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Abstract
In the area of scientific visualization, input data sets are often very large.  In visualization of Computational Fluid

Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability
of supercomputers to generate them.  Some visualization tools already partition large data sets into segments, and load
appropriate segments as they are needed.  However, this does not remove the problem for two reasons: 1) there are data
sets for which even the individual segments are too large for the largest graphics workstations,  2) many practitioners
do not have access to workstations with the memory capacity required to load even a segment, especially since the
state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines.  When the
size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply
required.  This may be by segmentation, paging, or by paged segments.  In this paper we demonstrate that complete
reliance on operating system virtual memory for out-of-core visualization leads to poor performance.  We then describe
a paged segment system that we have implemented, and explore the principles of memory management that can be
employed by the application for out-of-core visualization.  We show that application control over some of these can
significantly improve performance.  We show that sparse traversal can be exploited by loading only those data actually
required.  We show also that application control over data loading can be exploited by 1) loading data from alternative
storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size.  Both of these
techniques effectively reduce the total memory required by visualization at run-time.  We also describe experiments we
have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are
promising.

                                                                
1 Both authors are employees of MRJ Technology Solutions at NASA Ames Research Center.
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Abstract
In the area of scientific visualization, input data sets are

often very large.  In visualization of Computational Fluid
Dynamics (CFD) in particular, input data sets today can surpass
100 Gbytes, and are expected to scale with the ability of
supercomputers to generate them.  Some visualization tools
already partition large data sets into segments, and load
appropriate segments as they are needed.  However, this does
not remove the problem for two reasons: 1) there are data sets
for which even the individual segments are too large for the
largest graphics workstations,  2) many practitioners do not have
access to workstations with the memory capacity required to
load even a segment, especially since the state-of-the-art
visualization tools tend to be developed by researchers with
much more powerful machines.  When the size of the data that
must be accessed is larger than the size of memory, some form
of virtual memory is simply required.  This may be by
segmentation, paging, or by paged segments.  In this paper we
demonstrate that complete reliance on operating system virtual
memory for out-of-core visualization leads to egregious
performance.  We then describe a paged segment system that we
have implemented, and explore the principles of memory
management that can be employed by the application for out-of-
core visualization.  We show that application control over some
of these can significantly improve performance.  We show that
sparse traversal can be exploited by loading only those data
actually required.  We show also that application control over
data loading can be exploited by 1) loading data from alternative
storage format (in particular 3-dimensional data stored in sub-
cubes), 2) controlling the page size.  Both of these techniques
effectively reduce the total memory required by visualization at
run-time.  We also describe experiments we have done on
remote out-of-core visualization (when pages are read by
demand from remote disk) whose results are promising.

CR Categories and Subject Descriptors:  D.4.2 [Operating
Systems] Storage Management – storage hierarchies,
segmentation, virtual memory;  E.2 [Data] Data Storage
Representations;  J.2 [Computer Applications] Physical Sciences
and Engineering – aerospace;  I.3.2 [Computer Graphics]
Graphic Systems – distributed/network graphics, remote
systems, stand-alone systems,   I.3.8 [Computer Graphics]
Applications.

Additional  Keywords:  computational fluid dynamics,
visualization, out-of-core visualization.

1 Introduction
Visualization provides an interesting challenge for computer

systems:  data sets are generally quite large, taxing the capacities of
main memory, local disk, and even remote disk.  We call this the
problem of big data.  When data sets do not fit in main memory (in
core), or when they do not fit even on local disk, the most common
solution is to acquire more resources.  This write-a-check algorithm
has two drawbacks.  First, if visualization algorithms and tools are
worth developing, then they are worth deploying to more
production-oriented scientists and engineers who may have on their
desks machines with significantly less memory and disk.  Some
researchers have noted that their software tools were not used in
practice for several years after development because the tools
required more power and memory than were available on the
average engineer’s desk [15].  Second, there may not even be a
machine that supports sufficiently large main memory or local disk
for the data set one wishes to visualize.  We find this in particular in
the area of visualization of Computational Fluid Dynamics (CFD).

When a single data set is larger than the capacity of main
memory, we must solve the problem of out-of-core visualization.
When a single data set is larger than the capacity of local memory
and disk, we must solve the problem of remote out-of-core
visualization.  We address primarily the first of these in this paper,
although we also report what we believe are promising results from
experiments in remote out-of-core visualization.

