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Abstract

Lamb waves have been widely studied in structural integrity evaluation during the past
decades with their low-attenuation and multi-defects sensitive nature. The performance of
the evaluation has close relationship with the vibration property and the frequency of
Lamb waves signals. Influenced by the nature of Lamb waves and the environment, the
received signals may be difficult to interpret that limits the performance of the detection.
So pure Lamb waves mode emitting and high-resolution signals acquisition play impor-
tant roles in Lamb waves structural integrity evaluation. In this chapter, the basic theory of
Lamb waves nature and some environment factors that should be considered in structural
integrity evaluation are introduced. Three kinds of typical transduces used for specific
Lamb waves mode emitting and sensing are briefly introduced. Then the development of
techniques to improve the interpretability of signals are discussed, including the wave-
form modulation techniques, multi-scale analysis techniques and the temperature effect
compensation techniques are summarized.

Keywords: Lamb waves, plate, transducers, signal optimization techniques, structural
integrity evaluation

1. Introduction

Plate-like structures made with metallic and composite materials have been widely used in

various of engineering fields including aerospace and civil engineering. During the manufactur-

ing, processing and usage, various type of damage may be induced in these structures. For
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



example, corrosion and fatigue cracks are common defects in metal plates, while the main defects

in composite plates are delamination, debonding, etc. Thus, it is important to develop defects

detection and monitoring techniques to ensure the integrity of plate structures. Lamb waves have

multi-modes, full cross-section distribution and low-attenuation nature in plates and can be used

for multi-type defects detection in large scale. Combined with modern signal detection instru-

ments and signal processing techniques, there are a lot of research and application of Lamb waves

for off-line and on-line structure integrity evaluation [1–3].

Lamb waves are a type of elastic waves that remain the constraint between two parallel free

surfaces, such as the upper and lower surfaces of a plate or shell, which contribute both longitu-

dinal and shear partial wave components, as shown in Figure 1(a). According to the particle

vibration mode, mainly two kinds of Lamb waves modes are formed as the interaction of

longitudinal and shear partial waves, symmetric (S) modes and anti-symmetric (A) modes shown

in Figure 1(b). Lamb waves theory, which is fully documented in literatures [4–6], assumes the

derivation formula in a cylindrical coordinate of the three-dimensional (3D) waves as
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where ϕ and ψ are potential functions, c2l ¼ λþ 2μ
� �

=r and c2s ¼ μ=r are the longitudinal and

shear wave velocities, respectively, λ and μ are the Lamé constants and r is the mass density.

Under the stress-free boundary conditions at the upper and lower surfaces, Lamb waves

equation can be obtained with the separation variable solution method

tan βd

tanαd
¼ �

4k2αβ

k2 � β2
� �2

" #�1

, (2)

where d is the half thickness of plates, k is the wavenumber, k2 ¼ ω2=c2p, cp is the phase velocity,

α2 ¼ ω2=c2l � k2, β2 ¼ ω2=c2s � k2. The plus sign corresponds to symmetric vibration and the

minus to anti-symmetric vibration. A series of eigenvalues kSi and kAi corresponding various

Lamb waves mode shapes are obtained by solving Eq. (2). The S modes and A modes are

denoted with Si and Ai, respectively, where the subscript i indicates the order of the modes and

equals 0,1,2…. The relationship cp = ω/k yields the dispersive wave velocity which is a function

of the product between the frequency and the plate thickness. The wavelength is defined as

λ = cp/f. The group velocity, cg, can be derived from the phase velocity with

cg ¼ c2p cp � fd
∂cp

∂ fdð Þ

� ��1

: (3)

Figure 1(c) and (d) shows dispersion curves of Lamb waves in an aluminum plate drawn with

DISPERSE. The mechanical property of the plate is defined as: the density is 2.7 g/cm3,
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Young’s module is 70.753 GPa and Poisson’s ratio is 0.33. It is easy to find that the particle

vibration show out anti-symmetric and symmetric forms for A modes and S modes, respec-

tively. As shown in Figure 1(c) and (d), there are at least four modes under the frequency-

thickness 8.0 MHz-mm including the fundamental modes (A0 and S0). The group velocities

and the wavenumbers change with frequency for these Lamb waves modes, termed the

dispersion nature of Lamb waves.

Defects in structures induce the scattering profiles and cause the change of the velocity and

attenuation in the magnitude of Lamb waves signals. Besides the defects, there are still many

other factors may induce the vibration, interpretability of the received Lamb waves signals in

structural integrity evaluation. These factors are the Lamb waves nature, the property of

transducers and plate structures, the environmental and operational conditions. Some of the

influence by these factors is expressed below.

1. Dispersion of Lamb waves complexes the received signals that induce the signals exten-

sion in both spatial and temporal domain; multi-modes of Lamb waves and echoes from

the multi-defects cause the waveform overlapping in received signals.

2. Property of the transducers influences the performance of Lamb waves signals and the

wavefield, such as the disk-wrapped electrode induces the non-axisymmetric wavefield

[7], signal amplitude variation with a different type of adhesive and PZT thickness effects

Figure 1. Characteristic of Lamb waves in an aluminum plate drawn with DISPERSE. (a) Oblique incidence method for

Lamb waves generation; (b) vibration property of Lamb waves; (c) group velocity dispersion curves; (d) wavenumber

dispersion curves.
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[8], Lamb waves signals emitted with the laser beam and PZT show non-stationary and

stationary property, respectively.

