
Application-Centric Resource Provisioning
for Amazon EC2 Spot Instances

Sunirmal Khatua1 and Nandini Mukherjee2

1 University of Calcutta, Kolkata, India
skhatuacomp@caluniv.ac.in
2 Jadavpur University, Kolkata, India

nmukherjee@jdvu.ac.in

Abstract. In late 2009, Amazon introduced spot instances to offer their unused
resources at lower cost with reduced reliability. Amazon’s spot instances allow
customers to bid on unused Amazon EC2 capacity and run those instances for
as long as their bid exceeds the current spot price. The spot price changes pe-
riodically based on supply and demand of spot instances, and customers whose
bid exceeds it gain access to the available spot instances. Customers may expect
their services at lower cost with spot instances compared to on-demand or re-
served. However the reliability is compromised since the instances (IaaS) provid-
ing the service (SaaS) may become unavailable at any time without any notice to
the customer. In this paper, we study various checkpointing schemes to increase
the reliability over spot instances. Also we devise a novel checkpointing scheme
on top of application-centric resource provisioning framework that increases the
reliability while reducing the cost significantly.

Keywords: resource provisioning, spot instances, checkpointing.

1 Introduction

The era of cloud computing provides high utilization and high flexibility of managing
the computing resources. The elasticity and on demand availability features of cloud
computing ensure high utilization of resources. Furthermore, resources can be availed
from templates that enforce standards so that resources can be used with best manage-
ment considerations without prior knowledge. Therefore, flexibility of managing the
computing resources is also high in a cloud environment. The cloud computing service
models incorporate Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). IaaS provides raw computing resources with different
capacity in the form of Virtual Machines (VM). Cloud Service Providers (CSP), like
Google [16], Amazon [15] etc. provide these services and charge prices against these
services from the Cloud Service Users (CSU). Among many such providers, Amazon
defines the capacity of resources in the form of different instance types [11] based on
storage, compute unit and I/O performance. The cost of these instance types depends on
the purchasing models [12] defined by Amazon namely on-demand, reserved and spot.

On− demand instances let one pay for compute capacity by the hour with no long-
term commitments or upfront payments. However, with on-demand instances one may

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 267–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

268 S. Khatua and N. Mukherjee

not have access to the resources immediately due to high demand for a specific instance
type in a specific availability zone. On the other hand, reserved instances facilitate
the client to make a low, one-time, upfront payment for an instance, reserve it and get
significant discount on hourly charge over on-demand instances. Reserved instances are
always available for the duration for which the clients reserve. In contrast with the above
two policies, where rates are fixed, spot instances provide the ability for customers to
purchase compute capacity with no upfront commitment and at a variable hourly rate
with a customer-defined upper bound (bid) on the rate. Spot instances are available only
during the time when the spot price is below the customer defined bid.

Thus spot instances make the resources unreliable in nature and inappropriate for
long running jobs like image processing, gene sequence analysis etc. At the same time,
they offer the opportunity to accomplish such jobs at a much lower cost than on demand
or reserved policies. Clearly, checkpointing (saving partially completed jobs to be re-
sumed latter) may be a good option to make a tradeoff between the cost and reliability.
Again, the time of taking a checkpoint and the frequency of taking the checkpoints di-
rectly affect the cost and reliability. Sufficient research effort is needed to properly set
the time and frequency of taking the checkpoints.

The rest of the paper is organized as follows. A brief review of the related works
is presented in Section 2. An overview of the application centric resource provision-
ing framework is given in Section 3. Section 4 deals with the existing checkpointing
schemes for spot instances while a proposed checkpointing scheme for the application
centric resource provisioning framework is described in Section 5. A simulated result
for comparing the proposed checkpointing scheme with existing ones is presented in
Section 6. Finally, we conclude with a direction of future work in Sections 7.

2 Related Work

During the last couple of years, a lot of works [1] [8]-[9] concentrate on the cloud
management aspect from the economic point of view. Most of them adapt a middle-
ware based (broker) approach to optimize the resource requirement for a given cloud
application. In our previous work [1], we provide a novel framework for such a mid-
dleware. It identifies the key components of the middleware for auto deploying, auto
scaling, providing robustness and availability of heterogeneous cloud applications. A
model for optimal cloud resource scheduling based on stochastic integer programming
technique is proposed in [8]. A similar technique is also used in [9] to optimize the
resource requirement of a cloud application. This work tries to minimize the total pro-
visioning cost by adjusting the tradeoff between the reserved and on-demand resource
provisioning plans.

