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Abstract

Software-Defined-Networking (SDN) has been recently arising as a new technology 

in the IT industry. It is a network architecture that hopes to provide better solutions 

to most of the constraints in contemporary networks. SDN is a centralized control 

architecture for networking in which the control plane is separated from the data 

plane, the network services are abstracted from the underlying forwarding devices, 

and the network’s intelligence is centralized in a software-based directly-pro-

grammed device called a controller. These features of SDN provide more flexible, 

programmable and innovative network’s architecture. However, they may pose new 

vulnerabilities and may lead to new security problems. In this paper, we propose 

the application-aware firewall mechanism for SDN, which can be implemented as 

an extension to the network’s controller. In order to provide more control and vis-

ibility in applications running over the network, the system is able to detect network 

applications that may at some point affect network’s performance, and it is capable 

to dynamically enforce constraint rules on applications. The firewall architecture is 

designed as four cooperating modules: the Main Module, the Filtering Module, the 

Application Identification Module, and the Security-Enforcement Module. The pro-

posed mechanism checks the network traffic at the network, transport, and applica-

tion levels, and installs appropriate security instructions down into the network. The 

proposed solution features were implemented and tested using a Python-based POX 

controller, and the network topology was built using Mininet emulation tool.
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1 Introduction

It is hard to find a facet of our life that does not involve a computer system, at 

least on some levels. In modern business climate, computer networks have 

become a key element in providing important connections for an organization to 

run its applications and provide services. In today’s world, there are thousands 

of applications that use the Internet to provide different services, such as online 

shopping, data transfer, instant messaging, or video conferencing. They use a 

wide range of different communication protocols. Knowledge of the application 

protocols running in the network is very important for network operators. With 

this knowledge, they are able to properly configure networks and provide fine-

grained security.

For instance, identifying Layer 7 protocol lets network operators to sort traffic 

according to which application or application service the traffic is trying to reach, 

and what the specific contents of that traffic are. Instead of simply blocking all 

traffic on a particular port, they can use an application-aware firewall to generally 

accept traffic on that port but block any traffic that contains a known vulnerability 

(like an SQL injection attack or a malicious telnet command).

Over the last few years, SDN has been one of the trending topics in network 

technologies. It has received a considerable attention from, both, researchers and 

IT industry, believing that SDN can provide creativity, invention and best solu-

tions to most chronic problems experienced by existing networks [1]. The key 

feature of the SDN model is the physical separation between the control plane and 

the data plane [2]. Whereas, the control plane of all network devices is migrated 

from the forwarding elements and grouped into a software-based device known as 

a “controller”. Typically, SDN architecture encompasses three distinct planes: the 

data plane, the control plane, and the application plane.

The data plane involves network devices connected to each other [3]. This 

plane is responsible for data forwarding as well as gathering local information 

and statistics. The control plane contains one or more connected controllers. It 

strives to behave like a network operating system. It represents the brain of the 

network in which the network intelligence is centralized. The controller’s com-

prehensive view of the entire network helps to make forwarding decisions for the 

underlying network elements. For further liberation, rapid innovation, and high 

scalability, network services are extracted from basic network elements; they are 

clearly presented as a separate application plane.

Typically, the SDN Controller handles traffic (Sect.  2.1) with respect to low 

level traffic identifiers (e.g., header field values) and physical identifiers (e.g., 

an interface identifier) [4]. Thus, the SDN Controller has no insight into rela-

tions between flows. Due to the lack of high-level traffic identifiers, it is not pos-

sible to directly and consistently specify policies for all flows belonging to a spe-

cific application or to define policies for specific persons that are the parties of 

communication.

Motivation: On the one hand, greater reliance on software, direct program-

ming capability, and centralized logical network intelligence of the SDN-based 
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network can support rapid updating and provides different ways and opportuni-

ties to enhance and protect the network [5]. On the other hand, these features 

bring new vulnerabilities related to security, scalability, and flexibility [6, 7]. Fur-

thermore, the primary design of the SDN architecture does not sufficiently take 

into account security requirements what makes security issues a real challenge. 