3. Material and structure of plates yield the wavefield, such as anisotropic property of

composite plates leading the inhomogeneity distribution of wavefield in spatial and tem-

poral dimensions [9, 10], echoes from the edges, stiffeners, bolts and rivets in the complex

structure reduce the interpretability of the received Lamb waves signals [11].

4. Environmental and operational condition change the material properties and further influ-

ence the emitting, propagation and the sensing of Lamb waves [12, 13], typically the

temperature and the local concentrated stress. The temperature changes (a) the plate

material stiffness affects the waves phase/group velocity [14, 15]; (b) the dielectric permit-

tivity and piezoelectric coefficient of piezoelectric transducers [16] and (c) the adhesive

stiffness and then modifies the transducer-plate bonding shear stress transmission and

minor thermal expansion/contraction occurring within the adhesive layer can yield to a

slight shift in the peak frequency response [17]. The variation of the loads during usage

changes resulting a slight anisotropy of the structure and further induces the velocity

directionality [18]. Meanwhile, it also induces the time shifts effect under loads conditions

that are of the same order as those caused by temperature change.

As illustrated in the above content, the factors influencing signals features, the environmental

and operation condition, Lamb waves, transducers, plate-like structures and the defects are

combined and form a close detection/monitoring ecosystem in which the transducers realize

the energy conversion between the systems and the structures. Meanwhile the properties of

transducers have influence on the detection/monitoring systems setting strategies and the

emitting and sensing of Lamb waves. All these have decided that transducers play a very

important role in structure integrity evaluation. Signal processing technologies are adopted to

optimize and analysis the acquired data and finally realize structure state evaluation. When

the received data have relatively high resolution and interpretability, defects imaging tech-

niques and the intelligent recognition techniques are directly applied for structure integrity

evaluation; otherwise, the signals should be pre-processed with signal optimization techniques

to improve their resolution and interpretability through modulating waveforms, multi-scale

analysis and temperature effect compensation. Considering the importance roles of trans-

ducers and the signal processing strategies used in Lamb waves based structure integrity

evaluation, the structure of this chapter is setting as: Section 2 introduces several kinds of

transducers used for Lamb waves emitting and sensing. Then some signal processing technol-

ogies for dispersion compensation, time-frequency analysis and overlapping waveform

decomposition, and illuminating the influence temperature effects are briefly reviewed in

Section 3. Finally, a short summary and conclusions are provided.

2. Transducers and specific Lamb wave mode emitting

There are mainly three kinds of transduction mechanism used for the design of the transducers

in structure integrity evaluation, including piezoelectric effect, electromagnetic ultrasonic cou-

pling mechanisms and laser thermodynamics. In this section, we will briefly review some
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typical transducers and their application for specific mode of Lamb waves emitting and

sensing.

2.1. Piezoelectric transducers

Piezoelectric materials have piezoelectric effect that can be used to achieve energy conversion

between mechanical energy and electrical energy. As shown in Figure 2(a), when the piezo-

electric material is loaded with an alternating voltage, it may produce an oscillatory mechan-

ical vibration, and form pressure at its surface or sound waves in the around air. Vice versa, an

oscillatory expansion and contraction of the material produce an alternating voltage at the

terminal. This phenomenon is named as the piezoelectric effect. The geometry size, polariza-

tion direction and the voltage frequency have influence on the vibration mode of the piezo-

electric materials. Many kinds of piezoelectric transducers have been designed in laboratories

and corporations.

Piezoelectric wafer active transducers (PWATs) have relative simple round or rectangle geo-

metrical shapes. Typically, these transducers have electrodes on the top and bottom surfaces as

plotted in Figure 2(b). With the piezoelectric effect, PWATs actuate and sense Lamb waves

signals in the structure directly through in-plane strain coupling. More differences between the

PWATs and conventional ultrasonic transducers are listed in Ref. [19]. Interdigital transducers

(IDTs) have electrodes shaped in a comb pattern that are designed with traditional piezoelec-

tric ceramics or the novel piezoelectric materials, such as macro-fiber composite (MFC) [20]

and poly vinylidene fluoride (PVDF) piezoelectric polymer film [21–23]. Figure 2(c) plots an

interdigital transducer. Through adjusting the space between adjacent interdigital electrodes,

IDTs are able to generate Lamb waves with a specific wavelength. Comparing with the

piezoelectric ceramics, the novel piezoelectric materials feature better flexibility, higher dimen-

sional stability and more stable piezoelectric coefficients over time. They can be of various

shape to cope with curved surfaces for signal sensing in low frequency range due to their weak

driving. The tunable IDTs have a series of density distributed discrete electrode stripes that are

connected in various configurations [24]. In the application, Lamb waves with different wave-

lengths can be emitted through adjusting the configuration of the interdigital electrodes. As

shown in Figure 2(d), air-coupled ultrasonic transducers [25] are often used for non-contact

Figure 2. Typical piezoelectric effect-based transducers. (a) Piezoelectric effect; (b) PWAT; (c) Interdigital transducer; (d)

air-coupled transducers.
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and non-contaminating ultrasonic scanning detection. The proportion of the ultrasonic energy

transmitted through an interface depends on the acoustic impedance match ratio of the two

materials. The higher match ratio, the more energy is transmitted into the plates. Thus, it is

important to minimize these losses to obtain an acceptable signal to noise ratio. With the

development of micro-electro-mechanical technology, micro-machined ultrasonic transducers

are researched [26] that have many advantages over conventional ultrasonic transducers,

including miniature size, low power consumption and the ability to create one-dimensional

(1D) and two-dimensional (2D) array structures.