Some research works [2]-[6] also consider Amazon EC2 spot instances [13] for pro-
viding economic benefit to cloud service users considering availability and reliability.
Various checkpointing techniques have been discussed in [2] to provide reliability with
Amazon spot instances at lower cost. In this paper, we study some of these techniques
and evaluate their performances. We also investigate the effectiveness of application
centric resource provisioning framework [1] for actively monitoring the deployed spot
instances for an application and for taking necessary actions as the spot intances be-
come unavailable or the spot price changes. Finally, we propose and evaluate a novel

Application-Centric Resource Provisioning for Amazon EC2 Spot Instances 269

checkpointing scheme for the application centric resource provisioning framework that
outperforms all the checkpointing schemes defined in [2].

3 Application-Centric Resource Provisioning Framework

An Application-centric resource provisioning framework along with the unified defi-
nition of an application is proposed in [1]. A brief description of functioning of the
application centric resource provisioning framework is depicted in Figure 1. The frame-
work consists of two key subsystems namely Provisioning subsystem and Monitoring
subsystem.

Fig. 1. Resource provisioning algorithm

3.1 Provisioning Subsystem

The provisioning subsystem determines optimal provisioning of virtual resources for
an application A) satisfying the policies (P) specified for it. The application’s required
service level is stored in the policy (P). The provisioning subsystem queries various
providers to get information about their offered services (Sinfo). Sinfo consists of
provider id, service id, QoS id and the associated cost. The provisioning subsystem
uses P (desired service level), Sinfo and an optimization algorithm to find the optimal
resource requirement for the application while maintaining the desired service level.

270 S. Khatua and N. Mukherjee

3.2 Monitoring Subsystem

The Monitoring subsystem implements a feedback system to inform the provisioning
subsystem about the current state of the deployed application. The monitoring sub-
system actively monitors the state of the deployed application and generates various
events [1] to designate a change in the application state. Once an event is generated, the
monitoring subsystem sends the event to the provisioning subsystem. Once an event(E)
is received, the provisioning subsystem analyzes the event and uses E, P, Sinfo and an
optimization algorithm for reprovisioning the application onto appropriate resources.

4 Checkpointing Schemes for Amazon EC2 Spot Instances

In this paper multiple providers of application centric resource provisioning are not
considered. Instead, we consider the spot market of Amazon EC2 public CSP only. The
concept can be generalised to any CSP supporting spot model.

As discussed earlier, the variable price of spot instances makes them an important
consideration for optimizing resource requirement for an application. However, their
volatile nature makes them inherently unreliable and hence the optimization algorithms
become more challenging than the other instances.

4.1 Characteristics of Spot Instances

Before dealing with the challenges of optimizing the use of spot instances, let us sum-
marize the characteristics of Amazon EC2 spot instances [13] as listed below:

Fig. 2. Resource provisioning algorithm

– Spot instances are available when the user’s bid exceeds the current spot price (refer
Fig. 2).

– Spot instances are terminated (becomes unavailable) without any notification to the
user whenever the current spot price exceeds the user’s bid.

– The price per instance-hour for a spot instance is set at the beginning of each
instance-hour. Any change to the spot price will not be reflected until the next
instance-hour begins.

– Amazon will not charge the last partial hour if the spot instance is terminated due to
out-of-bid situation. However Amazon will charge the full hour if the user terminate
the instance forcefully.

– Amazon provides the history of spot prices of a spot instance at a specific availabil-
ity zone for the last 3 months free of cost.

Application-Centric Resource Provisioning for Amazon EC2 Spot Instances 271

4.2 Existing Checkpointing Schemes for Spot Instances

The characteristics of spot instances make them appealing for long running jobs with
divisible workloads [10]. Clearly, taking checkpoints at regular interval increases the
utilization of spot instances. Various existing checkpointing schemes can be adopted
for saving the completed tasks and resuming the remaining tasks as and when the spot
instances become available. The checkpointing schemes proposed in [2] are briefly de-
scribed below:

1. No Checkpointing (NONE): Checkpoints are not taken and all the partially com-
pleted tasks for a job are required to be repeated after every out-of-bid events.

