain and usually are not considered for
workstation applications. When exploiting parallelism
in NP applications, we do not necessarily have to use
multiple parallel processors for one packet, but we can
also use pipelining. Additionally, the heterogeneity of
processing resources requires that we can identify the
portions of an application that can be executed on spe-
cialized co-processors.



3.1 Static vs. Dynamic Analysis

One key question is whether to use a static or a dynamic
application analysis as the basis for this work. With
a static analysis, detailed information about every po-
tential processing path can be derived. All processing
blocks can be analyzed – even the ones that are not or
hardly used during run-time. A static analysis typically
results in a “call-graph,” which shows the static con-
trol dependencies (i.e., which function can call which
other function). This gives a good basic understand-
ing of the application structure, but does not yield any
information on its run-time behavior. But run-time be-
havior is exactly what is crucial for network processor
performance.

A run-time analysis of the application (e.g., an in-
struction trace) shows exactly which instructions were
executed and which instruction blocks were not used
at all. In addition, all actual load and store addresses
are available, which can be used for an accurate data
dependency analysis. The drawbacks of run-time anal-
ysis is that each packet could potentially cause a differ-
ent sequence of execution. In a few cases certain blocks
are executed a different number of times depending on
the size of the packet (we show this effect below in the
context of packet encryption). Thus, the results are spe-
cific to a particular packet.

We have chosen to follow the path of run-time anal-
ysis due to the fact that it more accurately reflects the
actual processing as well as provides actual load and
store addresses, which are important when determining
data dependencies. To address the issue of variations
in network traffic processing even within the same ap-
plication (e.g., different packet services or number of
loop executions), there are several solutions. One is
to assume the packet uses the most common execution
path and if not an exception is raised and processing
is continued on the control processor. This is currently
done on some network processors (e.g., if IP options
are detected in an IP forwarding application). Another
approach is to analyze a large number of packets and
find the union of all execution paths. By scheduling the
union on the network processor system it is guaranteed
that all packets can be processed, but the drawback is a
lower system utilization as not all components will be
used at all times. In this work, we focus on the analysis
of a single packet for each application with the under-
standing that the work can be extended to consider a
range of network traffic.

Another issue that arises from a run-time analysis is
that it necessarily is done on compiled code. This intro-
duces a certain bias towards a particular compiler and
instruction set architecture. In our analysis, we only
used compiler optimizations that are independent of the

target system (e.g., no loop unrolling). Together with
the use of a general RISC instruction set, the assump-
tion is that the analysis yields results that are generally
applicable to most processing engines in current net-
work processors.

3.2 Annotated Acyclic Directed Graphs

The result of the application analysis needs to yield
an application representation that is independent of the
underlying architecture and can later be used for map-
ping and scheduling. For this purpose, we use an anno-
tated directed acyclic graph, which we call ADAG. The
ADAG represents processing steps (or blocks) as ver-
tices and dependencies as edges. The processing steps
are dynamic processing steps, i.e., they represent the
instructions that are actually executed and loops cause
the generation of processing blocks for each iteration.
Only by considering the dynamic instances of each pro-
cessing block can we obtain an acyclic graph. Also, it
is desirable to only consider the instructions that are
actually executed rather than any “dead code.” The de-
pendencies that we consider are data dependencies as
well as control dependencies. There are two key pa-
rameters in an ADAG:

• Node weights: These indicate the amount of pro-
cessing that is performed on each node (e.g., num-
ber of RISC instructions).

• Edge weights: These indicate the amount of state
that is transferred between processing blocks.

Such an ADAG fully describes the processing and com-
munication relationship for all processing blocks of an
application.

3.3 Application Parallelism and Depen-
dencies

In order to make use of the parallelism in a net-
work processor architecture, the ADAG should have as
few dependencies between processing blocks as possi-
ble. This increases the potential for parallelizing and
pipelining processing tasks. At the same time, depen-
dencies that are inherent to the application must not be
left out to assure a correct representation.

We consider the following dependencies in our run-
time analysis:

• Data dependencies: If an instruction reads a cer-
tain data location then it becomes a dependent to
the most recent instruction that wrote to this lo-
cation. Note that any type of memory, including
registers, needs to be considered.



• Control dependencies: If a branch occurs due to
a computation (i.e., a conditional branch) then the
branch target is dependent on the instructions that
compute the condition for the branch. Note that
unconditional branches do not cause dependencies
as they are static and any potential dependencies
between two blocks would be covered by data de-
pendencies.

Note that the above dependencies do not include
anything related to resources. Resource conflicts are
results of the underlying hardware and not a property
of the application and thus not considered. Also other
“hazards” (e.g., write-after-read (WAR)) do not need
to be considered, because the run-time trace is a cor-
rect execution of the application where all hazards have
been resolved ahead of time.