The techniques for pure mode emitting and sensing have been studied with the piezoelectic

transducers. Theoretical models researches of PWATs [27] show that the displacements at the

plate surface is a function of an interelement distance for a specific Lamb waves mode. With

the theory, dual-element transducers are placed at a specific distance on the same surface of a

plate for pure A0 mode emitting, or two dual PZTs (concentric disc and ring) structure is

adopted to tune the excitated signal properly for specific mode emitting, or to decompose both

mode contributions in the received signals [28]. The IDTs can realize pure mode emitting by

adjusting the interspace between individual electronic elements of the piezoelectric array or

adding backing materials to the elements [29]. While the interaction between individual ele-

ments may have a significant influence on the performance of the IDTs, these effects cannot be

neglected even in the case of low frequency excitation. Researchers deposited symmetrical

transducers on both sides of the plate to generate pure Lamb waves mode [30], in which for

electric symmetrical connection to the two transducers, S0 mode is generated, vice versa, for

the anti-symmetrical electric connection, A0 mode is strong and S0 mode is suppressed.

Degertekin et al. [31] added hertzian contacts between the plates and the end of specially

designed quartz rods, which guide anti-symmetric modes generated by PZT-5H transducers

bonded at their other end. For an angle beam transducer, a low-attenuation Lamb waves mode

was generated by setting the incidence angle [32]. Other literatures studied theoretical model

of the PWAS-related Lamb waves to identify the single mode emitting frequency, then adopted

the post-process technique, such as time reversal, to enhance the mode purity [33, 34]. As the

symmetric modes have more energy components in the out-of-plane direction, air-coupled

ultrasonic transducer can be very suitable for pure A0 mode emitting and sensing [35]. The

high-order or high frequency-thickness Lamb waves have more complex wave structure and

shorter wavelength, while more sensitive to the characteristic change of plates. Higher Order

Mode Cluster (HOMC) is proposed by Jayaraman et al. [36], it used the nature that multiple

modes concentrate together to form a cluster. Khalili et al. [37] realized single Lamb waves

mode emitting at 20 MHz-mm with the HOMC method.

2.2. Electromagnetic acoustic transducer

Electromagnetic acoustic transducer (EMAT) consists of permanent magnets, coils and a metal

material in which the magnets introduce the static magnetic field. The principle of the electro-

magnetic ultrasonic coupling mechanisms is shown in Figure 3(a). When the current is loaded

on the coils, eddy currents will be generated in the conductive structure and form three kinds

of electromagnetic coupling mechanisms for ultrasonic waves emitting and sensing: Lorentz
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force, magnetostriction mechanism andmagnetizing force. In addition, Lorentz force mechanism

exists in all conductive materials, whereas the magnetostriction mechanism only exists in ferro-

magnetic materials. Compared with the other two mechanisms, the magnetizing force is very

weak and is often neglected in studies. Various types of EMAT can be designed by changing the

configuration of the permanent magnet and coil to realize easily the attenuation of pure Lamb

waves mode. Figure 3(b) shows the EMATwith solenoid sensing coils and a cylindrical magnet;

Figure 3(c) shows the Panametrics E110-SB EMATdeveloped by OLYMPUS.

By adjusting the spacing of meandered line coils equal to the half wavelength of Lamb waves,

EMAT can easily realize Lamb waves emitting and sensing at specific frequency. Meanwhile,

researchers have developed many kinds of EMATs through specific design of the geometry

and the position of the magnets and coils [38], including omnidirectional S0 mode EMAT [39],

omnidirectional A0 mode EMAT [40] and directional magnetostrictive patch transducer [41].

While the EMAT is difficult to generate a pure Lamb wave mode when dispersion curves of

several modes are close together; however, by narrowing the frequency bandwidth via a large

number of cycles in the excitation signal, pure mode generation via an EMAT is shown to be

possible even in areas of closely spaced modes [42]. Experimentally, the EMAT can scan along

the surface, while the loading voltage is often very high compared with that of piezoelectric

transducers. EMATs are also used for high-order Lamb waves emitting and sensing in a 6mm-

thick steel plate [43].

2.3. Laser ultrasonic systems

Laser ultrasonic systems (LUS) have three basic functional components: a generation laser, a

detection laser and a detector. The generation laser emits a laser beam that irritates on the

surface of plates to generate ultrasonic waves based on thermoelastic regime or ablation

regime. In the thermoplastic regime, the ultrasonic waves are generated from the thermoelastic

Figure 3. Electromagnetic ultrasonic coupling mechanisms transducers. (a) Principle of the electromagnetic ultrasonic

coupling mechanism; EMATwith four solenoid sensing coils and a cylindrical magnet [43]; Panametrics E110-SB EMAT.
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expansions of materials. While, in the ablation regime, the ultrasonic waves are generated from

the material removal that will induce damage to the surface of plates. The laser ultrasonic

systems are carefully set to work in the thermoelastic regime in Lamb waves integrity evalua-

tion. Additionally, the laser-generated Lamb waves signal is a broad bandwidth signal in

which several Lamb wave modes can be acquired in a single measurement, providing more

opportunities to selectively generate the desired modes. Figure 4(a) plots the elastic waves

generated by laser beam under thermoelastic regime.

The detection laser and detector are used for ultrasonic waves detection based on various

principle including Doppler frequency shift, speckle interferogram and Fabry-Pérot detection

schemes. A laser vibrometer principle of operation allows for measuring velocity of a point along

the axis of laser beam incidence onto the surface based on the Doppler frequency shift principle.

