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Abstract: Like other pentacyclic triterpenoids, oleanolic acid, a natural plant metabolite prevalent in
plant peels, stems, and leaves, is regarded as a possible drug candidate. A growing number of studies
have shown that oleanolic acid exhibits a variety of beneficial properties, including antiviral, anti-
inflammatory, antioxidant, anticancer, and hepatoprotective effects. Additionally, the rapid advance
of nanotechnology has dramatically improved oleanolic acid’s bioavailability and minimized its
disadvantages, leading to unexpected changes in its pharmacological activity and use. Therefore, our
aim was to review the progress of research on the distribution and biological properties of oleanolic
acid in plants and to discuss new pharmaceutical approaches for oleanolic acid.
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1. Introduction

It is widely recognized that terpenoids are among the very common and most com-
plex natural chemicals found, richly, in plants in nature, and they have a wide range of
pharmacological effects [1]. They are recognized as potential drug compounds, among
which sesquiterpenoids, represented by artemisinin, are well-known for their remarkable
therapeutic effects on malaria [2]. In recent years, researchers have been focusing more on
the extraction, analysis, and structural modification of the isolated active ingredients from
the natural products of terpene-containing plants. Additionally, the recent decades have
seen a surge in interest in triterpene-rich plant extracts, particularly pure triterpenoids such
as bioactive phytochemicals [3–6].

There are two subclasses of triterpenoids based on their chemical structure: pentacyclic
triterpenes and tetracyclic triterpenes [7]. Among them, oleanolic acid (OA, Figure 1) and
its isomer ursolic acid (UA, Figure 1) are pentacyclic triterpenoid bioactive substances
commonly found in fruits and vegetables, and both possess similar physicochemical and
biological properties, such as anti-inflammatory, antioxidant, antiviral, anticancer, an-
tidiabetic, hepatoprotective, and cardioprotective effects [8–15]. OA research has gained
increasing attention due to its rich biological properties. In the pharmaceutical field, how-
ever, its development is hindered, and it is unable to fully exploit its therapeutic effects as a
result of its poor water solubility and low bioavailability when taken orally [16]. To address
these challenges, a number of new technologies have been developed by researchers, such
as preparing new dosage forms of OA and modifying its molecular formula. In particu-
lar, nanotechnology, embodied by nanoparticles, as a novel and efficient method of drug
preparation, exhibits remarkable effects on improving the dissolution, penetration, and
absorption of OA, and its unique combination makes drugs containing OA achieve precise
targeting effects [17–19].
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describe and assess the various methods used to manufacture OA and their bioavailabil-
ity. The purpose of this study is to serve as a reference for the future research, develop-
ment, and application of OA. 
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noid, with a name that is derived from the plant Olea europaea, the primary source of com-
mercial OA preparations at the moment [20]. Pentacyclic triterpenes, important phyto-
chemicals synthesized by the cyclization of squalene in plants, are known as a large class 
of plant secondary metabolites composed of isoprene (2-methylbutadiene) units [21]. 
Oleanane, hopane, friedelane, ursane, gammacerane, and lupine are major pentacyclic 
triterpenes that mainly exhibit antiviral, antitumor, anti-inflammatory, and antioxidant 
activities [22]. 

Oleanolic acid can be extracted from different parts of Araliaceae, Asteraceae, Erica-
ceae, Lamiaceae, Myrtaceae, Oleaceae, Rosaceae, Rubiaceae, Saxifragaceae, and Verbena-
ceae plants, but its content differs from one plant to another and in different parts of the 
same plant (Table 1). For instance, studies have shown significant differences in OA con-
tent in the fresh leaves and persimmon pulp of different peony varieties [23,24]. Addition-
ally, certain plants have only one organ that contains OA. In birch, for instance, OA is 
exclusively found in the bark (up to 11 mg/g DW) [25]. OA can also be found in garden 
thyme and clove plants. Some of the fruit plants where OA has been found and isolated 
are apple, loquat, grape, elderberry, and sage [25,26]. Notably, a growing number of re-
searchers have examined the abundance of OA in apples, particularly in apple peels, due 
to their rich content of triterpenoids’ active substances and their ubiquity in the daily diet. 
As shown by the test results, OA and UA are the main triterpenoid active substances in 
apple peel extract [27,28]. The level of OA in apple flesh is found to reach 0.28 g/100 g in 
published research [25]. Although apples are an important food source for humans and a 
raw material in the food industry, only a small fraction of their leaves are used in certain 
foods, and the vast majority are underutilized as agricultural waste. To explore new 
sources of natural antioxidants, anticancer, and anti-inflammatory drugs, researchers 
have developed new methods for the extraction and detection of OA from apples, such as 
techniques to enhance extraction rates, including ultrasound-assisted extraction, micro-
wave-assisted extraction, and supercritical fluid carbon dioxide [29–31]. Chromatographic 
techniques that can be used to assess the quantitative and qualitative composition of 
triterpenoids include high-performance liquid chromatography, gas chromatography, 
and thin-layer chromatography combined with tandem mass spectrometry [32,33]. 

  

Figure 1. Chemical structures of oleanolic acid and ursolic acid (drawn according to [1]).

In this review, we first examine the most recent findings of OA in vivo and in vitro
experimental models, its biological features, and the state of related research and then
describe and assess the various methods used to manufacture OA and their bioavailability.
The purpose of this study is to serve as a reference for the future research, development,
and application of OA.