Thus, it is essential to build a robust security mechanism to protect the network 

from internal and external malicious activities while respecting the objective of 

the SDN network. In other words, one must build a mechanism with application-

aware capabilities to inspect the network traffic, which can have a plane-like fire-

wall that creates additional boundaries within the network, and which provides 

“defense-in-depth” usually considered as a good solution for networks with dif-

ferent levels of trust.

Contributions: In this paper, we use the advantages of the central control unit 

with its global network view, the benefit of sending the initial flow packets to the 

controller for routing information (reactive routing), and the SDN data plane pro-

grammability to propose a firewall mechanism able to recognize applications in 

order to ensure security in SDN networks. Such a firewall will act as an applica-

tion based on the controller’s API. Our proposed solution aims to set up application-

based traffic filtering mechanism, which is implemented as a modular application 

running at the top of the controller. The method is based on converting each for-

ward element to a defense point, making it easy to protect the network from external 

attacks as well as from internal malicious users. The network security policies are 

centralized in the controller, which is the unit responsible for deciding regarding how 

the switches should handle the packets. The proposed firewall can be implemented 

and deployed effectively on small, local, and lightly utilized networks, where it can 

detect network applications that may at some point affect network performance.

This paper is organized as follows. Section 2 describes the theoretical background 

of OpenFlow-based SDN networks and firewall technologies. The related work and 

state of the art of current SDN security solutions are presented in Sect. 3. Section 4 

highlights the proposed system’s architecture. Implementation and evaluation of the 

system are given in Sect. 5. Section 6 concludes the paper with a summary of its 

content and possible future enhancements.

2  Background

To realize our proposal system and link it with other existing network solutions, we 

start with a brief description of the OpenFlow-based SDN architecture and firewalls 

technologies. Understanding the main characteristics and functionality of these com-

ponents plays a significant role when designing solutions to secure SDN networks.

2.1  OpenFlow/SDN Network

The OpenFlow-based SDN architecture can be described as the formation of sev-

eral interrelated and collaborative planes, as shown in Fig.  1. SDN architecture 
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consists primarily of three basic planes known as the data plane, the control plane, 

and the application plane. Each plane performs specific functions and takes advan-

tage of information or services provided by other planes. Typically, two interfaces: 

the Northbound interface (NBI), and the Southbound Interface (SBI) are imple-

mented by the control plane to communicate with the application and data planes, 

respectively.

OpenFlow [8] is a widely used protocol in the Southbound in SDN framework. 

Open Networks Foundation (ONF) specifies OpenFlow as a standard communica-

tion protocol that defines the interaction between OpenFlow-enabled switches and 

the OpenFlow controller. Speaking broad, OpenFlow sets different messages that 

provide means for the remote controller to control the behavior of network switches 

by adding, deleting, or modifying flow table entries in these switches.

The control plan contains a central control software program, known as the 

OpenFlow-enable controller, has a network-wide view of the whole network and is 

responsible for making a forwarding decision. The data plan consists of OpenFlow-

enable switches that are basic forwarding devices which utilize a simple “Match-

Action” mechanism to perform flow-based packets forwarding according to their 

flow table. The flow table contains a set of flow entries (also called flow rules) each 

of which consists of headers fields, activity counters, priority, timeout, actions, 

cookie and flags.

In the OpenFlow 1.0.0 switch, the header fields (Match fields) are 12-tuples 

packet header to be matched against the incoming packet’s header. Counters fields 

are updated only when packets are matched and used to keep track of each flow, 

table and port and provide statistics to the Controller. The action fields contain data, 

where there is a set of zero or more actions that should be applied to the matched 

packets.

For each flow entry added to the switch, the priority field is linked to determine 

which flow should be specified if more than one flow entry matches the incoming 

Fig. 1  OpenFlow/SDN archi-

tecture
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packet, the idle timeout value refers to the time the input must be removed due to a 

lack of activity, and the hard time refers to when should remove the entry, regardless 

of the activity.

Each packet received by the switch, the packet’s header fields is matched to the 

flow table entries. The lookup process begins with the first flow table entry till the 

last flow table entry. If a match occurs, the relevant actions in the corresponding 

flow entry are performed on the packet. Otherwise, the packet being dropped or the 

packet_in message containing the packet (or only 128 bytes of the packet) is sent to 

the controller for processing.