In 1997, researchers started sensing the out-of-plane displacements of Lamb waves with an

optical fiber Michelson interferometer. The progress in the development of equipment related to

scanning laser Doppler vibrometry (SLDV) resulted in the availability of the full wavefield

measurements of Lamb waves propagating in metallic specimens. Shearography is an interfero-

metric technique for surface vibration measurement. In a digital shearography system, the

inspected object is illuminated by an expanded laser beam, forming a speckle pattern. The

speckle patterns are optically processed by a shearing device, and the resultant interferogram is

recorded by a charge-coupled device camera. Speckle interferogram, recorded before and after

object deformation, are correlated to yield correlation fringes. The phase of these fringes can

represent the displacement gradient of the specimen. More detail information about the system

is introduced in Ref. [44]. The elastic waves generate a change in the index of refraction of the

surface, incident laser beams will deflect slightly and thus change course. This detected change is

converted into an electrical signal. Figure 4(b) plots the laser ultrasonic principle.

As the laser beam is irritated on the normal direction of the out-of-plane that is the main

displacement components of anti-symmetric modes. In the detection process, people can

adjust the shape and the spatial distribution of the laser beams to reduce the energy loss and

further form a specific modes wave. Many types optical path adjusting elements are adopted

for specific Lamb waves mode emitting, including Fresnel lens, rectangular cylinder lens [45,

46], marks for creating predetermined spatial laser light distributions [47] and periodic spatial

array of laser sources [48]. The interference pattern of two high power laser beams on a sample

surface produces periodic heating and then generating anti-symmetric Lamb waves [49]. By

Figure 4. Principle and systems for laser ultrasonic inspection. (a) Elastic waves generated by laser beam under

thermoelastic regime; (b) laser ultrasonic principle.
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varying the interface fringe spacing, the acoustic frequency is easily and continuously tunable

from 2.5 to 23 MHz.

Other transducers used in structural integrity evaluation but not just piezoelectric ceramic

fibers, fiber optic transducers [50] and microelectronic transducers. Piezoelectric fibers having

a metal core can activate Lamb waves in composite plates transverse to the fibers with radial

displacement components originating from the d33 coupling coefficient. They can also generate

Lamb waves in the direction of the piezoelectric fibers using the d31 coupling coefficient. The

fiber optic transducers are used for Lamb wave sensing, through connecting a fiber Bragg

gratings (FBG) filter with a photodetector, the light intensity induced by the Lamb waves,

rather than strain itself, can be sensed at a high sampling rate. The FBG has strong directivity

in sensing Lamb wave signals.

3. Signal optimization techniques

The signal processing techniques for improving the resolution and the interpretability of Lamb

wave signals are termed as the signal optimization techniques in this section. There are

waveform modulation techniques such as multi-scale analysis techniques and temperature

effect compensation techniques. These techniques are adopted for Lamb waves dispersion

compensation, high-resolution signal emitting and sensing, overlapping waveforms decom-

pensation, time-frequency analysis and temperature effect compensation.

3.1. Waveform modulation techniques

When an excitation signal, f(t), is emitted into a plate at original position, the received signal, u

(x,t), at x position can be expressed as

u x; tð Þ ¼
1

2π

ð
∞

�∞

F ωð Þej ωt�kxð Þdω, (4)

where F(ω) is the Fourier transform of the excitation signal and k is the angular wavenumber. In

Eq. (4), there are several parameters that decide the signal resolution and interpretability, includ-

ing the amplitude, phase and frequency variation with the duration. The signal processing

techniques process through modulating these fundamental signal parameters for adjusting the

signal waveforms are termed waveform modulation techniques that are used for Lamb waves

dispersion compensation, high-resolution Lamb waves detection and defects information extrac-

tion in structural integrity evaluation.

Signal processing techniques for dispersion compensation are realized through modulating the

frequency or the wavenumbers of the received Lamb waves signals, because the dispersion

nature of Lamb waves is shown as the nonlinear characteristic of signal phase in mathematical

form. Time recompression technique [51] compensates the dispersion using spatial phase shift

arising at each signal frequency component from the propagation of the waves over a large

distance. The back-propagation function in the technique can only provide the first-order phase

shift. Time-distance mapping technique [52] compresses dispersive signals by converting the
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signals in frequency domain to a specific propagation distance by back-propagating signals to

t = 0 using the known dispersion relation. Considering the relationship between the angle

frequency ω and the wavenumber, backward Lamb waves of Eq. (4) at x can be expressed as

ub �xð Þ ¼
1

2π

ð
∞

�∞

U ωð Þejkxdω ¼
1

2π

ð
∞

�∞

U ωð Þcg ωð Þejkxdk, (5)

where ω0 is the specific frequency and U(ω) is the Fourier transform of the original received

signal, u(x,t).

Beside interpolating G(ω) and cg(ω), the variables in spatial-wavenumber domains in time-

frequency domains are needed to ensure the calculation accuracy. Spectral warping technique

[53–55] was applied for the removal of dispersion from a signal in time-space domain using

frequency transformation. The rescaling is defined mathematically by a composition of the

signal spectrum with a function closely related to the dispersion relation that is independent of

propagation distances and can be applied to signals consisting of multiple arrivals with the

same dispersion characteristics. The wideband dispersion reversal technique [56], as expressed

in Eq. (6), makes use of a priori knowledge of the dispersion characteristics to synthesize the

corresponding dispersion reversal excitations, which is able to selectively excite the self-

compensation pure mode waveforms.