2. Sources of Oleanolic Acid

Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) is a natural pentacyclic triter-
penoid, with a name that is derived from the plant Olea europaea, the primary source of
commercial OA preparations at the moment [20]. Pentacyclic triterpenes, important phy-
tochemicals synthesized by the cyclization of squalene in plants, are known as a large
class of plant secondary metabolites composed of isoprene (2-methylbutadiene) units [21].
Oleanane, hopane, friedelane, ursane, gammacerane, and lupine are major pentacyclic
triterpenes that mainly exhibit antiviral, antitumor, anti-inflammatory, and antioxidant
activities [22].

Oleanolic acid can be extracted from different parts of Araliaceae, Asteraceae, Er-
icaceae, Lamiaceae, Myrtaceae, Oleaceae, Rosaceae, Rubiaceae, Saxifragaceae, and Ver-
benaceae plants, but its content differs from one plant to another and in different parts
of the same plant (Table 1). For instance, studies have shown significant differences in
OA content in the fresh leaves and persimmon pulp of different peony varieties [23,24].
Additionally, certain plants have only one organ that contains OA. In birch, for instance,
OA is exclusively found in the bark (up to 11 mg/g DW) [25]. OA can also be found in
garden thyme and clove plants. Some of the fruit plants where OA has been found and
isolated are apple, loquat, grape, elderberry, and sage [25,26]. Notably, a growing number
of researchers have examined the abundance of OA in apples, particularly in apple peels,
due to their rich content of triterpenoids’ active substances and their ubiquity in the daily
diet. As shown by the test results, OA and UA are the main triterpenoid active substances
in apple peel extract [27,28]. The level of OA in apple flesh is found to reach 0.28 g/100 g
in published research [25]. Although apples are an important food source for humans and
a raw material in the food industry, only a small fraction of their leaves are used in certain
foods, and the vast majority are underutilized as agricultural waste. To explore new sources
of natural antioxidants, anticancer, and anti-inflammatory drugs, researchers have devel-
oped new methods for the extraction and detection of OA from apples, such as techniques
to enhance extraction rates, including ultrasound-assisted extraction, microwave-assisted
extraction, and supercritical fluid carbon dioxide [29–31]. Chromatographic techniques
that can be used to assess the quantitative and qualitative composition of triterpenoids
include high-performance liquid chromatography, gas chromatography, and thin-layer
chromatography combined with tandem mass spectrometry [32,33].
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Table 1. Natural sources of OA.

Plant Species Family Plant Part Biological Activity Reference

Betula alba Betulaceae Bark
Anti-inflammatory,

anti-bacterial, anti-viral,
antitumor

[25,34]

Crataegus pinnatifida Rosaceae Leaves
Anti-inflammatory,

anti-bacterial, anti-viral,
antitumor

[25]

Eriobotrya japonica Rosaceae Flowers Not mentioned [35]

Fabiana imbricata Solanaceae Leaves and flowers Antiviral, antitumor,
antihyperlipidemic [36]

Ligustrum lucidum Ait Oleaceae Fruits, leaves

Anti-hepatitis,
anti-inflammatory,

antioxidative, antiprotozoal,
antimutagenic, anticancer

[37–39]

Gentiana lutea Gentianaceae Rhizome Antimicrobial [14]

Lavandula angustifolia Lamiaceae Herbs Anti-inflammatory,
anti-bacterial [25]

Lantana camara Verbenaceae Leaves and flowers Anti-inflammatory,
antioxidative, antiprotozoal [39]

Melissa officinalis Lamiaceae Herbs Antiviral, hepatoprotective [25,40,41]

Nerium oleander Apocynaceae Leaves Not mentioned [25]

Olea europaea L. Oleaceae Fruits, bark, leaves Anticancer, antimicrobial,
anti-diabetic [25,42–45]

Origanum majorana Lamiaceae Herbs Not mentioned [25]

Panax quinquefolium Araliaceae Roots Anticancer, anti-diabetes,
neuroprotection, anti-Aging [46,47]

Phyllanthus amarus Phyllanthaceae Leaves, aerials Anti-diabetes [48]

Punica granatum L. Lythraceae Fruit Antioxidant activity [13]

Rosmarinus officinalis L. Lamiaceae Leaves, flowers, stems,
branches

Anti-inflammatory,
hepatoprotective,

gastroprotective, antiulcer
[43]

Rosa laevigata Rosaceae Leaves Anti-inflammatory [49]

Syzygium aromaticum Myrtaceae Leaves, flower buds
Antinociceptive,

Anti-inflammatory,
antihypertensive, antioxidant

[36,50]

Sambucus nigra Adoxaceae Leaves, bark Anticancer [25,51]

Satureja montana Lamiaceae Herbs Anticancer, anti-bacterial [25,52,53]

Siphonodon celastrineus Celastraceae Root bark, stems Anti-inflammatory [54,55]

Silphium trifoliatum Asteraceae Leaves Anti-bacterial [46,56]

Salvia officinalis Lamiaceae Herbs
Anti-bacterial,

anti-inflammatory, anticancer,
antioxidative

[25,57,58]

Thymus vulgaris Lamiaceae Herbs Glutaminase inhibitor [25,59]

Viscum album Santalaceae Leaves, stems Antitumor, analgesic,
anti-inflammatory [39,60,61]

Viburnum chingii Adoxaceae Leaves Antimicrobial [54,62]



Agriculture 2022, 12, 2142 4 of 21

3. Pharmacological Effects of Oleanolic Acid

In spite of its wide range of pharmacological properties, OA’s therapeutic potential
has only been partially exploited. Studies on triterpenoids have shown that OA exerts ben-
eficial effects through various signaling pathways, such as antiviral, anti-HIV, antibacterial,
anticancer, antidiabetic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipi-
demic, and anti-atherosclerotic effects (Table 2). Apart from its beneficial role in preventing
cardiovascular disease, obesity, and metabolic syndrome, OA improves insulin response,
maintains beta cell function and survival, and prevents diabetic complications [63,64].