Depending on its policy rules, the controller will decide how the switch should 

handle this packet, then send it back to the corresponding switch using the packet_

out message. According to that decision, the switch will handle the packet and the 

controller may modify the switch’s flow table by adding new entry to help handling 

next similar packets [9].

2.2  Firewall

Firewall is a fundamental security mechanism that controls the flow of traffic 

between a trusted network (i.e., a corporate LAN) and an unreliable or public net-

work (i.e., the Internet). It can be software-based solution, a hardware-based solu-

tion, or a combination of both, used to implement an enterprise security policy that 

governs network traffic [10]. Each firewall uses a database of policy rules that deter-

mine how the firewall handles inbound and outbound network traffic [11]. Firewalls 

can work (filter) at different levels of the TCP/IP protocol stack. Accordingly, there 

are different categories of the firewall: static packet filters, stateful firewalls, and 

application-level firewalls.

The packet filtering-based firewall (also known as a stateless firewall) works by 

allowing or dropping packets, based on their source or destination addresses or their 

port numbers. Each packet is maintained separately, and the firewall does not save 

the state of the packet to be used for processing the next packets in the same flow 

[12]. On the other side, stateful firewalls track the status of network connections 

when packets are filtered. They often store information about each traffic flow that 

passes through them in a table known as the state table. This state table consists of 

entries that represent the currently active connection session [13]. These firewalls 

are common because they are inexpensive, simple in operation and maintenance, 

and have a good throughput. However, these types of firewalls (stateless/stateful) do 

not needs to understand much about the traffic they are inspecting, since they filter 

packets basing on source and destination addresses and may look at UDP/TCP port 

numbers and flags. They are not smart enough to realize the application to prevent 

breaches and attacks occurring across the network.

Today most applications can be delivered via a web browser or through a com-

puter program. The vast majority of these applications must have an Internet con-

nection in order to function correctly. The application-aware firewall is a kind of 

technology that redefines the way the corporate networks are secured. The main 
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difference is that application-based firewalls can detect and restrict certain applica-

tions, whereas the traditional firewall can only block ports or addresses [14].

This is a major advance because the application blocking functionality is used to 

organize separate devices on the network. For example, most Web applications and 

websites are running over port 80, and an organization that uses a traditional firewall 

should allow the port to easily enable employees to access the Internet. If they want 

to block access to YouTube or prevent sending files via File Transfer Protocol (FTP) 

for example, they should use another part of technology, such as a web filter. Using 

the application-aware firewall, the organization can only restrict YouTube and iden-

tify and block malware detection in an attempt to disguise port 80 traffic.

3  Related Work

With regard to network security, many previous works and contributions have been 

presented that offer different ideas for securing the SDN environment [15]. Some 

studies have focused on building firewalls solutions, while others have dedicated 

efforts to provide traffic classification and application-aware framework attended for 

SDN-based networks.

3.1  Firewall Solutions in SDN

SDFS [16] introduces Stateful Distributed Firewall provided as a service in SDN. In 

order to ensure more reliability, SDFS automatically exchanges the state from global 

(controller) to the switches along the path of the traffic. In [17], the authors proposes 

a stateful firewall for SDN to be implemented in the data plane. In implementation, 

they make use of the OpenFlow protocol version 1.5.0 that enables TCP flag match-

ing capabilities, and proactively install rules entries in the SDN switch’s flow table. 

So, every switch maintain a local state of the active flows.

A lightweight Intrusion Prevention System (IPS) for SDN network is presented 

in the paper [18]. It is introduced to early detect and prevent a port scan attacks. 

The lifecycle of the suggested solution goes through three basic stages: Collection, 

Detection, and Prevention. The proposed system collect the required data by period-

ically requesting the flow’s counter from the switches. This information is analyzed, 

and according to the predefined rules, the port scan is detected. Finally, it installs 

forwarding rules in the switches to react to the attack. A Cloud-Clustered Firewall 

[19] presents a novel algorithm to distribute the security policies into distributed 

SDN devices maintained by cloud-clustered firewall. The presented rule-placement 

algorithm implemented to provide a better performance and resolve the TCAM 

memory limit of SDN data plane.