Out-of-core visualization requires virtual memory of some
sort.  We should be careful to distinguish between the idea of
virtual memory, and the implementation(s) supported today by most
operating systems (OSs).  Virtual memory is simply the concept of
mapping a larger virtual address space into a smaller physical
space.  Generally the larger virtual memory is partitioned into
“pieces” each of which is moved into real memory when it is
needed, at which time some “piece” that is (hopefully) no longer
needed may be moved out.  When the pieces are of fixed-length, the
virtual memory is said to be in pages (or is said to be paged). When
the pieces are of variable-length, virtual memory is said to be in
segments (or is said to be segmented).  When variable-length pieces
are themselves partitioned into fixed-length pieces, virtual memory
is said to be in paged segments.  When pages or segments are
loaded as they are needed, the system is said to be demand driven
(e.g. demand paged).  These are all well-studied schemes for virtual
memory (cf. [16, 24]), and previous results and concepts from this
area can be used productively for out-of-core visualization.

Perhaps the most well-known (often inadvertent) approach to
out-of-core visualization is strict reliance on operating system
virtual memory.  To rely on the operating system for virtual
memory support, the application allocates a buffer that is
sufficiently large to hold the data set, and loads the data set into the
buffer.  If the data set is larger than physical memory, the operating
system manages the discrepancy.  The problem with this approach
is that it generally results in poor performance due to thrashing.
When a system thrashes, it spends more of its time replacing pages
in physical memory with new pages from disk than it does
accomplishing real work.  We document this behavior in the current
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paper, thrashing in CFD visualization has also been documented
by Ueng [26].  Thrashing is more generally addressed in [2, 10,
14, 16, 18].

One approach to out-of-core visualization that has been
more successfully employed than reliance on OS virtual memory
is that of application-controlled segmentation.  With this
approach the application chooses some natural unit (segment) of
data and specifically loads a segment when it is needed, possibly
replacing some segment that is no longer needed. This is similar
to the pre-virtual memory programming practice of overlaying
code (data) segments with new code (data) segments as the
former are no longer needed.  Ueng et al. have successfully
employed this approach with unstructured CFD data [26].  They
spatially and hierarchically partition their data set in an octree,
implicitly defining a segment to be a node of this tree.  They
load on demand each segment required by user-driven
visualization, replacing the segments previously (but no longer)
required.  Kao2 has successfully employed segmentation with
primarily structured CFD data [19].  He temporally partitions the
data set, implicitly defining a segment to be the data from one
time-step of unsteady flow simulation.  He sequentially loads
each segment in order by time, calculating the visualization
time-step by time-step, and replacing older segments as they are
no longer needed.

While these purely segmented schemes have been
successful, they are limited in several respects. First, the choice
or computation of segment boundaries may be difficult, and in
general may involve run-time parameters not available.  In
Ueng’s approach octree decomposition is done off-line and the
tree cannot be easily recomputed for machines with differing
capacities.  Second, if any segment (or group of segments) is
significantly larger than the main memory of a given machine,
the application reverts to strict reliance on operating system
virtual memory. In Kao’s approach a single temporal time-step
may still exceed the capacity of main memory.  For example, we
are working with a structured grid data set at Ames for which a
single time step comprises 550  Mbytes.3

However, we demonstrate in this paper that application-
controlled segmentation can be productively augmented with
application-controlled demand paging.

We first discuss the aspects of application-controlled
memory management that may affect application performance.
We then place our implementations and experiments in this
context.  Following this are out-of-core visualization
experimental results, and some early remote out-of-core
visualization experimental results.  We then address related
work, followed by conclusions and future work.

2 Application-controlled memory
management

There are several principles of memory management that
an application can exploit to improve performance.  We discuss
these briefly before describing the implementations and
experiments we have performed to explore the issues in the
context of CFD visualization.  Following this we discuss results
and the memory management issues in Section 4.

                                                                
2 Who previously went by the name Lane.
3 The simulation is currently steady, with work ongoing to

generate an unsteady data set of the same aircraft.