Table 2. Pharmacological actions and signaling pathways of OA.

Signaling Pathway Biological Activity Reference

Nuclear factor-κB (NF-κB) signaling pathway Anti-inflammatory, antitumor [65–68]

Nod-like receptor pyrin domain containing 3 (NLRP3) signaling
pathway Anti-inflammatory, neuroprotection [69–71]

Extracellular-signal-regulated kinase (ERK) signaling pathway Liver protection, antitumor [72,73]

Protein kinase B/Akt signaling pathway Antitumor, liver protection [72,74,75]

Jun N-terminal kinases (JNK) signaling pathway Antitumor [1,75]

Orphan receptor γ t signaling pathway Anti-inflammatory, anti-asthma [76]

Mitogen-activated protein kinases (MAPK) signaling pathway Anti-inflammatory [77,78]

MiR-122/cyclin G1/myocyte enhancer factor 2D
(miR-122/CCNG1/MEF2D) signaling pathway Antitumor [79]

Cyclic adenosine 3′,5′-monophosphate/protein kinase A
(cAMP/PKA) signaling pathway

Lowers blood sugar and blood lipids,
protects pancreatic islets [80]

Phosphatidylinositol 3-kinase/AKT/mammalian target of
rapamycin (PI3K/AKT/mTOR) signaling pathway Anti-osteoarthritis [81]

Endothelial nitric oxide synthase/Akt/nitric oxide
(eNOS/Akt/NO) signaling pathway

Ameliorates high glucose-induced
endothelial dysfunction [82]

Signal transducer and activator of transcription 3 (STAT3) and
sonic hedgehog (SHH) signaling pathway Inhibits colorectal cancer [83]

Mitogen-activated protein kinase kinase (MEK)/ERK/JNK
signaling pathway Anticancer [84]

Hippo-Yes-associated protein (Hippo-Yap) signaling pathway Anti-stomach cancer [85]

Epidermal growth factor (EGFR)/AKT signaling pathway Anti-pancreatic cancer [86]

Nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling
pathway

Liver protection, antidiabetic,
anti-inflammatory, maintenance of redox

and protein homeostasis
[87–89]

3.1. Anti-Inflammatory Effect of OA

The capacity of OA to alter a number of anti-inflammatory pathways has been demon-
strated in animal studies and cellular research. It can significantly reduce inflammation and
inhibit numerous inflammatory diseases, such as vasculitis, enteritis, and bronchitis [90–93].
The anti-inflammatory effect of OA is exerted through a variety of complex mechanisms.

3.1.1. Inhibition of the Production of Pro-Inflammatory Cytokines

In the context of inflammation and oxidative stress, treatment with OA and its deriva-
tives significantly inhibits the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8,
TNF-α, and MCP-1) [68,94–96]. Researchers found that high-fat diet C57BL/6J female mice
given oleanolic acid in water feeders at 0.005% (w/v) for 16 weeks had a significant reduc-
tion in the expression levels of IL-1β, IL-6, and TNFα in adipose tissue [97]. The researchers
pretreated BV2 cells with OA (0.5 to 10 µM) for 1 h and then with LPS (100 ng/mL) for 24 h
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at 37 ◦C. The results showed that OA reduced the expression levels of TNF-α, IL-1β, and
IL-6 in BV2 cells [98]. Researchers have demonstrated that OA ameliorates experimental au-
toimmune myocarditis (EAM) in several ways, including by promoting anti-inflammatory
cytokines (IL-10 and IL-35), interfering with cardiac-specific autoantibody production,
and exerting direct protective effects on cardiac cells [15]. In female C57BL/J6 mice with
experimental autoimmune encephalomyelitis, OA has also been revealed to decrease pro-
inflammatory mediators (TNF-α, IL-1β, IL-23, IL-17A, chemokine KC, and the growth
factor IGF-1) both in serum and colonic tissue, prevent lipid peroxidation and superoxide
anion accumulation in intestinal tissue, and induce the expression of the ROS scavenger
Sestrin-3 [99].

3.1.2. Increase Antioxidant Production

The anti-inflammatory effect of OA is related to the regulation of antioxidant produc-
tion. This mechanism is related to the expression of transcription factors Nrf2 and MAP
kinase that are oxidative-stress-sensitive [100,101]. OA has also been proven to protect
rats from ethanol-induced liver injury by inducing Nrf2-associated antioxidants, thereby
maintaining redox homeostasis and modulating ethanol metabolism and inflammatory
pathways [102]. As a ubiquitous nuclear transcription factor, NF-κB participates in the
transcription of target genes and regulates cell proliferation, differentiation, growth, and
apoptosis. As reported in previous studies, OA suppresses inflammation by inhibiting NF-
κB signaling and regulating pro-inflammatory cytokines such as TLR-9 and IL-18 [66,103].