In [20] the authors propose a new authentication system for the SDN network, 

which is used to verify the identity of a host upon connection to the network. The 

proposed mechanism denies the access of unauthorized hosts and defines different 

levels of privileges for each user.
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Table  1 summarizes and compares the security functions (and system perfor-

mance) proposed with other SDN-based security solutions known in the literature. 

The table clearly shows that the solutions currently available try to protect the net-

work by inspecting the traffic packets up to Layers 2, 3 or 4 of ISO/OSI stack of 

protocols. Such solutions are not smart enough to be conscious of the application 

and fail to prevent Application Layer-based (per the Open System Interconnection 

(OSI) model) breaches and attacks occurring over the network. On the other hand, 

in this paper we provide a solution that inspects the packets based on Layer 7 char-

acteristics; it is an application-aware firewall system that dynamically reconfigure 

security rules and redistributes them to the underlying devices. Layer 7 intrusion 

prevention system is introduced in [21] called SDN-Defense. Similar to our method-

ology, their system Leveraging the react behavior to inspect the first k packet at the 

controller side. However, our approach differs from their proposed system, yet they 

utilize snort [22] the open-source, and signature-based IDS in order to detect and 

prevent malicious flows. While we propose an application-aware firewall mecha-

nism, the system is able to detect network applications that may at some point affect 

network performance.

3.2  Application-Aware and Tra�c Classi�cation Solutions in SDN

Previous efforts to classify the network traffic to provide application-aware solutions 

for SDN networks have been investigated in several works and project’s deliverable. 

In [23] the authors come up with SDN-based Application-Aware approach capable 

of identifying YouTube Streaming. It is based on Deep Packet Inspection (DPI) and 

direct information collected from the applications. In contrast, our system inspects 

packet headers to do extract the application signature.

The distributed denial-of-service (DDoS) detection solution was introduced by 

Braga et  al. [24]. The proposed idea uses flow features to classify network traffic 

flows as normal and abnormal. It extracts a set of flow characteristics and passes 

flow statistics as parameters for an unsupervised artificial neural network (e.g., Self-

Organizing Maps). This system differs from our proposed system; it relies on an 

artificial neural network to detect any abnormal behavior. However, our solution 

relies on multiple classification methods, and therefore can be described as a multi-

ple classifier.

Another work [25] represents a design of an SDN-based traffic classification plat-

form for an enterprise network. The main difference to our work is that it focuses 

on port-based and deep packet inspection for traffic classification, while we classify 

network flows basing on port-based and deep packet inspection and additionally on 

information extracted from packet headers.

In [26], the authors presented a general framework for the end-host of SDN net-

works that are integrated into the NEAT transport structure. The framework pro-

vides communication interfaces between applications and external controllers. It 

also includes a system of expressive policies capable of meeting a wide range of 

requirements.
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Extending the data plane devices to provide Application-aware processing in 

SDN appears in the paper [27]. In order to provide the application-aware capabil-

ity, the data plane devices are extended to include new actions based on informa-

tion from L4 to L7 of the packet header. Thus, the switch will be able to keep some 

application’s logic locally (instead of limiting the application’s logic to the con-

troller only). It utilizes a new application table to maintain the application-specific 

packet-processing actions which are installed by the controller. Implementing the 

traffic classifier in the data plane side (flow entry classifiers) has the advantage of 

being relatively fast (no more controller-switch communications), but it may face 

many capacities and capability constraints. Because the processing occurs within the 

data plane, its capabilities are dependent on the particular switch implementation, 

which is often limited due to constraints of the ASICs on which it is built. Having 

classifiers located in the controller side, they are slower than their switch implemen-

tation, but they are likely to have better support for more features besides a network-

wide view for traffic classification in networks. In addition, such an implementation 

brings the processing back to the data plane side which goes against the spirit of 

SDN architecture that leave the data plane devices simple match-action forwarding 

elements. However, to follow the main point of SDN, the traffic in our system is 

classified at the controller side.

In this paper, we have expanded our previous SDN-oriented stateful firewall 

mechanism [28, 29] to an application-aware firewall to protect SDN networks. It is 

implemented as an extension of the controller. The firewall functionality is imple-

mented through four collaborating units: the Main Module, the Filtering Module, 

the Application Identification Module, and the Security-Enforcement Module. The 

latter presents a mechanism that checks network traffic at the application level, and 

dynamically installs the appropriate security guidelines down into the forwarding 

elements.