2. Optimal Checkpointing (OPT): Checkpoints are taken just prior to the out-of-bid
events. Clearly, it will save the maximum number of tasks out of each available interval
for a given instance type and a user’s bid.

3. Hourly Checkpointing (HOUR): Checkpoints are taken just prior to the beginning
of next instance hour. Since Amazon is not charging any partial hour, this scheme will
save as much tasks as the user is paying.

4. Rising edge-driven Checkpointing (EDGE): Checkpoints are taken after every
increase (rising edge) of the current spot price.

5. Adaptive Checkpointing (ADAPT): Checkpoints are taken or skipped at regular
intervals based on the expected recovery time for skipping (Rskip) or taking (Rtake) a
checkpoint. The estimation of Rskip and Rtake is given in the equations 1 and 2. Here r
is the task recovery time, tp is the present time, f(t) is the probability density function of
out-of-bid events, tr is the time needed to complete a job, tc is the time needed to take
a checkpoint and T (t, tp) is the expected execution time for a job of length t started at
time tp. Checkpoints are taken when Rskip is greater than Rtake.

Rskip(t, tp) =

tr−1∑

k=0

(k + r + T (t, tp)) f(k + tp) (1)

Rtake(t, tp) =

tr−1∑

k=0

(k+r)) f(k+tp)+tc

∞∑

k=tr

f(k+tp)+T (t, tp−t)

tc−1∑

k=0

f(k+tp) (2)

T (t, tp) = (t

∞∑

k=t

f(k + tp) +

t−1∑

k=0

(k + r) f(k + tp))/(1−
t−1∑

k=0

f(k + tp)) (3)

Out of the above five checkpointing schemes, NONE and OPT provide two extreme
results without any practical value. They are used to provide comparative study of the
other realistic checkpointing schemes.

5 A Novel Checkpointing Scheme over Application-Centric
Resource Provisioning Framework

In this section, we propose a novel checkpointing scheme for spot instances on top of
application-centric resource provisioning framework. For the purpose, we devise a new

272 S. Khatua and N. Mukherjee

event generation scheme that deals with spot instances. The new checkpointing scheme
is targeted to achieve performance comparative to OPT checkpointing scheme described
above. Before describing the scheme, we introduce a modified event generation scheme
for our application-centric resource provisioning framework.

5.1 Event Generation Scheme for Spot Instances

The event generation schemes proposed in [1] is extended to include new events that
support spot instances. As discussed in Section 4.1, the availability of spot instances
depends on the current spot price and the user defined bid. Also, spot instances become
unavailable without prior notification to the clients that makes them inherently unreli-
able. The reliability can be increased by taking checkpoints (saving completed tasks)
during the available periods. However, the time and frequency of taking checkpoints
affect the reliability as well as job completion time and cost.

Accordingly, in this paper we propose a new event generation scheme to handle spot
instances. Three events are proposed, namely Eckpt, Eterminate and Elaunch. Eckpt

is used for taking checkpoint, Eterminate is used to terminate a spot instance force-
fully and Elaunch is used to relaunch a previously terminated spot instance. We define
two bid values for the purpose - one for the application (Abid) and other for the spot
instance (Sbid). Sbid is sufficiently large and is used in the request for spot instance.
Clearly, the value is maintained at such a high level, that Amazon will never terminate
the spot instances due to out-of-bid situation. On the other hand, Abid is used by the
monitoring subsystem to maintain user’s budget.

The monitoring subsystem actively monitors the current spot price and generates
the two events, Eckpt and Eterminate, for the provisioning subsystem. On the basis
of these two events, the provisioning subsystem either takes a checkpoint or terminate
the corresponding spot instance respectively. However, to increase the performance, the
monitoring subsystem will query the current spot price only at specific points of time
called decision points. Since the cost of spot instance is not changed during an instance
hour and is fixed at the beginning of that instance hour, the decision points should be
relative to the beginning of the next instance hour. Accordingly, we define two decision
points just prior to each hour boundary as follows:

tcd = th − tc − tw (4)

ttd = th − tw (5)

where tcd and ttd are the decision points for checkpointing and terminating a spot in-
stance. th is an hour boundary, tc is the time needed to take a checkpoint and tw is
the waiting time to get the current spot price. The monitoring subsystem will generate
Eckpt at tcd if the current spot price exceeds Abid and will generate Eterminate at ttd if
the current spot price is still above the Abid. It will generate Elaunch at the start of each
available period of a spot instance with respect to Abid.