The result of the dependency analysis is an annotated
run-time trace as shown in Figure 2. The trace sample
is taken from an IPv4 forwarding implementation (de-
tails can be found below in the Section 5). As is shown
in Figure 2, data dependencies are tracked across reg-
isters as well as memory locations. Also, control de-
pendencies between basic blocks are shown. Note that
the resulting graph is directed and acyclic since depen-
dencies can only “point downward” (i.e., no instruction
can ever depend on a later instruction).

Since the dependencies are limited to the absolute
necessary dependencies (i.e., data and control), we get
a DAG that is as sparse as possible and thus exhibits the
maximum amount of parallelism. By focusing on these
dependencies only, it is possible to find parallelism in
the application despite the serialization that was intro-
duced by running it on a uni-processor simulator.

Note that the analysis is done as a post-processing
step of an instruction trace from simulation. This trace
contains effective memory addresses and information
about all status bits that are changed during execution.
This means that there is no need for memory disam-
biguation.

3.4 ADAG Reduction

A practical concern of this methodology is that the
number of processing blocks is large (in the order of
the total instructions executed) and the representation
of the DAG becomes unwieldy. Therefore, we take a
simplifying step that significantly reduces the number
of processing steps: instead of considering individual
instructions, we consider basic blocks. A basic block
is a group of instructions that are executed in sequence
and has no internal control flow change. That is, the
execution of a program can only jump to the beginning
of a basic block and cannot jump somewhere else until

the end of the basic block is reached. Still, all neces-
sary dependencies are considered, but the smallest code
fragment that can be parallelized or pipelined is a ba-
sic block. In Figure 2, basic blocks are separated by
dashed lines.

Even with a reduction to basic blocks, the resulting
ADAG is not a suitable representation of an applica-
tion, because it does not capture any higher-level appli-
cation properties. The dependency between processing
blocks can be very different depending on the nature
of the application. Most applications show a “natu-
ral” separation between parts of the application (e.g.,
checksum verification and destination address lookups
in IP forwarding), while showing a strong dependency
within a particular part (e.g., all basic blocks of check-
sum computation). In order to consider such “cluster-
ing,” we further reduce the ADAG with the algorithm
described in the following section.

4 ADAG Clustering Using Maxi-
mum Local Ratio Cut

When assigning processing steps to a network proces-
sor architecture, there are several points that need to
be considered. Most of all, there is a tradeoff between
the cost of processing (or the speedup that is gained by
using a co-processor) and the cost of communication.
This implies that it is not desirable to offload small pro-
cessing blocks to co-processors, especially when this
requires a large amount of communication.

The ADAG generation above results in a graph with
thousands of basic blocks. The dependencies between
them can cause a large amount of communication if the
basic blocks were to be distributed to different compu-
tational resources. Thus, using the above ADAG di-
rectly for workload mapping is not suitable. Instead,
we want to reduce the number of processing compo-
nents in the ADAG to yield a more natural, tractable
grouping of processing instructions. For this purpose,
we use a clustering technique called “ratio cut” [32].
Ratio cut has the nice property of identifying “natu-
ral” clusters within a graph without the need for a-priori
knowledge of the final number of clusters.

The ratio cut algorithm is unfortunately NP-
complete and thus not tractable for ADAGs with the
number of nodes that we need to consider here. There-
fore, we propose a heuristic that is based on ratio cut
and reduces the computational complexity while still
achieving good results. Our heuristic is called “maxi-
mum local ratio cut” (MLRC).



Inst.-#   Address    Instruction Effective Address
...
129 33557096 : ldrb  r3,[r4,#8] : 0x33977912
130 33557100 : cmp  r3,#0 : 0x--------
131 33557104 : bne  0x2000aa4 : 0x--------
132 33557156 : sub  r3,r3,#1 : 0x--------
133 33557160 : strb  r3,[r4,#8] : 0x33977912
134 33557164 : mov  r2,#65280 : 0x--------
135 33557168 : ldr  r3,[r4,#8] : 0x33977912
136 33557172 : add  r2,r2,#254 : 0x--------
137 33557176 : mov  r3,r3, lsr #16 : 0x--------
138 33557180 : cmp  r3,r2 : 0x--------
139 33557184 : mov  r2,#1 : 0x--------
...

Figure 2: Instruction Trace Analysis Example. Data dependencies between writes and reads in registers and
memory locations are shown. Also, control dependencies for conditional branches are shown.