WDR u τ0 � tð Þ½ � ¼
1

2π

ðþ∞
�∞

U �ωð Þe�jωτ0 �H0
ωð Þejωtdω

¼
1

2π

ðþ∞
�∞

F �ωð Þ �H0 �ωð Þ �H0
ωð Þejω t�τ0ð Þdω

¼
1

2π

ðþ∞
�∞

F �ωð Þejω t�τ0ð Þdω

¼ f τ0 � tð Þ,

(6)

The above-mentioned algorithms are limited in practical application as the propagation distance

may be unknown. Wavenumber curves linearization technique [57, 58] uses the first- or second-

order Taylor expansion to linearize the nonlinear wavenumber. It is independent on the propa-

gation distance and can be applied to the signals constructed with multiple arrivals with the

same wave mode or dispersion characteristics. It has less computation efforts than the time-

distance mapping technique. With the idea of nonlinear wavenumber linearization, Cai et al. [59]

extended the wavenumber linearization technique and developed the linearly dispersive signal

construction and non-dispersive signal construction method these are expressed as

ulin tð Þ ¼
1

2π

ð
∞

�∞

M ω� ωcð Þe�i k0þk1 ω�ωcð Þ½ �xþiωt

¼
eiωct�ik0x

2π

ðþ∞
�∞

M ωð Þe�iωk1xþiωtdω

¼ m t� k1xð Þeiωct�ik0x

¼ f t� k1xð Þei k1ωc�k0ð Þx,

(7)

where τ0 is a time delay constant, M(ω-ωc) = u(ω) is the Fourier transform result of the

amplitude modulation function with shift ωc, ωc is the center frequency of the excitation,
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k0 = ωc/cp(ωc), k1 ¼ dk0=dωjω¼ωc
¼ 1=cg ωcð Þ, H(�ω) = e�ik(�ω)x is the phase spectrum of the

dispersion function and K0(ω) is the wavenumber that determines the dispersion relation of

Lamb waves mode. The above-mentioned techniques are performed with the received Lamb

waves signals that can be named as the post-processing dispersion compensation techniques

and more detail process of them are introduced in Refs [51–53, 57–60].

The other signal processing strategy for high-resolution detection is realized throughmodulating

the waveform of excitation signals, termed the excitation modulation techniques, in which the

excitations are built based on the dispersion characteristics of Lamb waves, the propagation

distance and the travel time [61] or utilize the chirp technique to established effects on the

original excitation signal for a given compensation distance, and thus the response extraction

and the dispersion compensation can be made simultaneously [62]. For pulse compression (PuC)

techniques, a δ-like wave packet can be generated with a broader auto-correlation of a specific

waveform including linear chirp signal, nonlinear chirp signal, Barker code and Golay comple-

mentary code. The linear chirp has the smallest main lobe width, corresponding to the best

inspection resolution; the nonlinear chirp and Golay complementary code are with smaller

sidelobe level, corresponding to the better performance in terms of side lobe cancelation [63],

and the waveform comparisons are still effective with small errors in dispersion compensation.

Malo et al. [64] presented a 2D compressed analysis, which combines pulse compression and

dispersion compensation techniques in order to improve the SNR, temporal-spatial resolution

and extract accurate time of arrival of responses. Yücel et al. [65] utilizes maximal length

sequence (MLS) signals to produce a brute-force search-based dispersion compensation and

cross-correlation for defects location. Compared with a linear broadband chirp, the technique

using MLS combined with cross-correlation can improve SNR and facilitate the accurate extrac-

tion of time-of-flight (ToF), even in complex multimode situation. Marchi et al. [66] proposed a

code division strategy based on the warped frequency transform. In the first, the proposed

procedure encodes actuation pulses using Gold sequences. Then for each considered actuator,

the acquired signals are compensated from dispersion by cross-correlating the warped version of

the actuated and received signals. Compensated signals from the base for a final wavenumber

imaging meant at emphasizing defects and/or anomalies by removing incident wavefield and

edge reflections. Hua et al. [67] proposed pulse energy evolution method for high-resolution

Lamb wave inspection. Some conclusions were obtained as follows. Linear chirp signal com-

bined with pulse compression provides a δ-like excitation with a high signal-to-noise ratio. By

the application of dispersion compensation with systemically varied compensation distances, an

evolution of compensation degree curve can be obtained to estimate the actual propagation

distance of the interested wave packet.

Time reversal (TR) technique can focus the elastic waves to its original shape by time-domain

reversal of the received signal with the reciprocity principle. Figure 5 shows the principle

diagram of time reversal technique that consists of the forward propagation and backward

propagation. In the forward propagation, a signal, f(t), is emitted into the plate by the trans-

ducer A, and received by transducer B. Then received signal is reversed in time domain and

reemitted by the transducer A in the backward propagation process. The final TR processed

result is received signal at transducer B. To avoid the inconvenience in the process of classical

time reversal, a pure numerical signal process technique for TR technique is developed, termed

the virtual time reversal technique, and can be expressed as
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f TR tð Þ ¼ ifft fft u �tð Þ½ � fft u tð Þ½ �
fft f tð Þ½ �

� �

, (8)

where f(t) is the excitation signal, u(t) is the original received Lamb waves signal, u(-t) is the

time reversal result of signal of u(t), fTR(t) is the time reversal result, fft and ifft are the fast

Fourier transform and its inverse transform.