3.1.3. Inhibition of Activation of Mitochondria-Associated Inflammatory Vesicles

Mitochondria may be a basic target when OA improves inflammation, as they are
organelles that contribute to oxidative stress and neuroinflammation [104]. In mitochon-
drial organelles, an essential component of innate immune response is DNA synthesis,
and mitochondrial DNA binds to NLRP3 containing inflammasome to activate inflamma-
some [105,106]. There is evidence that OA ameliorates carotid artery injury in diabetic
Sprague Dawley rats by inhibiting the NLRP3 inflammasome signaling pathway. Re-
searchers induced a diabetic rat model with streptozotocin (60 mg/kg), followed by 2 weeks
of treatment with OA (100 mg/kg/day) injection. OA reversed the hyperglycemia-induced
upregulation of the NLRP3 inflammasome components in diabetic rats. In addition, the
levels of TNF-α, interleukin (IL)-1β, IL-6, and IL-18 were downregulated in the serum of
OA-treated diabetic rats [70]. Additionally, through the inhibition of NLRP3 inflammasome
activation, OA attenuates microglia activation and oxidative stress, thereby achieving the
neuroprotective effect of OA against ischemic stroke. Researchers found that OA (10 mg/kg,
p.o.) attenuates NLRP3 inflammasome activation in a male ICR mouse model of transient
middle cerebral artery occlusion. Moreover, OA inhibits the assembly of NLRP3 inflam-
masome in the injured brain after ischemic stroke [71]. Since various diseases are strongly
associated with the activation of NLRP3 and its related molecular regulatory signaling path-
ways, NLRP3 is an exciting frontier for clinical drug research and development [107]. Effects
such as anti-inflammatory or antitumor, which are attributed to inhibiting the signaling
pathway of NLRP3 inflammasome, reveal potential targets of OA as an anti-inflammatory
agent. In contrast, the highly variable nature of NLRP3 inflammasome agonists allows
them to be triggered by many different stimuli, and the specific mechanisms behind this
need to be identified in more detail.

3.2. Antitumor Effect of Oleanolic Acid

Compared with synthetic compounds, the natural product OA exhibits rich structural
diversity and better preventive and anticancer-drug-like properties. It has become one of
the research hotspots for anticancer drug development. OA was found to be effective in
treating various tumor cell lines, such as MCF-7 and MCF-7/ADR human breast cancer cells,
the 1321N1 astrocytoma cell line, hepatocellular carcinoma, and HCT-116 colorectal cancer
cells [108]. The antitumor mechanisms of OA mainly include anticancer cell proliferation,
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induction of apoptosis, induction of autophagy, regulation of cell cycle regulatory proteins,
inhibition of vascular endothelial growth, anti-angiogenesis, and inhibition of tumor cell
migration and invasion (Figure 2). More importantly, the use of OA for cancer treatment
was found to be less toxic to cancer cells than to normal cells and more biosafe than other
treatments [109]. Therefore, OA exhibits considerable potential in anticancer applications.
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3.2.1. Inhibition of Tumor Cell Proliferation

Oleanolic acid exhibits inhibition of tumor cell proliferation by participating in mul-
tiple anticancer signaling pathways and intracellular substance regulation, such as the
Akt/mTOR/S6K pathway and the inhibition of macrophage M2 polarization. Mouse
model experiments have shown that OA inhibits the proliferation of KRAS-transformed
normal cells by attenuating the Akt/mTOR/S6K signaling cascade. In addition, OA also
inhibits cancer cell proliferation by suppressing both the mTOR signaling pathway and
PI3K/Akt/mTOR signaling pathway [110]. According to experimental findings, OA signifi-
cantly inhibits the expression of CD163, one of the phenotypic markers of M2 macrophages,
and the secretion of IL-10, an anti-inflammatory cytokine produced by M2 macrophages,
suggesting that OA’s inhibition of cell proliferation occurs through the suppression of the
M2 polarization of macrophages [111].

Notably, the reduction in aerobic glycolysis and glycolytic enzymes is suggested to be
a mechanism by which OA inhibits tumor cell proliferation. As shown in studies, there is a
positive correlation between aerobic glycolysis and cancer cell proliferation, and a high-
sugar environment promotes both aerobic glycolysis and cancer cell proliferation [112]. In
gastric cancer cells, the proliferation of gastric tumor cells is largely dependent on aerobic
glycolysis, whereas OA can reduce HIF-1α-mediated aerobic glycolysis by inhibiting YAP.
The specific mechanism is that OA can inhibit glucose uptake and consumption and
downregulate the expression of the glycolytic-rate-limiting enzymes HK2 and PFK1 [11].
It is noteworthy that a novel signaling pathway called Hippo-Yap plays a critical role in
the growth and progression of tumors, making it a potential therapeutic target for OA in
cancer treatment.

There are multiple pathways by which OA inhibits tumor cell proliferation, including
reducing the expression of Bcl-2, Cyclin D1, and CKD4, promoting the expression of
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Bax and p21, enhancing the activation of p53, etc. [113]. The proliferation of human
glioblastoma cells U373 was found to be inhibited by OA when OA activates STAT3 in
human macrophages and glioblastoma cells [110]. Moreover, a reduction in gastric cancer
cells proliferation is spotted when OA inhibits the expression of cell cycle protein A and
cell cycle protein-dependent kinase 2 [114].

3.2.2. Induction of Apoptosis in Tumor Cells

One of the key pathways in tumor therapy is the induction of apoptosis. There is evi-
dence that pentacyclic triterpenoids interfere with multiple stages of cancer development,
inhibit tumorigenesis and evolution, and induce apoptosis in several cancers [115,116].
For instance, a variety of tumor cells are induced to undergo apoptosis by OA, including
HepG2 cells, human breast cancer MCF-7 cells, HT-29 colon cancer cells, and prostate
cancer cells [85,117].