4.1 Clustering Problem Statement

Before discussing the algorithm, let us formalize the
problem that we address here. The ADAG, An =
(Pn,Dn), consists of a “processing vector,” Pn, and a
“dependency matrix,” Dn. The processing vector con-
tains the number of instructions that are executed in
each of the n processing blocks. The dependency ma-
trix contains the data values that need to be transferred
between each pair of blocks. If dij is non-zero, the
block i depends on block j because it reads dij data
values that are written by block j. (Control dependen-
cies are considered to be one-value dependencies.) The
n blocks in An are ordered in such a way that the upper
right of the dependency matrix is zero, which ensures
that An is a directed acyclic graph. Thus, we have:

An = (Pn,Dn) with Pn = (p1, . . . , pn) and

Dn =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0

d21
. . .

...
...

. . .
. . .

...
dn1 · · · dnn−1 0

⎞
⎟⎟⎟⎟⎠

(1)

The goal of the clustering process is to generate a
new ADAG, An′ , which is based on An, but smaller
(n′ < n). Sets of nodes from An can be combined
to clusters, which then become nodes in An′ . If m
nodes i1 . . . im are combined to a cluster node j, then
pj =

∑m
k=1 pik

. The nodes x on which j depends
are updated such that djx =

∑
k={i1...im} dkx. The

dependents y of j are updated accordingly to dyj =∑
l={i1...im} dyk. Basically, if nodes are clustered,

then the new cluster combines the properties of all its
nodes: the processing costs are added together and the
dependencies are combined. A clustering step can only
be performed if the resulting graph is still a directed
acyclic graph (i.e., the dependency matrix can be re-
ordered to have the upper right be zero).

This clustering can be performed repeatedly in or-
der to reduce n to the desired number of total clusters.
Next, we discuss ratio cut, which is an algorithm to de-
termine which nodes should be clustered and how many
clusters the final solution contains.

4.2 Ratio Cut

The basic concept of ratio cut is to cluster together
nodes that show some natural “cohesiveness,” as de-
scribed in detail in [32]. In our context, ratio cut clus-
ters instruction blocks together such that

• clusters perform a significant amount of process-
ing and

• clusters have little dependencies between them.

The metric to determine these properties is the ratio cut,
rij , for two clusters i and j, which is defined as1:

rij =
dij + dji

pi × pj
. (2)

The ratio cut algorithm will cluster the graph such that
rij is minimized. This means the dependencies between
i and j are small and the amount of processing that is
done i and j is large. Note that either dij or dji has to
be zero due to the acyclic property of an ADAG.

Ratio cut operates in a top-down fashion. Starting
from one cluster that contains all nodes (i.e., A1), the
ratio cut is applied to find two groups that minimize
rij . Then this process is applied recursively within
each group. With each recursion step, the minimum
ratio cut value will increase (because the clusters will
have less and less clear separations). The clustering
process can be terminated when the ratio cut exceeds

1The ratio cut described in [32] uses nodes of uniform size and

thus rij =
dij+dji

|i|×|j| . We are not interested in the number of blocks
that are in each cluster, but the amount of processing that is per-
formed. Thus, we adapted the definition of rij accordingly.



a certain threshold (rij > tterminate). The value of
this threshold determines how “tightly” clustered the
result is. If tterminate is small, then only few clusters
will be found, but the separations between them will
be very clear (i.e., little dependency). If tterminate is
large, then many clusters will be found (all n blocks
in the limit) and the dependencies between them can
be significant (i.e., requiring large data transfers). In
neither case, the exact number of clusters is predeter-
mined. This is why ratio cut is considered an algo-
rithm that finds a “natural” clustering that depends on
the properties of the graph (i.e., rij).

While ratio cut is an ideal algorithm for our pur-
poses, it has one major flaw. It is NP-complete (for
proof see [32]). Basically, it is necessary to consider
an exponential number of potential clusterings in each
step. This makes a practical implementation infeasi-
ble. The heuristic that have been proposed in [32] are
also not suitable as they assume and require the graph
to undirected, which is not the case for our ADAG.

To address this problem, we propose a heuristic that
uses the ratio cut metric, but is less computationally
complex.

4.3 Maximum Local Ratio Cut

Instead of using the top-down approach that requires
the exploration of a number of possible clusterings that
grows exponentially with n, we propose to use bottom-
up approach in our heuristic, which we call “maximum
local ratio cut” (MLRC). It is called “local” ratio cut,
because MLRC makes a local decision when merging
nodes. MLRC operates as follows:

1. Start with ADAG, Ai = An, that has all nodes
separated.

2. For each pair (i, j) compute the local ratio cut rij .

3. Find the pair (imax, jmax) that has the maximum
local ratio cut.

4. If the maximum ratio cut drops below the thresh-
old (rimaxjmax

< tterminate) stop the algorithm.
Ai is the final result.

5. Merge i and j into a cluster resulting in Ainew
=

Ai−1.