It has been studied for dispersed compression [60, 68] and defects information extraction [69,

70]. Zeng et al. [70] carefully designed the amplitude of the input signal before the time

reversal process. Huang et al. [71] used a weight vector to modulated the signal in both the

forward and backward processes, the vector is obtained as the product of the reciprocal of

amplitude dispersion and a window function that varies with the excitation signal adaptively,

and its shape is also determined by a threshold. The advantages of single mode tuning in the

application of time reversal damage detection are highlighted in Refs. [33,71]. The adhesive,

host plate, transducer and excitation parameters are also influenced on the performance of

time reversibility of Lamb waves.

3.2. Multi-scale analysis techniques

Multi-scale analysis techniques map a 1D signal into a high dimensional space with transform

based on a kernel function, including short-time Fourier transform (STFT), Wavelet transform

(the continue wavelet transform (CWT), the discrete wavelet transform (DWT) and wave packet

transform), Gabor transform [72], Chirplet transform [73] and asymmetric Gaussian Chirplet

transform [74, 75]. When the mapping data space express the changing frequency of the signal

parameters, the algorithm can be used for time-frequency analysis [76]. In other case, the map-

ping data space indicates the inner product between the signal and a kernel function, the

algorithm can be used for Lamb waves mode identification and overlapping waveforms decom-

position. The formula of STFT and CWT can be expressed as Eq. (9) and Eq. (10), respectively.

y ω; τð Þ ¼
ðþ∞

�∞
u tð Þw t� τð Þe�jωtdt, (9)

y s; τð Þ ¼ 1
ffiffi

s
p

ðþ∞

�∞
u tð Þψ∗

t� τ

s

� �

dt, (10)

where w(t) is the window function, commonly a rectangle window, Hanning window or

Gaussian window; u(t) is the sensing Lamb waves signal, ψ is the mother wavelet, τ is the shift

step in time-axis, s is the scale and * indicates the complex conjugate operation.

Figure 5. Principle diagram of time reversal technique.
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STFT divides a signal into blocks with fixed window width that controls the trade-off of bias

and variance. Shorter window leads to poor frequency resolution, while longer window

improves the frequency resolution but compromises the stationary assumption within the

window. Thus researchers adopted variable window width instead of constant-width [77,

78] into the STFT to deal with the local resolution requirement. CWT projects a signal into a

class of kernel function, termed mother wavelet, that usage of scale factor that is inversely

proportional to the frequency of the given signal. Limited by the Heisenberg uncertainty

principle that can be briefly described as the time-frequency windows have constant area, its

results have higher frequency resolution and lower time resolution for lower frequency

components, while have lower frequency resolution and higher time resolution for higher

frequency components. Meanwhile the frequency resolution at the same scale level cannot be

adaptively adjusted. The time-frequency representation concentration cannot be signifi-

cantly improved for non-stationary signal with rapidly time-varying frequency component

with the STFT and CWT. Reassignment method is a post-processing technique putting

forwards to improve the readability of time-frequency representation. Through assigning

the average of energy in a domain to the gravity center of these energy contributions, the

reassignment technology reduces energy spread of time-frequency representation at the cost

of greater computational complexity. However, it is sensitive to the noise, and inevitably

introduces interference terms since the computed gravity center unnecessarily represents the

real energy distribution of the interested signal. Wigner-Ville distribution (WVD) is a repre-

sentative of bilinear time-frequency analysis in which the process is based on the Fourier

transform of instantaneous auto-correlation function of the signal. WVD could generate

time-frequency representation with the high concentration, while it also introduces plenty

of cross-terms. Hilbert-Huang transform uses empirical mode decomposition (EMD) to

decompose a signal into several intrinsic mode functions (IMF) along with a trend and

obtain instantaneous frequency [79]. EMD is a data-driven signal decomposition technique

that sequentially extracts zero-mean regular/distorted harmonics from a signal, starting from

high- to low- frequency components, and it is a dyadic filter equivalent to an adaptive

wavelet. While the end effects influence the performance of the signal decomposition and

distort the results. For this case, researchers proposed various signal extension technique to

solve the problem of end effects, including feature-based extension, mirror images, predic-

tion methods and pattern comparison [80].

The general formula of Gabor transform, Chirplet transform and asymmetric Gaussian

Chirplet transform can be expressed as Eqs. (11) and (12). Their results are the inner product

between the signal u(t) and the complex conjugate of kernel function gτ,ω,Θ.

y τ;ω;Θð Þ ¼
ðþ∞

�∞
u tð Þg∗τ,ω,Θ tð Þdt, (11)

g tð Þ ¼

e�π
t�τ
sð Þ2 cos ω t� τð Þ þ ϕ

	 


, Gabor
ffiffiffiffiffiffi

2π
p

s
� ��1=2

e�π
t�τ
sð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ

h i

, Gaussian Chirplet

ae�α 1�rtanh κ t�τð Þð Þð Þ t�τð Þ2 cos ω t� τð Þ þ ζ t� τð Þ2 þ ϕ
h i

, asymmetric Gaussian Chirplet,
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>

>

>

>

<

>

>

>

>

:

(12)
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where ζ is the linear chirp rate, ϕ is the phase, a is the amplitude, α is the decay rate controlling

the signal bandwidth, r is the asymmetry factor controlling the skewness of the window and

tanh(κt) is hyperbolic tangent function of order κ, a positive constant integer. The detail

description of Eq. (11) is given in Refs [81, 82]. Gabor transform and the Chirplet transform

projects a signal energy distribution in a time-frequency plane, which does not induce inter-

ference terms [83]. An important advantage of such analysis is to provide highly concentrated

time-frequency representation with signal-dependent resolution. Especially for the latter one,

there are many parameters adaptively adjusted for an accuracy mapping the signal features,

including the center frequency, arrival time, duration and frequency-varying characteristics.