4  System Overview

4.1  System Architecture

The system architecture is depicted in Fig. 2. The functionality of the firewall appli-

cation that runs on top of the controller is implemented by four modules.

– Main Module: The Main Module plays the role of coordinator and administra-

tor of other units. It serves as a rendezvous point for other units so that they can 

interact with each other. This module listens to a Packet_in event on the control-

ler side.

– Application-Identification Module: The Application-Identification Module 

performs traffic classification. The classification relies on different informa-

tion of the traffic flows, including port numbers, application payloads, and sta-

tistical features of the flows. It adopts three methods for traffic identification 

processes to perform connection-level, packet-level, and flow-level classifica-

tions (Fig. 3). The first application detection approach requires to examine the 



614 Journal of Network and Systems Management (2020) 28:605–626

1 3

Fig. 2  The proposed system architecture for SDN

Fig. 3  Packet processing
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Transport Layer header of the packet (e.g. TCP/UDP port numbers) to learn 

the source and destination ports in order determine the application. Using a 

set of well-known ports, it maps the flow to the applications as defined by 

IANA (Internet Assigned Numbers Authority). This approach is accurate and 

could be effective for many well-known applications that use registered port 

numbers. However, it fails with some applications that use dynamic port nego-

tiation instead of standard port numbers. Aceto et al. study [30] reported that 

port-based classification is capable of identifying about 30% of network appli-

cation flows correctly. However, we apply it as an attempt to reduce packet 

processing delay caused by the following applied stage. If the flow is not posi-

tively identified in this stage, then it goes to other identification methods.

  The second method inspects the packet payload seeking for well-known 

keywords (a signature) that uniquely identify the protocol. Usually the signa-

ture is a regular expression located in the payload of the Application Layer. 

For instance, HTTP packets begin with URL instruction followed by the pro-

tocol model. In case the signature is detected, this method matches it against 

the list of available signatures. The third method adopts the flow features iden-

tification. It is based on analyzing the flow basing on the size and direction of 

each packet of the first ’N’ packets in the flow as well as the source and desti-

nation ports and IP addresses to detect an application identity.

  Our work relies more on the needs for prior knowledge of the protocols (super-

vised). Simply, by using primary network data, our algorithm classifies traffic 

into distinct protocols basing on the correlations between packet features. In this 

sense, our approach differs from the Hyunchul Kim et al. [31], (that is unsuper-

vised), yet they are similar in spirit, both suggest using the sizes of the first ten 

packets per session as an identifier of the protocol. Most of the flow character-

istics used are inspired by the features used in [31–33]. The features include: a 

protocol, source and destination ports, transferred bytes, the number of packets 

without Layer 4 (TCP/UDP) payload, number of TCP packets with FIN, SYN, 

RSTS, PUSH, ACK, URG, inter-arrival time statistics, and the size of the first 

ten packets.

– Filtering Module: The third unit is the Filtering Module; it is used to provide 

granular control over what traffic leaves or enters the network. The Filtering 

Module compares the determined application against a predefined application 

identification table. That is a hash table which contains match/id entries. Known 

applications are assigned as specific patterns in the application identification 

table. The match fields include a set of ports for well-known applications to be 

used by the first method (that is port-based), and a set of predefined signatures 

and identifiers that uniquely define the applications to be used by the second and 

third methods. Flows that could not be classified by the three processes are cat-

egorized as unknown.

– Security-Enforcement Module: The Security-Enforcement Module is used to 

enforce the required firewall services according to policy rule sets. It is used to 

translate and install the predefined action related to the identified application in 

the corresponding switch, using the OpenFlow modification message. The rules 

are removed from the switches using OpenFlow timeout mechanism. The abso-
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lute timeout means that if no packets reach the flow for a specific duration (called 

Idle timeout), then the flow is removed from the device.

The firewall modules maintain two lists: (1) a list of filtering rules to identify appli-

cations, and (2) a list of firewall rules for security policies on the entire network. The 

former list is implemented as a hash table. The latter list, for implementation sim-

plicity, is implemented as a CSV file that contains a multi-line of comma-separated 

values representing the network policy, as described later in Sect. 4.2. Both lists are 

stored on an SDN controller and are accessed by the firewall modules.