Multiple signaling pathways are involved in the OA-induced apoptosis in tumor
cells. One of them is the inhibition of NF-κB activity [118]. OA was shown to inhibit
NF-κB expression and regulate the mRNA expression level of the X-linked inhibitor of
the apoptosis protein (XIAP) in HuH7 cells compared to untreated cells [119]. Another
proven mechanism that promotes apoptosis is that OA inhibits COX-2 overexpression in
tumor cells [120]. Here, COX-2 is overexpressed in a variety of tumor cells as a rate-limiting
enzyme for prostaglandin synthesis, suggesting its participation in cancer promotion and
progression [121]. In human colon cancer HT-29 cells and HepG2 cells, OA is reported to
decrease COX-2 protein activity and inducible nitric oxide synthase (INOS) expression,
thereby inducing apoptosis [73,122].

3.2.3. Induction of Autophagy

There is an association between OA’s anticancer properties and cellular autophagy. As
evidenced by the elevated ROS levels in cells after OA treatment, OA-triggered cellular
autophagy proceeds in an ROS-dependent manner. A significant inhibition of the growth
of HepG2 and SMC7721 cells is achieved as a result of autophagy induction and inhibition
of the PI3K/Akt1/mTOR signaling pathway in response to OA treatment [123]. According
to another study in bladder cancer T24 cells (ULK1), the mechanisms through which
OA causes autophagy include the activation of AMP-activated protein kinase (AMPK),
the blocking of the mTOR molecular target, and the increase in UNC-51-like autophagy-
activated kinase 1 [124]. There is further evidence that the inhibition of the Akt/mTOR/S6K
pathway contributes to OA-induced autophagy [110]. Moreover, most natural compounds
were found to induce autophagy primarily through the Akt/mTOR/S6K pathway [125].
There are other autophagy regulatory pathways, such as ERK and JNK, which were shown
to be activated in response to OA treatment, indicating their possible association with
OA-induced autophagy [126]. It is, therefore, imperative to conduct more research to
understand the mechanism of OA-induced apoptosis, which is crucial for the creation of
OA-related anticancer medications.

3.2.4. Regulation of Cell Cycle Regulatory Proteins

In different cancers, the expression of cell cycle regulatory proteins may be affected by
OA in different ways, resulting in cell cycle arrest at different stages and apoptosis induction
in cancer cells. In prostate cancer PC-3, DU145, and LNCaP cells, OA is proven to promote
G0/G1 phase cell cycle arrest in a dose-dependent manner by regulating the expression
levels of cell-cycle-related proteins. The researchers discovered that certain doses of OA
independently inhibit cell cycle progression. In cell lines pretreated with different doses
of OA (15, 30, 45, and 60 µM), there was a significant increase in the percentage of cells
in the G0/G1 phase but a considerate reduction in the percentage of cells in S phase, as
compared to controls [42]. According to previous findings, OA-treated DU145 cells are
arrested in G2 because of the activation of p-AKT, p-JNK, p21, and p27, accompanied by
the downregulation of p-ERK, cyclin B1, and CDK2 expression. OA-treated MCF-7 cells
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are reported to be arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27
and the reduction in p-AKT, cyclin D1, CDK4, cyclin E, and CDK2 expression. Moreover,
OA-treated U87 cells also exhibit G1 phase arrest caused by the upregulation of p-ERK,
p-JNK, p-AKT, p21, and p27 and the downregulation of cyclin D1, CDK4, cyclin E, and
CDK2. It is, thus, concluded that OA arrests the cell cycle at different phases and induces
apoptosis in cancer cells [74]. According to these results, different cancers are affected
differently by OA’s effects on the expression of cell cycle regulatory proteins.

In addition, when it acts on certain receptors or enzymes, OA induces different
damages to cellular DNA as an active immunomodulatory component, thereby inhibiting
the growth migration, invasion, and progression of tumor cells [127].

3.3. Other Pharmacological Effects

OA is not only protective against acute chemical liver injury, but also against chronic
liver-disease-induced fibrosis and cirrhosis [128]. There are several altered gene expression
patterns and transcription factors that may contribute to this pathway, including farnesoid
x receptor (FXR) and Nrf2-, and MT-related genes [129,130]. By encouraging Nrf2 nuclear
accumulation, OA can cause Nrf2-dependent gene deinduction, thus protecting the liver
from acetaminophen-induced hepatotoxicity [131].

As demonstrated in another study, after 30 days of oral treatment with OA (10 mg/kg/day)
and ethanol (4 g/kg/day), a significant reduction in histopathological damage and serum
lipid abnormalities as well as biochemical indices of ethanol-induced oxidative stress, such
as elevated lipid hydrogen peroxide in the liver, GSH depletion, and decreased antioxidant
enzyme activity, was observed in mice [102]. Based on these findings, OA significantly
protects against the development of liver injury through various pathways.

Notably, OA displays great potential as a natural compound for the synthesis of
potential antidepressant drugs [132]. It is also evidenced to have low side effects when
used as an antidepressant, which further excites researchers [133,134]. Thus, OA is in-
creasingly used by researchers to develop antidepressant drugs. In mice exposed to
chronic stress, researchers found that OA (20 mg/kg) can activate the hippocampal brain-
derived neu-rotrophic factor (BDNF)-ERK-CREB signaling pathway by regulating miR-132,
which produced an antidepressant-like effect [135,136]. Another study revealed that OA
(40 mg/kg) exhibited antidepressant-like effects in corticosterone-induced depression
through downregulation of SGK1 and GR expression and upregulation of the hippocampal
BDNF-AKT/mTOR signaling pathway [137].