These two algorithms can also be used for decomposition of the overlapping waveforms.

The signal decomposition is based on a reasonable assumption that a signal can be expressed

as a sum of several wave packets, as shown in Eq. (14).

u tð Þ ¼
X

N�1

n¼0

Rnu; gγn

D E

gγn þ RNu, (13)

where u(x,t) is the signal received at x that contains the first arrival waves, the echoes from the

edges of plates and the defects; RNu is the residual term; N is the number of iterations; gγn is the

matching atoms that fit to the residual term Rnu, which is the residual left after subtracting results

of previous iterations; gγi is the atoms in a pre-built over-complete dictionary or a sub-type of a

kernel function. The derivation processes of parameters Rnu and gγn can be expressed as

R0u ¼ u tð Þ

Rnþ1u ¼ RNu� Rnu; gγn

D E

gγn

gγn ¼ arg max
gγi ∈D

Rnu; gγi

D E
�

�

�

�

�

�

:

8

>

>

>

>

<

>

>

>

>

:

(14)

In the process of the wave packets decomposition, the atoms can be selected from a pre-built

dictionary or sub-type of a kernel function. The dictionary can be built based on the pre-analysis

of the excitation [84], the interaction between Lamb waves and defects [85], etc. Mallat et al. [86]

introduced the matching pursuit with time-frequency dictionaries. The decomposition based the

Gabor transform and the Gaussian Chirplet transform are suitable for the signals with symmetric

envelops, while the sensing signals often have asymmetric envelops induced by the dispersion

nature of Lamb waves. Thus, the asymmetric Gaussian Chirplet is designed for decomposition

the dispersive Lamb waves signal benefiting from its specific designed windows.

Matching pursuit algorithm is a highly adaptive signal decomposition and approximation

method for de-noising, wave parameter estimation and feature extraction [86, 87], while it

does not provide the best approximation to signal by a linear combination of atoms from a

dictionary or a sub-type of kernel function. Actually, many parameters need to be estimated in

each iteration step to get a best approximant, it is an NP-hard problem. Therefore, a suitable

parameter evaluation algorithm is very important for signal decomposition algorithms. The

successive parameters estimation algorithm [88] and the fast ridge pursuit algorithm [82] are

most used algorithms for estimation of the atom parameter. In each iteration of the pursuit, the
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best atom is first selected, and then, its scale and the chirp rate are locally optimized so as to get

a ‘good’ chirp atom. While the successive parameter estimation is a suboptimal method. The

error in one parameter estimate due to noise will induce errors in estimation of other param-

eters. Zeng et al. [89] combined the adaptive Chirplet transform and the time-varying band-

pass filtering provides a methodology for extracting interest waveforms from the overall Lamb

wave signals.

3.3. Temperature effect compensation techniques

The signals received under a vibration of temperature condition can be expressed as [90, 91].

u t;T0 þ δTð Þ ¼
X

N

j¼1

ajsj t� tjβ δTð Þ
	 


, (15)

where aj, sj and tj are the amplitude, the waveform and the arrival time of the jth wave packet

respectively, β(δT) is the shift in arrival times of wave packets in each time-trace with respect to

their values at an arbitrary fixed temperature, β ¼ 1� δT � cgkp=c
2
p, kp is the change in phase

velocity with temperature.

The optimal baseline selection (OBS) and the baseline signal stretch (BSS) are widely studied

[92] for elimination the temperature effect in Lamb waves based structure integrity evaluation.

In OBS technique, a pre-built database under different temperatures is built. The process for

OBS includes (1) recording a set of baseline waveforms from the intact specimen at tempera-

tures spanning the expected operating range; (2) selecting a waveform from the baseline set,

which the temperature is the closest to the measured signal; (3) adjusting the baseline wave-

form to best match the signal, then calculating an error parameter between the signal and the

adjusting waveform and (4) comparing these parameters with a threshold to determine the

structural status. A large number of baselines data are needed even for small temperature

steps to ensure the accuracy of the extracted defects waveforms that increase computational

and memory costs. Meanwhile the damage manifests itself and the noise will rise the OBS

error [93]. Wang et al. [94] combined the OBS and the adaptive filter to compensate the

temperature variations. The simplistic representation of the signal and the choice of activation

function are the main limitations of this technology. BSS modified a single baseline time-trace

to match the field time-trace to compensate the temperature effect. In BSS, the time-axis of the

baseline time-trace is stretched by a stretch factor to yield a new time-trace, while the BBS is

strongly dependent on the mode purity and structural complexity. The OBS and the BBS can be

combined to form a robust temperature compensation strategy [90, 95]. The reduction in the

number of baselines in the database is limited by the maximum temperature gap between

baselines, which can be compensated for by the optimal stretch without loss of sensitivity; this

is a function of mode purity, signal complexity and the maximum propagation distance to

cover the whole structure expressed in wavelengths [96]. Their formula are

um t;Tmð Þ ¼
X

N

j¼1

amj s
m
j t� tmj β δTmð Þ
h i

, OBSð Þ (16)
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bu t;T0;bβ
� 


¼ u t=bβ;T0

� 

¼

XN

j¼1

ajsj t=bβ � tj

� 

, BSSð Þ (17)

where um is the mth time-trace from the baseline dataset, Tm= T0+δTm refers to as the baseline

dataset and β(δTm) is the fractional shift in arrival times of wave packets in each time-trace

with respect to their values at an arbitrary fixed temperature. bβ is a stretch factor to yield a new

time-trace bu t;T0;bβ
� 


.