6. Set Ai = Ainew
and repeat steps (2) through (6).

The intuition behind MLRC is to find the pair of
nodes that should be least separated (i.e., one that has a
lot of dependency and does little processing). This pair
is then merged and the process applied recursively. As
a result, clusters will form that show a lot of internal

dependencies and little dependencies with other clus-
ters.

Of course, this is a heuristics and therefore cannot
find the best solution for all possible ADAGs. The fol-
lowing intuition argues why MLRC performs well:

• If two nodes show a large ratio between them, it
is likely that they belong to the same cluster in the
optimal ratio cut solution.

• By merging two nodes that exhibit a high local ra-
tio cut, the overall ratio cut of A is reduced (in
most cases), which leads to a better solution over-
all.

• The termination criterion is similar to that of ratio
cut and leads to a similarly “natural” clustering.

We show results for four applications in Section 5 that
show the performance of the algorithm for realistic in-
puts.

4.4 MLRC Complexity

The maximum local ratio cut algorithm has a com-
plexity that is tractable and feasible to implement.
The algorithm runs over at most n iterations (in case
tterminate is not reached until the last step). In each
iteration the ratio cut for i2/2 pairs needs to be com-
puted (which takes O(1)). Finding the maximum can
easily be done during the computation. Thus, the total
computational complexity is

n∑
i=1

i2

2
× O(1) = O(n3). (3)

The space requirement for MLRC is O(n2), which is
the same complexity that is required to represent An.
Thus, MLRC is a feasible solution to the NP-complete
ratio cut algorithm. In the following section, we show
the performance of MLRC on a set of network process-
ing applications.

5 ADAG Results

To illustrate the behavior and results of the application
analysis, we use a set of four network processing appli-
cations. We briefly discuss the tool that we use to de-
rive run-time traces and the details of the applications.
Then we show the clustering process for one applica-
tion and the final results for all four applications.
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Figure 3: PacketBench Architecture. The application
implements the packet processing functionality that is
measured. PacketBench provide support functions for
packet and memory management. The simulator gen-
erates an instruction trace for the application (and not
the framework) through selective accounting.

5.1 The PacketBench Tool

In order to obtain runtime analysis of application pro-
cessing, we use a tool called “PacketBench” that we
have developed [28]. The goal of PacketBench is to
emulate the functionality of a network processor and
provide an easy to use environment for implementing
packet processing functionality. The conceptual outline
of the tool is shown in Figure 3. The main components
are:

• PacketBench Framework. The framework pro-
vides functions that are necessary to read and
write packets, and manage memory. This involves
reading and writing trace files and placing pack-
ets into the memory data structures used internally
by PacketBench. On a network processor, many
of these functions are implemented by specialized
hardware components and therefore should not be
considered part of the application.

• PacketBench API. PacketBench provides an in-
terface for applications to receive, send, or drop
packets as well as doing other high-level opera-
tions. Using this clearly defined interface makes it
possible to distinguish between PacketBench and
application operations during simulation.

• Network Processing Application. The applica-
tion implements the actual processing of the pack-

ets. This is the processing that we are interested in
as it is the main contributor to the processing de-
lay on a router (e.g., packet classification for fire-
walling or encryption for VPN tunneling). The
workload characteristics of the application needs
to be collected separately from the workload gen-
erated by the PacketBench framework.

• Processor Simulator. To get instruction-level
workload statistics, we use a full processor sim-
ulator. In our current prototype we use Sim-
pleScalar [6], but in principle any processor sim-
ulator could be used. Since we want to limit the
workload statistics to the application and not the
framework, we modified the simulator to distin-
guish operations accordingly. The Selective Ac-
counting component does that and thereby gener-
ates workload statistics as if the application had
run by itself on the processor. This corresponds
to the actual operation of a network processor,
where the application runs by itself on one of the
processor cores. Additionally, it is possible to
distinguish between accesses to various types of
memory (instruction, packet data, and application
state), which is useful for a detailed processing
analysis.

The key point about this system design is that the
application and the framework can be clearly distin-
guished – even though both components are compiled
into a single executable in order to be simulated. This
is done by analyzing the instruction addresses and se-
quence of API calls. This separation allows us to adjust
the simulator to generate statistics for the application
processing and ignore the framework functions. This is
particularly important as network processing consists
of simple tasks that execute only a few hundred instruc-
tions per packet [33]. Also, in real network systems the
packet management functions are implemented in ded-
icated hardware and not by the network processor and
thus should not be considered part of the workload.

Another key benefit of PacketBench is the ease of
implementing new applications. The architecture is
modular and the interface between the application and
the framework is well defined. New applications can be
developed in C, plugged into the framework, and run on
the simulator to obtain processing characteristics.

