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ABSTRACT
We present a framework, Atlas, which incorporates application-
awareness into Software-Defined Networking (SDN), which
is currently capable of L2/3/4-based policy enforcement but
agnostic to higher layers. Atlas enables fine-grained, accu-
rate and scalable application classification in SDN. It em-
ploys a machine learning (ML) based traffic classification
technique, a crowd-sourcing approach to obtain ground truth
data and leverages SDN’s data reporting mechanism and
centralized control. We prototype Atlas on HP Labs wire-
less networks and observe 94% accuracy on average, for top
40 Android applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]:
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Software-Defined Networking (SDN); Application Awareness.

1. INTRODUCTION
Application recognition is critical for providing visibility,

QoS, billing, and security. Application-awareness becomes
even more important with SDN; e.g., network virtualiza-
tion, one of the key SDN use-cases, benefits from the knowl-
edge of the type of network applications to provide enhanced
performance isolation for specific applications. SDN APIs
of today, such as OpenFlow, are capable of Layer 2/3/4
(L2/3/4)-based policy enforcement but they currently lack
higher layer application awareness.

Identifying application name or type from network traf-
fic is a challenging task [2]. Application programmer’s QoS
marking on IP header is generally untrusted and ignored by
network administrators. Port-based classification techniques
are no longer accurate as most applications are now being
run on dynamic ports (e.g. P2P applications) or transported
over HTTP/HTTPS. On the other hand, techniques based
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on Deep Packet Inspection (DPI) can be more accurate, but
incur high computation cost and require manual signature
maintenance. Moreover, many applications today are deliv-
ered via end-to-end encrypted channels, such as HTTPS and
SRTP, thus limiting the reliability of DPI-based approaches
and making the signature maintenance more difficult or even
impossible in some cases.

Machine learning (ML) based traffic classification tech-
niques have been used, mostly by ISPs, as an alternative to
DPI. ML-based approach does not require packet payload
inspection, instead it only requires a specific set of flow level
features like the sizes of the first ‘N’ packets, source and des-
tination ports and IP addresses [2, 3]. This generally results
in a much lower computational cost than DPI-based solu-
tions [3] and can correctly identify encrypted traffic. How-
ever, an obstacle to using ML-based detection is obtaining
accurate and fine-grained ground truth of the flow features
required to train the classifier. This is due to the lack of
accurately annotated network flow samples across a broad
range of applications. Thus, ML-based solutions so far have
been limited to coarse-grained classifications such as web,
P2P vs. VoIP [2].

However, actualization of L7-aware SDN requires fine-
grained application detection. For example, an enterprise
network administrator may prefer a certain VoIP applica-
tion with better security support than other VoIP solutions.
To prioritize the preferred application or to block the use
of specific applications, the SDN controller should be able
to detect each VoIP application uniquely, rather than clas-
sifying all of them into a common VoIP class. To achieve
this, the SDN controller could be notified by the application
server, via a direct API integration, for each new flow dur-
ing session setup and tear down [1], but we do not expect
such APIs to be available for every application, especially for
myriads of new mobile or consumer oriented applications.
Furthermore, the growing assortment of mobile applications
make the ground-truth collection more challenging due to
their rapid adoption and update cycles.

In addition to the ground truth data collection (for ML
training), the application detection (ML classification) ca-
pability needs to be integrated into the SDN framework in
a scalable and seamless manner. This is to allow applica-
tion detection and application-aware policy enforcement to
be done in a timely and seamless manner, similar to the way
many L2/3/4 functions can be implemented using the cur-
rent OpenFlow. Our solution, Atlas, addresses these prob-
lems by intelligently employing a crowd-sourcing approach
and the OpenFlow protocol, optionally with modifications.
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Figure 1: Atlas in action.

2. ATLAS
To collect fine-grained ground truth data, our solution At-

las uses a crowd sourcing approach, motivated by the fact
that many enterprises require employees to deploy device
management software agents on their work devices. These
agents can be used to collect information about active net-
work sockets, e.g., netstat logs, belonging to each running
application on the device.

The Atlas framework, as we prototyped in HP Lab wire-
less network, is shown in Figure 1. It uses the mobile agents
running on some employee devices (or dedicated testing de-
vices) to collect the netstat logs, which are then sent to the
control plane, where the ML trainer is run. The flow features
(e.g., first ‘N’ packet sizes) are collected by the OpenFlow
running on the wireless AP and sent to the control plane,
which then correlates and composes ground truth training
data together with the netstat logs. We extend the Open-
Flow statistics to store the first ‘N’ packet sizes of each flow
and also report it to the controller. When such extension is
infeasible, probably due to a TCAM resource constraint in
switches, we can instrument OpenFlow to mirror the first
‘N’ packets to the ML trainer.

The trained ML classifier, together with the policy for
each application, is installed into the AP. Whenever there is
a new flow from ‘guest’ devices, which are not running the
mobile agent, the OpenFlow engine sends the flow features
to the ML classifier, which detects the application and then
the AP applies the appropriate action to the flow and/or
reports flow statistics to the controller.

Evaluation: we prototyped Atlas in HP Labs wireless
network and implemented a mobile agent for Android OS
using only official Android APIs in a user application. We
use opensource c5.0 decision tree ML tool.1 The mobile
agent was deployed on five Android phones: three volun-
teers and two test devices for manual collection. The man-
ual collection was needed to collect meaningful number (at
least 200) of flow samples of each application we were in-
terested in. We selected 40 most popular applications in
Google Play Store as key applications of interest and tried
to collect enough samples for them. We could collect 200 or
more flow samples for 30 applications. We treat all other ap-
plications detected by our mobile agents as Unknown. Over

1http://www.rulequest.com/see5-info.html
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Figure 2: Application detection accuracy.

100K flow samples were collected and labeled from the five
devices during the 3 weeks of testing period.

Figure 2 shows the classification accuracy, F-measure, for
the 31 of these application classes in a decreasing order of
F-measure. F-measure=1 means 100% true positive and 0%
false negative [2]. In Figure 2, most applications show over
90% accuracy (average 96%). When we tested all the top
40 popular applications, including those with less than 200
flow samples, we observed on average an accuracy of 94%.

There are eight applications detected with 100% accu-
racy, including MS Exchange service, Facebook, Google+
and Twitter. These eight applications constitute around
40% of the entire flows collected from the volunteer devices.
Many of the remaining applications (other than the eight)
consist of a small number of training samples, leading to
lower accuracies; we expect improved accuracies for them
as we collect more samples. The c5.0 classifier handles 1.4
million flows per second on a 3.3GHz workstation core.

Demo scenario: We will demonstrate real-time detec-
tion of mobile applications on a wireless AP (or on a mid-
dlebox sitting between the AP and the Internet) leverag-
ing our OpenFlow extensions: 1) new flow statistic of first
‘N’ packet sizes and 2) optionally a new action, application
recognition, which sends the flow features (first ‘N’ packet
sizes, port numbers, IP address range) to the ML classifier
as soon as the packet counter hits N.

3. CONCLUSION
To our best knowledge, Atlas is the first work to demon-

strate fine-grained mobile application detection. We design
an automated data consolidation and classifier generation
logic, which significantly minimizes the manual effort re-
quired to maintain and scale the application classification
solution. Our framework intelligently leverages the Open-
Flow protocol and automates the data collection and ap-
plication detection process to incorporate L7-awareness into
SDN. Our on-going and future works include implementa-
tions on different device platforms (iOS, Windows, Linux)
and detection of flows belonging to a new application which
is not part of the trained classifier.
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