Other properties of OA, such as anti-prostate cell proliferation, anti-muscle atrophy,
and anti-influenza, have also been demonstrated [137–141]. The effects of OA on car-
diovascular activities include anti-arrhythmic, immunomodulatory, anti-hyperlipidemic,
vasodilatory, anti-inflammatory, and antioxidant [142–144]. In the liver, OA was shown
to control glucose 6 phosphates and forkhead box protein O1, thereby normalizing blood
glucose levels in rodents with diet-induced obesity or diabetes [145,146]. It was also found
that OA inhibits atherosclerosis by downregulating the expression of inducible nitric oxide
synthase in apolipoprotein E knockout mice [147]. In conclusion, OA exerts diverse and
complex pharmacological effects, making it a promising drug ingredient, but its mechanism
requires further investigation.

4. Development and Utilization of Oleanolic Acid

In the biopharmaceutical classification system, pentacyclic triterpenoids are catego-
rized as Class IV medications. As they are almost insoluble in water and have difficulty pen-
etrating biofilms, their pharmacological actions are limited [148]. Another well-known issue
of triterpenoids is their low bioavailability. This is primary because their high lipophilicity
and water insolubility can significantly decrease the effectiveness of medication absorp-
tion in the gastrointestinal system [149]. Thus, researchers are working on exploring new
methods to enhance the biopharmaceutical properties of OA. Two principal ways have
been found to improve its water solubility, permeability, and bioavailability. One is to



Agriculture 2022, 12, 2142 9 of 21

modify the molecular formula of OA to obtain higher biological activity and a wide range
of derivatives, which can serve as the basis for the development of new drugs [85,128].
The other is the preparation of new dosage forms of OA, such as nanoparticles, liposomes,
solid dispersions, and phospholipid complexes, to improve its dissolution, penetration,
and absorption [18]. Among them, nanoparticle drugs are becoming increasingly popu-
lar among researchers due to their extended drug circulation time, high bioavailability,
targeted delivery, and higher bioavailability.

4.1. Structural Modification of Oleanolic Acid

It is possible to improve bioavailability and expand the scope of application of OA
by chemically altering its structure, which is an effective way to develop new drugs. The
C-28 position, A ring, and C ring are the main structural modification sites of OA, and
derivatives modified at different positions exhibit a variety of pharmacological activities
(Figure 3) [128]. Its diverse biological properties, coupled with its high availability and low
production cost, make OA an excellent semi-synthetic modified precursor molecule [150].
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Many analogs of OA have been synthesized and have exhibited excellent biologi-
cal activity [128]. Two compounds were prepared from OA isolated from Syzygium aro-
maticum by methylation and acetylation, which have exhibited better in vivo/in vitro
anti-inflammatory and membrane stabilization properties, respectively [151–153]. A newly
synthesized OA derivative was revealed to have a significant inhibitory effect in vitro and
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substantially reduced blood glucose levels compared with OA in in vivo experiments [154].
In lung cancer cells, recently synthesized OA family compound 2 (OLO-2) olean-28 and
13b-olide are shown to promote apoptosis by activating caspase-3, producing ROS, causing
DNA damage, and blocking the activation of the ERK, STAT3, AKT, and NF-κB path-
ways [155]. Another OA derivative, named SZC017, was also prepared by modifying
the molecular structure. It can inhibit levels of Akt, phosphorylated-Akt (p-Akt), p-IκBα,
total p65, and total p-p65 p-p65 in both the cytoplasm and nucleus and the p65 nuclear
translocation to suppress Akt/NF-κB signaling and topoisomerase I and IIα proteins, thus
initiating the intrinsic apoptosis of gastric cancer cells [156].

Recently developed OA derivatives have been proven to mitigate OA’s weak water
solubility, allowing it to demonstrate greater bioavailability. A new OA derivative was
revealed to be nearly 20 times more soluble than OA in aqueous solution, release higher
amounts of NO in HCC than the normal compound, and exhibit potent anti-HCC activity
with little effect on normal hepatocytes [157]. Cyclodextrin encapsulation technology sig-
nificantly contributes to the synthesis of OA. Tetra-ethylene pentaamine-β-cyclodextrin,
a synthetic long-chain amino-β-cyclodextrin derivative, was adopted to prepare OA in-
clusion complexes, and the finding showed a 2100-fold increase in the water solubility
of OA [128]. Researchers also found a drastic promotion of the water solubility of OA
by inclusion complexation with amino-appended β-cyclodextrins (ACDs). Moreover, the
in vitro anticancer activities of OA against human cancer cell lines HepG2, HT29, and
HCT116 are significantly enhanced after the formation of inclusion complexes, and the
apoptotic-response results indicate their induction during the apoptosis of cancer cells [158].
This could provide a novel approach to developing novel pharmaceutical formulations of
OA. It is noteworthy that the new OA-preparation technique does improve solubility, but
its metabolic absorption and bioavailability in vivo have not been sufficiently studied.

While great progress has been made in the structural modification of OA, there are still
some issues that need to be explored. Newly synthesized derivatives, for instance, have had
few innovative studies, modified dosage forms have not been biologically tested, and OA
derivatives have reduced or not significantly improved activity. Taken together, it is neces-
sary to investigate functional groups, pharmacological effects, and unnecessary substituents
in chemical-structure modification to make accurate and reasonable modifications.

4.2. Nanoscale Preparation

Nanotechnology has revolutionized the pharmaceutical and biotechnology industries
in the 21st century and is seen as a powerful tool for basic research, imaging, and, particu-
larly, enhanced drug delivery. With nano-drug delivery systems, drugs can be delivered at
lower doses but perform better therapeutic effects, while improving product bioavailability,
safety, and patient compliance [159]. These systems also offer the possibility to deliver
highly lipophilic or chemically unstable drugs, thus improving OA’s bioavailability, which
is hindered by the highly lipophilic and water-insoluble nature of triterpenoids. Moreover,
several disadvantages of many natural compounds with poor therapeutic applicability
can be addressed by nanocarriers, such as in vivo instability, reduced bioavailability and
solubility, low absorption, lack of targeted delivery, and adverse effects. Moreover, nano-
based formulations can significantly improve pharmacokinetic parameters and reduce
interactions with intracellular proteins, thereby improving the bioavailability of highly
lipophilic drugs and achieving targeted delivery to specific sites [160]. In recent years,
nanotechnology has been adopted by many researchers to prepare OA.