4.2  Firewall Policy

In order to achieve the core functionality of the network, that is packets delivery, the 

behavior of network’s elements can be defined by two types of policies:

• Routing policy to specify the path of the packet to traverse the network from 

ingress to egress.
• Firewall policy to describe whether those packets are permitted or dropped.

Firewall policies are modeled as a list of priority rules. This is compatible with 

the matching tables (Flow table) in the OpenFlow switches, in which each rule is 

a tuple of matching fields and a binary decision field serving as the action field. 

The decision field has one bit to specify if this rule drops or permits the packet 

(this is also supported by OpenFlow).

In this paper, we are primarily concerned with building an application-aware 

firewall for small localized SDN networks. Therefore, we have basically adopted 

a simple implementation of how to places the rules in the switches to accomplish 

a specific firewall policy.

In our centralized firewall policy, the switches are named using indexes, see 

the relevant notation that is listed in Table 2. Each switch has a set of ports. Some 

of the ports are used to connect the switches to each other, the other ports may be 

Table 2  Firewall policy notation
Symbol Description

S
i

The switches index in the network, switch i

Pi,j The policy attached to switch i ingress port j

Ri,j,k A single rule where Rk ∈ Pij

mi,j The matching field of Ri,j,k rule

di,j The decision of the Ri,j,k rule

ti,j The priority of the Ri,j,k rule
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the entry/exit points for the network. All firewall rules are placed on the ingress 

switches to ensure the least network traffic.

4.3  Example Scenario

Now, let us discuss the function of the firewall application, and how it interacts 

with the controller and the OpenFlow-enabled switches. Suppose, we have a net-

work that relies on the SDN architecture, as shown in Fig. 4, and initially, all flow 

tables in the OpenFlow-enabled switches are empty. Assume that Client 1 wants 

to communicate with Client 2. Therefore, Client 1 transfers the packets addressed 

to Client 2. When the first packet (say pkt1) is reached to the switch (say S1), 

and because there is no rule in the flow table of S1 to process such a flow, pkt1 

(full packet) is encapsulated in the Packet_in message and forwarded to the Con-

troller. On the controller side, a Packet_in event will trigger the event listener in 

the Main Module, which responds by parsing the packet and invoke other mod-

ules. The application-identification module attempts to identify the application, it 

checks the packets information against a list of firewall rules, Sect. 3.2. It works 

by allowing or dropping packets, basing on their source or destination addresses 

or their port numbers.

In case the application is not determined for some reason (e.g., traffic with 

unknown port number), the next approaches are performed.

Here the other two methods are invoked, and the OpenFlow-enabled switch is 

instructed to mirror the first 10 packets to the application detection function. The 

first 10 packets carry valuable information to recognize the applications as well 

as it ensures that the controller/firewall does not get overwhelmed of information 

passed to it when processing new type of applications.

Application signature and Packet size learner are methods implemented to 

determine the application that issued traffic on the network. Application signature 

inspects the payloads of the packets looking for the well-known keywords that 

identify the application.

As the features of known applications are mapped to specific patterns in the appli-

cation identification database. Packet size learner extracts the features of the first 10 

packets. The extracted signature is compared to the content of the database. If it 

matches occur, then the application of the traffic is detected. If this stage also fails 

Fig. 4  The layout of the experi-

mental testbed
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(i.e., unknown flow), the default rules for drop or permit with further inspections are 

applied. After then the Filter module applies the appropriate action to the flow.

Finally, the Security-Enforcement Module translates the policy rules related 

to the matched signature to be installed by the Controller into the correspond-

ing switch using the OpenFlow modification message. Accordingly, the switch 

will handle the remaining packets in the flow basing on the taken and installed 

decision.

5  Implementation and Performance Evaluations

5.1  Implementation

We validate and evaluate our proposed system by utilizing the logical experimenta-

tion setup delineated in Fig. 4 to build the entirely virtualized test environment. The 

testbed consists of the following virtual machines (VMs): 

1. The application-aware firewall is implemented as a modular application running 

on the top of the POX SDN controller framework [34]. The controller is installed 

on the Ubuntu Desktop 18.04 LTS VM.