Application-Centric Resource Provisioning for Amazon EC2 Spot Instances 273

5.2 The Application-Centric Checkpointing Scheme

In this section, we propose a checkpointing scheme on top of the application centric re-
source provisioning framework, called Application Centric Checkpointing(ACC). ACC
is based on the event generation scheme discussed in the previous subsection and is
described by the sequence diagram shown in Fig. 3.

The following unified definition can be used for an application with divisible work-
loads to be run on spot:

A = (T,R,Rm, P, U,M) (6)

where T = {t1}
R = {r1, r2}, r1.provider = ec2, r1.type = spot instance,

r1.size = < instance type >
r2.provider = ec2, r2.type = EBS, r2.size = 1GB

Rm = { r1 → t1, r2 → t1 }
P = { sla }

M = (E,W,Em,Wm) (7)

where E = {Eckpt, Eterminate, Elaunch}, threshold for all events =< Abid >
Elaunch.bid =< Sbid >

W = {Wstart, Wckpt, Wterminate, Wlaunch}
Wstart = { Launch spot; Mount EBS; Copy job to EBS; Start job },
Wckpt = {Save results to EBS},
Wterminate = {Terminate spot} &
Wlaunch = { Launch spot; Mount EBS; Resume tasks },

Em = {Eckpt → r1, Eterminate → r1,Elaunch → r1})
Wm = {Wckpt → Eckpt,Wterminate → Eterminate,Wlaunch → Elaunch}

The Elastic Block Storage (EBS) [14] is used to save the completed tasks during check-
point. The parameters instance type, Abid and Sbid can be set either manually by the
end user or by some optimization or greedy algorithms.

The provisioning subsystem starts an application (job) by executingWstart workflow
for that application. The Wstart workflow launches a spot instance as per the specifica-
tion of the resource r1 and an EBS volume as per the specification of the resource r2.
The workflow then mounts the EBS volume to the spot instance, copy the job from the
application repository to the EBS and starts the job.

Once the application is deployed, EC2 starts charging for the resources. The moni-
toring subsystem calculates tcd and ttd as per Equ. 4 & 5 for the current hour boundary.
At tcd the monitoring subsystem retrieves the current spot price(P). If P exceeds Abid,
it generates Eckpt event for the provisioning subsystem. On receiving Eckpt event, the
provisioning subsystem executes Wckpt workflow. The Wckpt workflow just saves the
results (the completed tasks) to the EBS volume. The monitoring subsystem also re-
trieves the current spot price(P) at ttd. If P still exceeds Abid, it generates Eterminate

event for the provisioning subsystem. On receiving Eterminate event, the provisioning
subsystem executes Wterminate workflow. The Wterminate workflow terminates the

274 S. Khatua and N. Mukherjee

Fig. 3. Application Centric Checkpointing Scheme

spot instance forcefully. The monitoring subsystem repeats the above procedure till P
does not exceed Abid at ttd for all the subsequent hour boundaries.

If the instance is terminated at some ttd, the monitoring subsystem will have to query
for the current spot price to determine the next available period at some specific in-
stance of time(t*). However, the frequency of making the query is defined by the end
user which may affect the job completion time slightly. At the start of the new avail-
able duration, the monitoring subsystem generates Elaunch event for the provisioning
subsystem. On receiving Elaunch event, the provisioning subsystem executes Wlauch

workflow. TheWlaunch workflow launches a new spot instance as specified in r1, mount
the existing EBS volume to that instance and resume the remaining tasks of the job.

Fig. 4. Decision Points for Event Generation

The novelty of the scheme is illustrated in Fig. 4. ACC will generate neither Eckpt

nor Eterminate for the hour boundary th1 since the current spot price is bellow Abid at
both the decision points. That means, it will neither take a checkpoint nor terminate the

Application-Centric Resource Provisioning for Amazon EC2 Spot Instances 275

spot instance at th1. It will generate Eckpt but not Eterminate for the hour boundary th2
since the current spot price is above Abid at tcd2 and below Abid at ttd2. That means, it
will take a checkpoint but will not terminate the spot instance at th2. Similarly, for the
hour boundary th3, it will generate both Eckpt and Eterminate since the user will have
to pay above Abid for the next hour. So, it will take a checkpoint as well as terminate
the spot instance at th3. Clearly availability is increased and more continuous in ACC
compared to other checkointing schemes as shown in Fig. 4.