4.2.1. Nanoliposomes

Liposomes are one of the various nanoparticles that have attracted particular attention
because of their structural similarity to biological membranes, high drug loading, and
high transport capacity. They possess unique physical and chemical properties as well as
high potency and the ability to encapsulate a large number of different molecules [161]. In
addition, this type of nanoformulation is highly flexible in preparation, making it possible to
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undergo different surface modifications for a wide range of applications in skin applications
and gene therapy or as drug delivery systems for different diseases [162]. Nanoliposomes
developed from OA show slow release, controlled release, high targeting, reduced toxic
side effects, and enhanced antitumor effects [163].

In addition, OA’s bioavailability is enormously enhanced after being combined with
liposomes (Figure 4). Researchers encapsulated OA in PEGylated liposomes, resulting in
good stability, solubility, and diffusion permeability, along with significant drug-carrying ca-
pacity and slow in vitro drug release. These OA liposomes have shown superior anticancer
activity compared to pure OA and longer drug action through avoidance of Opsoniza-
tion and macrophage uptake [164]. Chitosan-mediated gold-nanoshell-encapsulated OA
liposomes (GNOLs) were also developed by researchers, obtaining a product with an
average diameter of 172.03 nm. With a suitable zeta potential, this product is more likely to
accumulate in tumor cells. Based on results of in vivo evaluation experiments of GNOLs in
U14 tumor-bearing mice, GNOLs exhibit significant inhibitory and pro-apoptotic effects
on tumor tissue [163]. Further, liposomes-encapsulated OA is reported to show stronger
antitumor activity by synthetic drugs on HeLa cells compared to free OA [158]. The
nanoliposome-covered OA is also proved to enhance the anticancer effect by inhibiting
proliferation, migration, and invasion [165].
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Oleanolic acid liposomes can attenuate the organ toxicity of related chemotherapeutic
drugs. As a result of the combination of OA liposomes and doxorubicin, the effective dose
of both compounds is reduced, and the organ toxicity of doxorubicin is also eliminated
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without reducing its anticancer effect. Based on histopathological evaluation, liver, kidney,
or heart tissues do not show toxic activity, which can be attributed to OA’s protective
antioxidant properties that protect organs from oxidative stress [166]. A combination of
doxorubicin and OA exhibits limited cardiotoxicity without any evidence of histopatholog-
ical changes in major organs, making it a promising strategy for the future treatment of
hepatocellular carcinoma [167].

Notably, some researchers have developed a multivesicular liposome containing OA
(OA-MVLs) as a treatment for hepatocellular carcinoma. Compared with pure OA, this
compound inhibits the growth of human HepG2 cells and mouse H22 hepatoma more
effectively. It exhibits a prolonged drug-circulation time, as a result of the continuous
release of active drugs from liposome nanoparticles in in vitro and in vivo experiments.
Moreover, OA-MVLs can inhibit the adhesion, migration, and invasion of hepatocellular
carcinoma cells at low doses without damaging normal hepatocytes [168].

Taken together, OA-MVLs are considered as a potential drug candidate for cancer
treatment in the future as a result of their simple preparation and promising biological
effects.

4.2.2. Nanoparticles

Biodegradable polymeric nanoparticles (NPs) offer an excellent option for developing
and utilizing OA. In comparison with conventional drug formulations, NPs can slow down
the drug release rate, prolong the drug-circulation time, reduce the required dose of drug
delivery, and improve the pharmacodynamic effects of a drug in preclinical models [18,128].
In particular, since NPs have an increased permeability and retention effect (EPR), they
preferentially collect in tumor and inflammatory tissues, avoiding clearance in the spleen
(Figure 5) [169,170]. Incorporating OA into NPs, we can achieve slow release and targetivity,
improve antitumor effects, enhance drug safety, and expand drug delivery [17,171,172].
Researchers have developed a novel OA NP-loaded lactoferrin nano-delivery system.
OA-NPs disintegrate twice as fast as control OA in in vitro dissolution experiments, and
pharmacokinetic studies in rats show a 320.5% relative bioavailability of OA NPs [172].
The ring-opening polymerization (ROP) method was used to synthesize a series of am-
phiphilic carboxylated cellulose-graft-Poly (L-lactide) (CC-g-PLLA) copolymers that can
self-assemble into NPs for delivery of anticancer drug OA. The copolymer (DSPLLA 2.03)
NPs display higher drug loading efficiency (24.76 ± 0.58%). In addition, NPs exhibit better
water solubility (16.9 mg/mL) and a prolonged drug release (120 h). In vitro and in vivo
studies indicate that NPs maintain cytotoxicity to 4T1 cells and MCF-7 cells and display
high antitumor efficiency [173].