2. To implement the switch functionality, Ubuntu Desktop 18.04 LTS VM runs the 

network emulator Mininet Network [35] to create Open vSwitch (OVS) [36]. This 

OpenFlow-enabled switch is used at L2 / L3 layers and provides a connection to 

the upper layers. It helps to link different entities for the purpose of testing.

3. Finally, two client nodes are represented by Ubuntu Desktop 18.04 LTS VMs.

The Controller and each Client got a dedicated interface connected to the OVS 

switch directly. The firewall controller VM node is connected to the OVS switch 

(Open vSwitch 2.9.0) node via a 1 Gbps link, while the clients VM nodes are con-

nected to the OVS switch node via 100 Mb/s links. The controller and OVS switch 

communicate via an OpenFlow 1.0.0 (the only version supported currently by the 

POX controller).

This setting will certainly not show any bottleneck, since the capacity of the link 

for the firewall is many times greater than the overall traffic, which is unusual in 

real-life scenarios. However, the main concern here is to observe how much time is 

required by the proposed firewall to process the packet_in and then install packet_

mod down into the switch for new connections.

For this experiment, we selected the list of default ports basing on information 

from IANA database [37]. The dataset which consists of labeled flows with a rich 

set of features is prepared from the public data that the MAWI Working Group has 

gathered [38].
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5.2  Performance Evaluations

In order to prove effectiveness, to present behavior, and to analyze the system’s per-

formance, different scenarios are conducted and tested. The experiment settings of 

the used testing tools are presented in Table 3.

As the firewall is expected to handle a vast number of traffic packets and maintain 

a large number of firewall rules, in the first experiment we evaluate the performance 

of the system by focusing on the scaling firewall rules and checking out how it could 

affect the generated latency. The number of firewall rules varies from 25 to 1000 

rules.

In this test, one Client runs a script that uses the ping utility, which is imple-

mented to send multi ICMP packets simultaneously to the other Client. The relations 

Table 3  The simulation settings parameters

Parameter Value Value

Tool D-ITG [39] Ping

Protocol UDP ICMP

Sender port, destination port 9400, 9500 –

Packet size 64, 128, 256, 512, 768, 

1024, 1280, 1470 bytes

56 bytes

Concurrent streams per second 50 , 100, 150 , 200, 250, 

300, 350, 400

25, 50, 100, 150, 200, 250, 300

Firewall rules size 500 25, 50, 100, 250, 500, 1000

Fig. 5  The relation between the number of concurrent flows, number of firewall rules and an average 

latency
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between the number of flows, number of firewall rules and an average latency are 

shown in Fig. 5, where we can observe that when the number of firewall rules is 

small (e.g., 25 rules), the average latency is still small for different numbers of 

arrival rates of flows. If there are 50 rules in the firewall base, the average latency is 

increased linearly according to the number of access rate for the new traffic.

After that, we increase the rule base size of the firewall to be 100, 250 and 

500, respectively. We note that the average latency shows sudden increases under 

higher rates of flow arrival. Furthermore, we observe that the average latency 

stops the continuous rise and stays almost steady when the simultaneous connec-

tions are greater than 100 parallel connections. This could be because of many 

new traffic streams may match the rule entries in the flow table in the switch.

The following series of experiments shows the proposed system effectiveness. 

To evaluate the overall system performance, we observe and compare the dif-

ference in throughput in two different testbed setup settings. In the first setting, 

the OVS switch is connected to the POX controller acting as a Layer 3 learning 

switch (i.e., a baseline for the comparison). In the second configuration, we run 

the application firewall with the POX controller and deactivate the l3_learning 

switch module.

In both cases, we use Distributed-Internet Traffic Generation (D-ITG) tool 

[39], where one Client creates and sends the same number of concurrent UDP 

flows over the same time period, while the other Clients’ nodes receive traffic 

flow and report the results.

Fig. 6  Frame forwarding rates at different frame sizes
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To determine the maximum throughput, the frames-per-second sending rate is 

altered to find the highest rate for a given frame size. The Ethernet frame sizes 

used in the tests are shown in Table 3.