2.1 Sparse traversal
We should expect many visualization algorithms to traverse

only a subset of the entire data set.  If we assume for example that
traversal of each cell of 3-dimensional data results in the generation
of geometry, traversal of the entire data set would generate
geometry to fill 3-space, making the image visually difficult to
comprehend! There are of course algorithms that today must
traverse the full data set, but we argue in [9] that finding the
algorithm with the most parsimonious traversal is an important step
in out-of-core visualization.

The most common approach today is to pre-load the entire data
set before traversing it for visualization.  If traversal really is sparse,
more data are touched than need be.  In particular if the data do not
fit in physical memory, some of the data must be unnecessarily
paged by the operating system.  As an alternative, we may load only
those data that are required as required.  If not all of the data are
loaded, we say that the application takes advantage of sparse
traversal.  This demand-driven strategy may be based on segments
(as in [26]) or on pages.  In this paper, we report our extension of
Kao’s temporal segmentation with demand paging in order to
support sparse traversal.

2.2 Replacement policy
When more data are required than fit in physical memory, new

data must supplant old data.  In general, as each virtual page of new
data must be brought into physical memory, some virtual page that
is already resident must be chosen as a victim for replacement.  The
policy by which a victim is chosen is called the replacement policy.
The ubiquitous replacement policy in operating systems today is
Least Recently Used (LRU).  That is, the page of the application that
has been accessed the least recently is selected as a victim.4 We
have explored application-controlled replacement, but have not
found strategies competitive with OS-controlled replacement.  In
this paper we describe implementations that leave page replacement
to the operating system.

2.3 Load/store management
With reliance on the virtual memory of today’s operating

systems, the movement of data between memory and disk is under
OS control.  This leads to lost opportunities.

2.3.1 Page size
Commercial operating systems today support only fixed page

sizes (typically 4 or 16 Kbytes).  Application-controlled variable
page sizes have been explored by researchers in operating systems
but the results have not propagated to widely used systems.  The
problem with fixed page size is that the choice made by the
operating system may not be the right one for all applications.  In
particular, the granularity of the page may be too coarse.  As
example, consider a hypothetical visualization that requires a small
cluster of data from the center of a large cube of data.  Suppose
further that the cube is partitioned into 8 large pages so that each
page holds some of the clustered data, forcing the application to
require the entire data set.  Repartitioning the cube into 64 smaller
pages in general will force the cluster onto fewer pages, allowing
the visualization to require less memory.  In this paper we report
experimental results concerning page size for CFD visualization of
structured grids.

                                                                
4 In practice, the replacement policy is typically more

complicated, also involving physically mapped pages from other
applications, disk cache, etc.
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2.3.2 Translation
Multi-dimensional scientific data are often represented in

program code as multi-dimensional arrays.  These arrays have
traditionally been stored in memory in row- or column-order.
That is, they are stored first linearly along one dimension, and
then along a second, and then along a third.   The program
typically accesses the multi-dimensional array by indexing, e.g.
array[i][j][k].  The compiler translates this reference by
multiplying by the appropriate strides in the array, and
generating a virtual address that is an offset from the beginning
of the array.  The operating system then translates the virtual
address to a physical address.   However, multi-dimensional
scientific data tend to be accessed coherently in three
dimensions, in particular as the result of 3-dimensional traversal.
In volume rendering for example, it is well known that storage
in “cubes” results in more efficient access than storage in planes
(cf. [23]).  We distinguish the traditional flat storage (row- or
column-order) from this alternative cubed storage.  To introduce
support for cubed storage into applications written for flat
storage would require source code modification to use
something other than array references.  Instead, we would like to
provide (as transparently as possible) translation from the
application’s flat array references to alternative data
organizations in physical  memory (e.g. cubed).