In our prototype, the PacketBench executable is sim-
ulated on a typical processor simulator to get statistics
of the number of instructions executed and the number
of memory accesses made. We use the ARM [4] target
of the SimpleScalar [6] simulator, to analyze our appli-
cations. This simulator was chosen because the ARM
architecture is very similar to the architecture of the
core processor and the microengines found in the Intel



IXP1200 network processor [14], which is used com-
monly in academia and industry. The tools were setup
to work on an Intel x86 workstation running RedHat
Linux 7.3. PacketBench supports packet traces in the
tcpdump [31] format and the Time Sequenced Header
(TSH) format from NLANR [24]. The latter trace for-
mat does not contain packet payloads, so we have the
option of generating dummy payloads of the size spec-
ified in the packet header. For the experiments that we
perform in this work, the actual content of the payload
is not relevant as no data-dependent computations are
performed.

The run-time traces that we obtain from Packet-
Bench contain the instructions that are executed, the
registers and memory locations that are accessed, and
an indication of any potential control transfer. Using
these traces we build an ADAG that considers depen-
dencies among instructions as well as allows us to dis-
cover any potential parallelism. Since we make no as-
sumption on the processing order other than the depen-
dencies between data (see next subsection), we are able
to represent the application almost independently from
a particular system.

5.2 Applications

The four network processing applications that we eval-
uate range from simple forwarding to complex packet
payload modifications. The first two applications are
IP forwarding according to current Internet standards
using two different implementations for the routing ta-
ble lookup. The third application implements packet
classification, which is commonly used in firewalls
and monitoring systems. The fourth application im-
plements encryption, which is a function that actually
modifies the entire packet payload and is used in VPNs.
The specific applications are:

• IPv4-radix. IPv4-radix is an application that per-
forms RFC1812-compliant packet forwarding [5]
and uses a radix tree structure to store entries of
the routing table. The routing table is accessed to
find the interface to which the packet must be sent,
depending on its destination IP address. The radix
tree data structure is based on an implementation
in the BSD operating system [25].

• IPv4-trie. IPv4-trie is similar to IPv4-radix and
also performs RFC1812-based packet forwarding.
This implementation uses a trie structure with
combined level and path compression for the rout-
ing table lookup. The depth of the structure in-
creases very slowly with the number of entries in
the routing table. More details can be found in
[27].

• Flow Classification. Flow classification is a com-
mon part of various applications such as fire-
walling, NAT, and network monitoring. The pack-
ets passing through the network processor are
classified into flows which are defined by a 5-tuple
consisting of the IP source and destination ad-
dresses, source and destination port numbers, and
transport protocol identifier. The 5-tuple is used
to compute a hash index into a hash data structure
that uses linked lists to resolve collisions.

• IPSec Encryption.IPSec is an implementation of
the IP Security Protocol [17], where the packet
payload is encrypted using the Rijndael algorithm
[7], which is the new Advanced Encryption Stan-
dard (AES) [23]. This algorithm is used in many
commercial VPN routers. This is the only appli-
cation where the packet payload is read and mod-
ified. It should be noted that the encryption pro-
cessing for AES shows almost identical charac-
teristics as the decryption processing. We do not
further distinguish between the two steps.

The selected applications cover a broad space of typ-
ical network processing. IPv4-radix and IPv4-trie are
realistic, full-fledged packet forwarding applications,
which perform all required IP forwarding steps (header
checksum verification, decrementing TTL, etc.). IPv4-
radix represents a straight-forward unoptimized imple-
mentation, while IPv4-trie performs a more efficient IP
lookup. The applications can also be distinguished be-
tween header processing applications (HPA) and pay-
load processing applications (PPA) (as defined in [33]).
HPA process a limited amount of data in the packet
headers and their processing requirements are indepen-
dent of packet size. PPA perform computations over the
payload portion of the packet and are therefore more
demanding in terms of computational power as well as
memory bandwidth. IPSec is a payload processing ap-
plication and the others are header processing applica-
tions. The applications also vary significantly in the
amount of data memory that is required. Encryption
only needs to store a key and small amounts of state,
but the routing tables of the IP forwarding applications
are very large.

Altogether, the four applications chosen in this work
are good representatives of different types of network
processing. They display a variety of processing char-
acteristics as is shown below.

To characterize workloads accurately, it is important
to have realistic packet traces that are representative of
the traffic that would occur in a real network. We use
several traces from the NLANR repository [24] and our
local intranet. The routing table for the IP lookup ap-
plications is MAE-WEST [26].



Application Number of Number of Maximum Maximum
Basic Blocks Unique Basic Processing Dependency

(n) Blocks (max(pi)) (max(dij))
IPv4-radix 2340 375 29 40
IPv4-trie 37 28 13 11
Flow Class. 36 35 35 29
IPSec 267 93 89 82

Table 1: Results from Application Analysis.