6 Implementation and Evaluation

In this section we analyze and compare our proposed ACC checkpointing scheme with
the existing checkpointing schemes. The experiments have been carried out on 64 spot
instance types using the same data set, parameters, algorithms and assumptions used in
the simulator [26].

We obtain the simulation result for job completion time, total monetary cost and
the product of monetary cost x completion time for all the EC2 instance types. To
simplify the discussion, we present the result of a linux based extra large (m1.xlarge) in-
stance type in the eu-west-1 region. We concentrate on the performance of our proposed
ACC checkpointing scheme compared to the theoritical optimal checkpointing scheme,
OPT. We also include NONE, HOUR, EDGE and ADAPT checkpointing schemes in
our result for completeness.

Fig. 5. Total monetary cost of Job completion

Fig 5 shows the comparison of total monetary cost needed to complete a job of length
500 minutes under different user’s bid(Abid) from $0.401 to $0.441. The result shows
that ACC reduces the job completion cost significantly over the other realistic check-
pointing schemes. However the cost is increased by 5.94% on average (min 0.33%, max
10.30%) compared to OPT scheme. This is because the OPT scheme guarantees pay-
ment of the actual progress of the job as well as executing some fraction of the job free
of cost for the partial hours.

276 S. Khatua and N. Mukherjee

Fig. 6. Job completion time

In Fig. 6 we illustrate the comparison of various checkpointing schemes for the met-
ric job completion time. Here we observe that ACC scheme outperforms all the check-
pointing schemes including OPT. This is because ACC allows the job to continue even
when the current spot price exceeds Abid in between a ttd and the previous hour bound-
ary (refer to Fig. 4). With OPT, the available duration is fragmented as shown in Fig. 2
while ACC allows the spot instance to be continuously available till ttd3 a shown in
Fig. 4 without affecting the job completion cost. That means the interruption to job ex-
ecution is much less in ACC compared to OPT. In fact the ACC scheme reduces the job
completion time by an average value of 10.77% over the OPT scheme.

We plot the comparative study for the product of monetary cost x completion
time in Fig. 7. Here also we observe that the ACC scheme reduce this metric by an
average value of 5.56% over the OPT scheme.

Fig. 7. Product of total cost and completion time

To gain confidence in our result, we have computed the average values of the above
mentioned metrics for different bid values on all the 64 instance types. A sample of 15
difference instance types for the metric product of monetary cost x completion time
is shown in Fig. 8. For these 15 instance types, a gain of 4.03% for ACC over OPT is
observed. We also observe that such percentage gain is increased for costly instance
types.

Application-Centric Resource Provisioning for Amazon EC2 Spot Instances 277

Fig. 8. Product of cost and completion time for different instance types

In the previous research work [2], the authors conclude that OPT is the optimal
checkpointing scheme and none of the practical schemes can perform better than OPT.
That is true only if we use the same bid values for launching the spot instance and
executing the checkpoint. However, our proposed ACC checkpointing scheme perform
very close to OPT or even better than OPT (for time and product metrics) by separating
these two bid values. Thus ACC outperforms all the existing checkpointing schemes
for spot instances. ACC achieves such performance gain by increasing availability at
the same cost as shown in Fig. 4.

7 Conclusion and Future Work

Checkpointing plays an important role in reliability of job execution over EC2 spot in-
stances. In this paper, we propose a checkpointing scheme on top of application-centric
resource provisioning framework that not only increases the reliability but also reduces
the cost significantly over the existing checkpointing schemes. The job completion cost
under the proposed scheme is very close to the optimal checkpointing scheme. It per-
forms better than all the practical checkpointing schemes for spot instances. In future,
we want to investigate more on finding the optimal bid (Abid) and the corresponding
instance type for a given job.