Notably, there is a growing interest in the combination therapy with NPs in antitumor
studies. It is essential for drug-loaded NPs to avoid elimination by the reticuloendothe-
lial system (RES) to achieve long cycle times. Hydrophilic agents such as polyethylene
glycol (PEG) are usually used to modify the surface of NPs to avoid clearance by phago-
cytosis. This mechanism alters the physicochemical properties of NPs, thus changing the
properties of NPs, such as the drug-release profile, biodistribution, and pharmacokinet-
ics [164]. A hydrophobic OA core and a hydrophilic PEG shell were used by researchers
to successfully synthesize mPEG-OA NPs that are also capable of encapsulating another
anticancer drug hydroxycamptothecin (HCPT) to achieve synergistic effects. As a re-
sult, mPEG-OA/HCPT NPs exhibit significantly enhanced anticancer efficacy compared
to free drug formulations [174]. Additionally, a range of desirable properties are also
exhibited by these co-assembled NPs for co-delivery of anticancer drugs, such as good
water solubility, appropriate size, low side effects, and greater bioavailability. Further,
researchers constructed a cancer cell membrane-decorated zeolitic-imidazolate framework
hybrid nanoparticle (HP) to codeliver cisplatin (DDP) and OA; the results revealed that this
platform (HP/DDP/OLA) displays positive feedback in the treatment of bladder cancer
(SW780). Moreover, it can enhance apoptosis, while reversing multidrug resistance in
SW780 cells, compared to free drugs alone or monodelivery systems [175].
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A pure natural nanomedicine-cum-carrier (NMC) drug delivery system was also
designed and fabricated based on bioactive nanomaterials. This system can co-assemble
OA and GA into NPs with new morphological characteristics. Natural small-molecule drug
carriers retain biological activity and have stronger antitumor effects than non-bioactive
drug carriers. Both in vivo and in vitro experiments have confirmed that OA and GA
work synergistically to significantly enhance the therapeutic efficacy on tumor therapeutic
efficacy. A major reason for this is that OA and GA kill tumors in different mechanisms.
In addition, OA/GA NPs are capable of loading up to 15% paclitaxel (PTX). Compared to
OA/GA NPs, OA/GA/PTX NPs exhibit enhanced antitumor activity [17].

4.2.3. Other Nanoscale Preparation Methods

An ethanol film hydration was used to prepare OA-loaded hybrid micelles, which
were then characterized and evaluated for in vitro release and in vivo drug efficacy. As
shown in in vitro drug release studies, approximately 80% of OA was released from the
dialysis bag within 24 h, while only 40% of OA micelles was, indicating that the OA micelles
achieved a sustained release. In addition, compared to free OA, higher antitumor efficacy
was observed with the OA micelles. They also significantly reduced tumor volume and
inhibited tumor invasion and migration [176]. Herein, it is safe to conclude that polymer
micelles are a promising anticancer-drug delivery system.

OA-loaded nanoemulsions with an average particle size of less than 60 nm were
prepared. They were proven to have excellent and stable physical properties based on
stability test studies. As evidenced in in vivo experiments, their formulation was non-toxic
and non-irritating to the skin. It also had a high skin-penetration ability and can enhance
the anti-inflammatory effect of OA. After absorption through the skin, the nanoemulsion
made from OA provided a better anti-inflammatory effect [177]. After formulating OA into
a nanosuspension, there was an increase of about 550 times in the saturation solubility of
OA [178].
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In comparison with conventional therapies, nanotechnology has led to greater drug
development potential for OA in the treatment of diseases such as cancer. It is possible
to further exploit this potential by selecting suitable fabrication methods and nanocarrier-
delivery routes to achieve better bioavailability.

5. Conclusions

Oleanolic acid is a natural pentacyclic triterpenoid that can be extracted from various
parts of a wide range of plants. Over the past few decades, the potential anti-inflammatory,
anticancer, hepatoprotective, and cardioprotective effects of OA and its derivatives have
attracted increasing attention from researchers. According to prior studies, OA exerts
anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines,
which increases the production of antioxidants or inhibits the activation of mitochondria-
associated inflammatory vesicles. Its inflammatory regulatory process involves signaling
pathways such as NF-KB and NLRP3. Aside from inhibiting tumor cell proliferation, OA
induces apoptosis and autophagy in tumor cells and regulates cell cycle regulatory proteins.
It is also possible that the anticancer activity of OA is associated with cell death due to the
activation or sensitization of the intracellular pathways of pentacyclic triterpenoids.

Like many other plant compounds, OA possesses many beneficial pharmacologi-
cal properties. However, its obvious drawbacks cannot be ignored, such as poor water
solubility and low bioavailability, which are possibly attributed to the lipophilic nature
and low water solubility of OA. Various techniques have been investigated to overcome
these drawbacks, such as appropriate structural modification of OA and the application of
bio-nanotechnology. In recent years, great progress has been made in the chemical structure
modification of OA, and new formulations of OA and its derivatives have sprung up.
While sharing some pharmacological properties with OA to some extent, OA derivatives
display some distinctive advantages, such as less toxicity, stronger therapeutic effects, and
greater bioavailability. As OA NPs are made by nanotechnology, their surface possesses a
high modulation that allows them to transport hydrophilic and lipophilic molecules, thus
ensuring excellent bioavailability of a drug at specific sites of action. In addition, OA NPs
can significantly enhance the solubility of OA and contribute to the distribution of the drug
within the body. As compared to monomeric systems, co-assembled NPs and co-loaded
hybrid NPs exhibit improved stability and biocompatibility, better responsiveness of drug
release, and better performance.

Overall, OA, which is widely found in nature, displays strong biological activity
and great research potential. However, there are still some challenges remaining to be
addressed in its application into drug development, such as its loading capacity, stability,
toxicity, and ability to overcome biological barriers. It is important to utilize appropriate
technologies to enhance its biomedical activity. We are confident that with further research
and the discovery of new dosage forms, the research and application of OA will be greatly
facilitated. More researchers need to explore products that benefit human beings as soon as
possible.
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