5.3 Basic Block Results

The initial analysis of basic blocks and their dependen-
cies yields the results shown in Table 1. Ipv4-radix ex-
ecutes the most number of instructions and has by far
the most basic blocks. Note that the number of unique
basic blocks is much smaller. This is due to the fact that
many basic blocks are executed repeatedly during run-
time. For Flow Classification almost all basic blocks
are different indicating that there are no loops.

5.4 Clustering Results

Using the MLRC algorithm, the basic block ADAG
is step-by-step decreased in size. Figure 4 shows the
last 10 (A10 . . . A1) steps of this process for the Flow
Classification application. In each cluster, the name
of the cluster (e.g., c0) and the processing cost (e.g.
25) are shown. The edges show the dependency be-
tween clusters (number of data transfers). Note that the
cluster names change across figures due to the neces-
sary renaming to maintain DAG properties (zeros in up-
per right of dependency matrix). The start nodes (i.e.,
nodes that are not dependent on any other nodes) are
shown as squares. The end nodes (i.e., nodes that have
no dependents) are shown with a thick border. The fol-
lowing can be observed:

• Aggregation of nodes causes the resulting cluster
to have a processing cost equal to the sum of the
nodes.

• Edges are merged during the aggregation.

• The number of “parallel” nodes decreases as the
number of clusters decreases.

The first two observations follow the expected be-
havior of MLRC. The third observation is more in-
teresting. The reduction in parallelism means that an
application that has been clustered “too much” cannot
be processed efficiently and in parallel on a network
processor system. Therefore it is crucial to determine
when to stop the clustering process.

In Figure 5, the progress of two metrics in the MLRC
is shown for all four application. The plots show the
value of the maximum local ratio cut (“local ratio cut”)
and the number of “parallel” nodes. The local ra-
tio cut value decreases with fewer clusters – as is ex-
pected. In a few cases, the local ratio cut value in-
creases after a merging step. This is due to MLRC
being a heuristic and not an optimal algorithm. The
initial local ratio cut value is 1. For our applications,
this is the worst case (e.g., occurring when there are
two one-instruction blocks with one dependency) since
there cannot be more dependencies than instructions.
The number of parallel nodes is derived by counting
the number of nodes that have at least one other node
in parallel (i.e., there is no direct or transitive depen-
dency). These nodes could potentially be processed
in parallel on an NP system. Eventually this value
drops to zero. For IPv4-trie, and Flow Classification,
this happens at around 5 clusters, for IPv4-radix at 20
clusters, and for IPSec at around 50 clusters. This in-
dicates that IPv4-radix and IPSec are applications that
lend themselves more towards pipelining than towards
parallel processing.

5.5 Applications ADAGs

Figure 6 shows the ADAGs A20 for all four applica-
tions (independent of tterminate. We can observe the
following application characteristics:

• IPv4-radix is dominated by the lookup of the des-
tination address using the radix tree data struc-
ture. This traversal of the radix tree causes the
same loop to execute several times. Since we con-
sider run-time behavior, each loop instance is con-
sidered individually. The patterns of processing
blocks with 330, 181, 195, and 136 instructions in
A20 show these instruction blocks. Another ob-
servation is that the lack of parallelism between
blocks is indicative of the serial nature of an IP
lookup. Even though the same code is executed,
there are data dependencies in the prefix lookup,
which are reflected in the one-data-value depen-



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4: Sequence of ADAG Clustering. ADAG for Flow Classification is shown for 10 to 1 clusters. Each
node shows the processing cost of the cluster and its name (e.g. 25 instructions for cluster c0 in (a)). Note that
the clusters are renamed with each merging step.
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Figure 5: Local Ratio Cut Algorithm Behavior.



(a) IPv4-radix (b) IPv4-trie (c) Flow Classification (d) IPSec

Figure 6: ADAGs for Workload Applications.



dencies shown in Figure 6.

• IPv4-trie implements a simpler IP lookup than
IPv4-radix. The lookup is represented by the se-
quence of clusters three to nine with mostly five-
data-value dependencies. IPv4-trie exhibits more
parallelism, but still is dominated by the serial
lookup.

• Flow Classification has two start nodes and a num-
ber of end-nodes, where processing does not have
any further dependents. These are write updates to
the flow classification data structure. Altogether,
there is a good amount of parallelism and less se-
rial behavior than in the other applications.

• IPSec is extremely serial and the encryption pro-
cessing repeatedly executes the same processing
instructions, which are represented by the blocks
with 69 instructions and 49 or 46 data dependen-
cies going into the block. This particular exam-
ple executes the encryption of two 32-byte blocks.
The transition from the first to the second block
happens in cluster 4. This application shows no
parallelism as is expected for encryption.