Each frame rate lasts for 30 s, with a controller killed and topology restarted 

between trials. We repeated each trial 5 times and the mean values of the results 

is calculated and considered. Our methodology approach is based on Sections 9.1 

and 26.1 of [40]. However, it differs from [40] in two ways: we kill the control-

ler and do restart the topology rather than wait for 60 seconds between trials, and 

we consider a unidirectional flow rather than a bi-directional flow. The relation 

between the frames per second performance against frame size for both test con-

figurations are highlighted in Figs. 6 and 7 shows the throughput in Mbps against 

the frame size.

As expected, the learning switch controller throughput outperforms the firewall 

(which requires more computations) in all frame sizes. Both configurations begin 

with low throughput at frame size 64 bytes, and then their performance is rapidly 

increased within the 128–256-bytes range, reaching the peak in performance with 

256–512-byte frames. There is no obvious indication for the cause of this behav-

ior, although it was common in both configurations. In the range of 512–1470-

bytes, the throughput stops the continuous rise and remains almost steady.

In general, the behavior and the performance of the learning switch controller 

do not appear to be significantly different with the firewall. The highest difference 

in throughput between them is reached with a frame size 256-bytes, while the 

lowest was at 1470-byte frame size.

Fig. 7  Throughput at different frame sizes
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One more test regarding the throughput is performed to show the relation 

between the amount of concurrent flows and the system throughput, Fig. 8. In this 

test, Client 1 sends simultaneous connections with randomly distributed packet 

size between 64- and 1470-bytes. Figure 8 clearly shows that the throughput is 

very high with the small number of simultaneous flows, for example, between 50 

Fig. 8  The relation between the amount of traffic and the maximum throughput

Fig. 9  The relation between the amount of traffic and the average jitter
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and 150 connections. However, the rapid decrease of throughput is observed with 

more connections, for example, more than 200 connections.

Next, we focused on the packet delay jitter, where the relation between the 

amount of traffic and the average jitter is observed.

Also, in this test, Client 1 sends simultaneous connections with random sizes. 

Figure 9 shows that the average jitter is increasing slowly as the number of con-

nections is increasing.

6  Conclusion

Securing SDN networking is the key to the success of such a technology, but it is 

also a significantly challenging task. In this paper, tried to solve the problem of how 

to provide application-aware filtering capability for SDN controller using the fact 

that the SDN Controller handles traffic with respect to low level traffic identifiers 

and to physical identifiers. However, this makes that the Controller has no insight 

into the relations between flows. Such a lack of high-level traffic identifiers makes 

that it not possible to directly and consistently specify policies for all flows belong-

ing to a specific application or to define policies for specific persons that are the par-

ties of communication.

In this paper, we proposed an application-aware firewall approach for securing 

OpenFlow-based SDN networks. The solution does not impose any change on the 

SDN model in terms of design and behavior. Moreover, it tries to enhance program-

mable network’s security and simplifies security management.

This proposed solution attempts to protect the small localized network by detect-

ing applications such as FTP or blocking streams according to the predefined pol-

icy. The security policy is centralized in the controller side, the firewall application 

above the controller inspects the traffic flows and enforces the required policy, and 

the switches act as a distributed checkpoint that implements the controller instruc-

tions. Rather than using a gateway firewall with a low performance and a single 

point of failure, multi plane-like firewall creates layers of defense; “defense-in-

depth” can be used successfully for networks with different levels of trust.

The future work could increase the level of security provided to the network by 

building a system that can examine the contents of the packets to prevent any mali-

cious or somehow undesirable content. The system could be integrated with quan-

tum steganography-based authentication protocol that authenticates an embedded 

secret message [41]. The next step of the studies should be an improvement of the 

system by building a Layer 7 firewall with an unsupervised mechanism based on 

machine learning to identify the network traffic and to block unauthorized and mali-

cious packets. Our plan for improvement of the system is making it user-aware and 

application-aware, and as an effect, using application- and users-based security poli-

cies, rather than continuing the traditional methods that are based on ports and proto-

cols. Also, we will strive to integrate the system with a soft-methods-based security 

tool (a multi-tier trust and reputation system) which is a reasonable enhancement of 

a firewall in widespread and untrusted networks (see, e.g., [42]).
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