Other techniques have been proposed for compensation the temperature effect. Physics-based

approach builds the compensation data through analyzing the temperature effect on the

structures and transducers [97]. This approach needs to train with prior data, which are always

unavailable. Fendzi et al. [98] presented a data-driven temperature compensation approach,

which considers a representation of the piezo-sensor signal through its Hilbert transform that

allows one to extract the amplitude factor and the phase shift in signals, while its compensa-

tion accuracy depends on the length of the time window that should be considered in the

temperature compensation parameters estimation. Liu et al. [99] proposed a baseline signal

reconstruction technique in which the Hilbert transform is used to compensate the phase of

baseline signals and the orthogonal matching pursuit is used to compensate the amplitude of

baseline signal. Dao et al. [100] combined the cointegration technique and fractal signal

processing to effective removal of undesired multiple temperature trends in Lamb waves

signals. The former technique relies on the analysis of non-stationary behavior, whereas the

latter brings the concept of multi-resolution wavelet decomposition of time series. While the

self-similar pattern of cointegration residuals will be broken when damage is present.

4. Summary and conclusions

Lamb waves are a type of elastic waves propagating in plate-like structures that have been

widely studied for defects location, sizing and recognition during the past decades. The

detection or monitoring system settings, the transducers, the nature of Lamb waves, the

environment and operational condition are three key factors influence Lamb waves emitting

and sensing, and further decide the design and the performance of signal processing tech-

niques. Considering the important roles of transducers and the signal processing techniques in

Lamb waves based structure integrity evaluation, various transducers and signal processing

technologies are proposed and developed, and that are briefly reviewed in this chapter.

1. The transducers for Lamb waves emitting and sensing in structure integrity evaluation are

mainly based on three types of transduce mechanisms, including piezoelectric effect,

electromagnetic acoustic transducer mechanism and laser ultrasonic technique. Piezoelec-

tric transducers, EMAT and laser ultrasonic systems are mostly used for Lamb waves

emitting and sensing in structure integrity evaluation. The PWAT, IDTs, the air-coupled

transducers are designed with the piezoelectric materials that has high energy conversion

efficiency. EMATs are working under electromagnetic acoustic transducer mechanism,
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including Lorentz force, magnetostriction mechanism and magnetizing force. Through

adjusting the configuration of the permanent magnets, coils, EMATs can used for rela-

tively pure Lamb waves modes emitting and sensing at specific frequency, including the A

modes, S modes. Laser ultrasonic systems commonly consist of a laser transmitter, a laser

receiver and a laser demodulator and are very complex systems that designed with the

shearography and the laser vibrometer techniques. In the structure integrity evaluation,

the system works under the thermoelastic regime, not the ablation regime, for emitting

Lamb waves without the hurt of structure. Through scanning the surface of the plates, the

full wavefield Lamb waves can be acquired with the laser ultrasonic system.

2. The waveform modulation techniques, multi-scale analysis techniques and temperature

effect compensation techniques are developed to optimize the resolution and interpretabil-

ity of received Lamb waves signals. Among them, the waveform modulation techniques

are used to acquire signals that have more regular waveforms through modulating the

phase parameters or the excitation waveforms based on the Lamb waves dispersion

principle and the δ-like waveform response of specific waves. After the process, the ToF

and the scatterers echoes can be analyzed easily. During the process of the time

recompression technique, the time-distance mapping technique, the spectral warping tech-

nique and the wideband dispersion reversal technique, the propagation should be known

that limits their application potentials. The nonlinear wavenumber linearization technique

can realize dispersion compensation without the propagation distance parameter. Pulse

compression technique also attracts many attentions for generating that high improve the

resolution of the received signals, but it still exists many challenges for field application.

TR technique is built with the acoustic reciprocity principle for dispersion compensation

and damage feature extraction and is easily realized in applications, while it often cannot

get ideal dispersion compensation results. It is more suitable for defects feature extraction

in Lamb waves defects detection.

3. Multi-scale analysis techniques are performed through mapping a signal into a multi-

parameters data space with a function transform or matching pursuit operation. The

transforms based on a kernel function include STFT, CWT, DWT, Gabor transform,

Chirplet transform and asymmetric Gaussian Chirplet transform that have been used for

time-frequency analysis and overlapping wave packets decomposition. Among them, the

wavelet transforms and the Chirplet-based transforms are more attractive as their flexible

and more parameter adjusting probability in signal processing. Particularly for the asym-

metric Gaussian Chirplet transform has the ability for accuracy decompose the signals

with the dispersion characteristics. The dictionary based on overlapping waveforms

decomposition techniques is also very attractive. The OBS, the BBS and physics-based

approaches are proposed for compensating the temperature effect. OBS is performed with

a pre-built database under different temperatures where large number of baseline data are

acquired under various temperature conditions. In BSS, the time-axis of the baseline time-

trace is stretched by a stretch factor to yield a new time-trace, but it is sensitive to the

resolution and the interpretability of Lamb wave signals. The combination of the OBS and

BSS can effectively eliminate the shortage in both of the algorithms and have a robust

performance in temperature effect compensation. Physics-based approach realizes the
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compensation through analysis the temperature effect on the structures and the trans-

ducers that is time consuming for field application.
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