5.6 Identification of Co-Processer Func-
tions

The final question for application analysis is how to
identify processing blocks that lend themselves for co-
processor implementations. There are some functions
which by default are ideal for co-processing that can
be identified by the programmer (e.g., checksum com-
putation due to its simplicity and streaming data access
nature). We want to take a different look at the problem
and attempt to identify such functions without a-priori
understanding of the application.

The ADAGs only show how many instructions are
executed by a processing block, but not which instruc-
tions. In order to identify if there are instruction blocks
that are heavily used in an application, we use the plots
shown in Figure 7. The x-axis shows the instructions
that are executed during packet processing. The y-axis
shows each unique instruction address observed in the
trace. For example, in IPSec, the 400th unique instruc-
tion is executed sixteen time (eight times between in-
struction 500 and 1000 and eight times between 1500
and 2000).

Figure 7 is a good indicator for repetitive instruc-
tion execution. For Flow Classification, there are al-
most no repeated instructions. In IPSec, however, there
are several instruction blocks that are executed multi-
ple times (sixteen times for instructions with unique

address 350 to 450). If these instructions can be im-
plemented in dedicated hardware, a significant speed-
up can be achieved due to the high utilization of this
function.

Again, this method of co-processing identification
requires no knowledge or deep understanding of the ap-
plication. Instead the presented methodology extracts
all this information from a simple instruction run-time
trace. One problem with this methodology is that pro-
cessing blocks that execute non-repetitive functions are
not identified as suitable for co-processors, even though
they could be (as it is the case for Flow Classification).
Such functions still need to be identified manually by
the programmer.

6 Mapping Application DAGs to
NP Architectures

Once application ADAGs have been derived, they can
be used in multiple ways. One way of employing the
information from ADAGs is for network processor de-
sign. With a clear description of the workload and its
parallelism and pipelining characteristics, a matching
system architecture can be derived. Another example
is the use of application ADAGs to map instruction
blocks to NP processing resources. In this section, we
discuss this mapping and scheduling in more detail.

6.1 Problem Statement

The mapping and scheduling problem is the following:
Given a packet processing application and a heteroge-
neous network processor architecture, which process-
ing task should be assigned to which processing re-
source (mapping) and at what time should the process-
ing be performed (scheduling)?

For this problem, we assume that a network pro-
cessor has m different processing resources r1 . . . rm.
These processors can be all of the same kind (e.g., all
general-purpose processors) or can be a mix of general-
purpose processors and co-processors. All processing
resources are connected with each other over an in-
terconnect. Transferring data via the interconnect in-
curs a delay proportional to the amount of data trans-
ferred. Thus, if the application uses multiple resources
in parallel, the communication cost for the data transfer
needs to be considered.

An application is represented by an ADAG with n
clusters c1 . . . cn and their processing costs and de-
pendencies. Since we have processing resources with
different performance characteristics, the processing
cost for a cluster is represented by a vector pi =
(pi1, . . . pim). This vector contains the processing cost
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Figure 7: Detailed Instruction Access Patterns of a Single Packet for Flow Classification and IPSec from the
MRA Trace.

for the cluster for each possible processing resource. If
a cluster cannot be executed on a particular processing
resource (e.g., checksum computation cannot be per-
formed on a table-lookup co-processor, the processing
cost is ∞).

The mapping solution, M , consists of n pairs that
indicate the assignment of all clusters c1 . . . cn to a re-
source ri: M = ((c1, ri1) . . . (cn, rin

)). The schedule,
S, is similar, except that is also contains a time t that
indicates the start time of the execution of a cluster on
a resource: S = ((c1, ri1 , t1) . . . (cn, rin

, tn)).
Finally, a performance criterion needs to be defined

that is used to find the best solution. This could be
shortest delay (i.e., earliest finish time of last cluster)
or best resource usage (i.e., highest utilization of used
resources) etc. We use minimum delay in our example.

Unfortunately, this problem, too, is NP complete.
Malloy et al. established that producing a schedule for
a system that includes both execution and communica-
tion cost is NP-complete, even if there are only 2 pro-
cessing elements [20]. Therefore we need to develop a
heuristic to find an approximate solution.

Mapping of task graphs to multiprocessors has been
researched extensively and is surveyed by Kwok et al.
in [19]. However, most of the previous work is tar-
geted for homogeneous multiprocessor systems. Here,
we consider the mapping of ADAGs onto a set of het-
erogeneous processing resources.

6.2 Mapping Algorithm

In our example, we consider the mapping of a single
ADAG onto the processing resources. The goal is to
map it in such a way as to minimize the overall finish

time of the last cluster. This mapping also yields maxi-
mum use of the application’s parallelism. We only con-
sider one packet in this example, but the approach can
easily be extended to consider the scheduling of multi-
ple packets.