References

1. Khatua, S., Ghosh, A., Mukherjee, N.: Application-centric Cloud Managemengt. In: 9th
IEEE/ACS International Conference on Computer Systems and Applications(AICCSA), pp.
9–15 (2011)

2. Yi, S., Andrzejak, A., Kondo, D.: Monetary Cost-Aware Checkpointing and Migration on
Amazon Cloud Spot Instances. IEEE Transactions on Services Computing 5, 512–524 (2011)

3. Voorsluys, W., Buyya, R.: Reliable Provisioning of Spot Instances for Compute-intensive
Applications. In: 26th IEEE AINA, pp. 542–549 (2012)

4. Javadi, B., Thulasiramy, R.K., Buyya, R.: Statistical Modeling of Spot Instance Prices in
Public Cloud Environments. In: 4th IEEE UCC, pp. 219–228 (2011)

5. Yi, S., Zafer, M., Kang-Won, L.: Optimal bidding in spot instance market. IEEE INFOCOM,
190–198 (2012)

278 S. Khatua and N. Mukherjee

6. Mazzucco, M., Dumas, M.: Achieving Performance and Availability Guarantees with Spot
Instances. In: 13th IEEE HPCC, pp. 296–303 (2011)

7. Padala, P., et al.: Adaptive control of virtualized resources in utility computing enironments.
In: Proceedings of EuroSys (2007)

8. Li, Q., Guo, Y.: Optimization of Resource Scheduling in Cloud Computing. In: 12th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp.
315–320 (2010)

9. Chaisiri, S., Lee, B., Niyato, D.: Optimization of Resource Provisioning Cost in Cloud Com-
puting. IEEE Transactions on Services Computing (2011)

10. Yang, Y., Casanova, H.: Umr: A multi-round algorithm for scheduling divisible workloads.
IPDPS 24 (2003)

11. Amazon EC2 Instance Types, http://aws.amazon.com/ec2/instance-types/
12. Amazon EC2 Purchasing Options,

http://aws.amazon.com/ec2/purchasing-options/
13. Amazon EC2 spot instances, http://aws.amazon.com/ec2/spot-instances/
14. Elastic Block Storage, http://aws.amazon.com/ec2/ebs/
15. Garfinkel, S.: An Evaluation of Amazon’s Grid Computing Services: EC2, S3 and SQS.

Tech. Rep. TR-08-07, Harvard University (2007)
16. Google Cloud Offering, http://cloud.google.com/products/
17. Barham, P., et al.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM sym-

posium on Operating Systems Principles (2003)
18. Wolsky, R., et al.: Eucalyptus: A Technical Report on an Elastic Utility Computing Archietc-

ture Linking Your Programs to Useful Systems. Tech. Rep. 2008-10, University of California,
Santa Barbara (2008)

19. Zabbix: an enterprise-class open source distributed monitoring solution for networks and
applications, http://www.zabbix.com/

20. Harmer, T., et al.: An application-centric model for cloud management. In: Proceedings of
6th World Congress on Services, pp. 439–446 (2010)

21. Lim, H.C., et al.: Automated control in cloud computing: challenges and opportunities. In:
Proceedings of the 1st workshop on Automated control for datacenters and clouds, Spain
(2009)

22. Mills, T.C.: Time Series Techniques for Economists. Cambridge University Press (1990)
23. Buyya, R., et al.: Market-Oriented Cloud Computing: Vision, Hype, and Reality for Deliv-

ering IT Services as Computing Utilities. In: 10th IEEE International Conference on High
Performance Computing and Communications, pp. 5–13 (2008)

24. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read
intensive multi-tier applications in the cloud. Future Generation of Computer Systems 27,
871–879 (2011)

25. Shao, J., Wang, Q.: A Performance Guarantee Approach for Cloud Applications Based on
Monitoring. In: 35th IEEE Annual Computer Software and Applications Conference Work-
shops, pp. 25–30 (2011)

26. Checkpointing Simulator for spot instances, http://spotckpt.sourceforge.net

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/purchasing-options/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/ebs/
http://cloud.google.com/products/
http://www.zabbix.com/
http://spotckpt.sourceforge.net

	Application-Centric Resource Provisioningfor Amazon EC2 Spot Instances
	1 Introduction
	2 Related Work
	3 Application-Centric Resource Provisioning Framework
	3.1 Provisioning Subsystem
	3.2 Monitoring Subsystem

	4 Checkpointing Schemes for Amazon EC2 Spot Instances
	4.1 Characteristics of Spot Instances
	4.2 Existing Checkpointing Schemes for Spot Instances

	5 A Novel Checkpointing Scheme over Application-CentricResource Provisioning Framework
	5.1 Event Generation Scheme for Spot Instances
	5.2 The Application-Centric Checkpointing Scheme

	6 Implementation and Evaluation
	7 Conclusion and Future Work
	References