There are two parts to our mapping and scheduling
algorithm. First, we identify the nodes that are most
critical to the timely execution of the packet (i.e., the
nodes that lie on the critical path). For this purpose we
introduce a metric called the “criticality,” ci, of a node
i. The criticality is determined by finding the critical
path (bottom-up) in the ADAG. The criticality is deter-
mined by looking at the processing time of each clus-
ter when using a general-purpose processor (we assume
that this is resource 1). For each end node e (no chil-
dren), the criticality is just its default processing time:
ce = pe1 . For all other nodes i, the criticality is the
maximum criticality of its children plus its own pro-
cessing time: ci = max cj + pi,∀j : dji > 0.

The clusters are then scheduled in order of their criti-
cality such that each assignment achieves the minimum
increase in the overall finish time. This requires that
the current finish time of each node and resource has to
be maintained. When determining the finish time of a
cluster, fi, the finish time of all its parents (on which
it depends) needs to be considered as well as the de-
lay due to data transfers between different processing
resources over the interconnect.

Thus, the mapping and scheduling algorithm to
heuristically find the earliest finish time of a process-
ing application is:

1. Calculate each node’s criticality ci as defined
above.
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Figure 8: Mapping and Scheduling Result for Flow Classification. The criticality graph shows the node name, the
criticality ci and the processing cost vector for general-purpose processors and the co-processor. The schedule
shows which processing step is allocated to which processor and at what time the processing is performed.

2. Sort the nodes into a list L by decreasing critical-
ity.

3. Dequeue node N with highest criticality from L

4. For each resource ri determine the finish time for
N by adding the maximum finish time of all par-
ents (plus interconnect overhead) to the process-
ing time, pN i, of n on resource ri. Assign N to
the resources that minimizes the finish time.

5. Repeat steps (3) through (5) until L is empty.

The algorithm is developed based on the follow-
ing observation: if one maps the critical path of the
ADAG with minimal delay and all non-critical path
nodes meet their deadlines, then the resulting schedule
is optimal. So, the critical path gives us a global view
of the ADAG, but mapping is done by local decisions
to avoid exponential complexity.

This algorithm uses a greedy approach: given node
N it tries to identify the processing element which

yields the earliest finishing time by either (1) reduc-
ing communication cost and using the same resources
as its parents or (2) by using a faster co-processor and
paying for communication delay.

Our mapping and scheduling algorithm is based on
the list scheduling techniques which are well explored
under different assumptions and terminology. The crit-
icality metric is similar to assigning a priority to the
task as proposed by El-Rewini et al. [9] where is called
“static bottom level.” However, we use them for the het-
erogeneous system. Our metric, the early finishing time
instead of early starting time, helps us explore the op-
tion of the fast processor when assigning one task to
potential processing element.

6.3 Mapping and Scheduling Results

We show the results of this mapping and scheduling al-
gorithm in Figure 8. It uses the A20 ADAG for Flow
Classification and an NP architecture with four pro-
cessors: three general purpose processors and one co-



processor that requires only half the instructions for
some of the clusters (for illustration, these were picked
randomly and don’t reflect actual application behavior).

The schedule in Figure 8 completes the processing of
the packet at time 102. This is shorter than the original
criticality of the start node due to the use of the co-
processor. Overall, it can be seen that the application
parallelism is exploited and the processing resources of
the network processor are used efficiently.

A further exploration of this algorithm and its im-
pact on a scenario, where the optimization criterion is
system throughput, is currently work in progress.

7 Summary and Conclusions

In this work, we have introduced an annotated di-
rected acyclic graph to represent application character-
istics and dependencies in an architecture-independent
fashion. We have developed a methodology to au-
tomatically derive this ADAG from run-time instruc-
tion traces that can be obtained easily from simula-
tions. To consider the natural clustering of instructions
within an application, we have used maximum local
ratio cut (MLRC) to group instruction blocks and re-
duce the overall ADAG size. For four network process-
ing applications, we have presented such ADAGs and
shown how the inherent parallelism (multiprocessing
or pipelining) can be observed. Using the ADAG rep-
resentation, processing steps can be allocated to pro-
cessing resources using a heuristic that uses the node
criticality as a metric. We have presented such a map-
ping and scheduling result to show its behavior.

We believe this is an important step towards auto-
matically analyzing applications and mapping process-
ing tasks to heterogeneous network processor architec-
tures. For future work, we plan to further explore the is-
sue of differences in run-time execution of packets and
how it impacts the results from the analysis. We also
want to compare the quality of the clustering obtained
from Minimum Local Ratio Cut with that of other non-
greedy ratio cut heuristics. Finally, it is necessary to
develop a robust methodology for automatically iden-
tifying processing blocks for co-processors and hard-
ware accelerators.
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