2.3.3 Loading
Support for alternative data storage organizations may

require additional processing when data are loaded from disk.
For example, when a larger cube of data is partitioned into
smaller sub-cubes, there is generally internal fragmentation
within the sub-cubes.  Internal fragmentation is the loss of
memory within a page because of inefficiency in packing.  In
this case, internal fragmentation arises whenever the dimensions
of the sub-cubes do not evenly divide the dimensions of the
larger cube.  When this occurs, sub-cube pages must be padded
to align with the larger cube boundaries so the addresses of sub-
cubes can be calculated in closed form. We call the result of
such padding  file bloat.  In CFD data sets in particular, we have
found that bloat can result in files 200% larger than their flat
counterparts.5 When data sets can be several hundred Gbytes,
such expansion of file size is simply unacceptable and it is clear
that cubed files must be packed or compressed on disk.  In
general, such packing requires resort to variable-length pages.
While it is fairly easy to support storage and look-up of variable-
length pages on disk, it is much more challenging to support
reference by reference access to variable-length pages in
memory.6 The obvious solution is to pack cubed files for more
efficient storage on disk, and unpack them when pages are
loaded into memory.  The virtual memory primitives of today’s
operating systems do not support such translation.  In this paper
we report performance improvements that can be achieved when
application control over data loading is used to support access to
packed cubed files.  We support such access by translating the
original array references in the application to variable-length
pages on disk that we then unpack into fixed-length pages in
memory.

                                                                
5 This is true in particular of structured grids in CFD

because each data set generally comprises many smaller grids,
called zones.

6 In particular without hardware and operating system
support.

In many visualization applications there are derived data (or
derived fields) that are not stored with the data set – rather they are
derived at run-time.  In general the entire derived field may be
eagerly calculated so that data are available when needed, or the
derived field may be lazily calculated only as pages are required
during traversal.  If the data set is enormous, eager evaluation is
more difficult than out-of-core visualization of the underlying data!
Alternatively, if the application has sufficient control over data
loading, derived data may be lazily calculated only when each page
is loaded.  As with the underlying data, if the traversal is sparse
fewer pages need be calculated and managed.  Although we note
demand paging of derived data as a promising direction, we do not
in the current paper report implementation or experimental results.

2.3.4 Storing
When the application loads a page of data from disk into

memory, the OS marks the page so that it will be later saved (i.e.
the OS marks the page as dirty).  The OS does this because from its
point of view, the page has been written by the application.7  When
the underlying physical memory is subsequently required for
another virtual page (i.e. the virtual page must be replaced), the OS
saves the data from the dirty page to disk for subsequent re-use.
This results in inefficiency for two reasons:  1) if the data were
originally read from disk, they need not be stored since they can be
re-read from the original file, 2) the data may not be required again
anyway, since a visualization application’s traversal may not revisit
the same cell or cells.   Ideally, the application would control which
data were stored when virtual pages were replaced, and which data
were simply discarded.  Current operating systems do not support
this.

In the current paper, we describe an implementation that
unfortunately cannot take advantage of these opportunities (because
storage and page replacement are inextricably linked).  However,
we believe performance improvements are available with more
application control over both policies.  This is further discussed in
section 8.

3 Experimental methodology
Before discussing experimental methodology, we first review

CFD visualization and the original implementation of the software
package that we have used as test-bed – the Unsteady Flow
Analysis Toolkit (UFAT) [19].  Following this we discuss an
implementation of UFAT modified to use the Unix system call
mmap() in order to demonstrate the performance benefits of sparse
traversal.  Then we describe a user-level demand-paging
implementation of UFAT we use to explore application control that
is not supported by mmap().  We finish this section with sundry
details of experimental methodology.

3.1 Visualization of Computational Fluid
Dynamics

Computational Fluid Dynamics (CFD) visualization systems
must process input data of several types, with some complexities.
The data may or may not be on a regular lattice (structured if they
are, unstructured if they are not).  Furthermore, the coordinates of
the nodes of the lattice generally do not correspond to actual
coordinates in space.  Coordinates in the lattice are generally
referred to as computational space, and the real locations to which

                                                                
7 Even if the page is memory-mapped, the OS generally takes

this conservative approach so that it need not guarantee consistency
on the underlying file.
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they correspond are generally referred to as physical space (cf.
[1, 6]).  To implement these two spaces, the values at nodes in
the lattice are generally provided in one input file (solutions),
and the node-by-node mappings to physical space are generally
provided in another input file (grid).  Each grid itself may
comprise multiple sub-grids, and each of these is generally
referred to as a zone.  Furthermore, while there may be only one
solution if the flow is at equilibrium (steady), multiple solutions
may be input if the flow is time-varying (unsteady), and multiple
grids may be input if the mapping to physical space is itself
time-varying (that is, if the grid itself changes over time).     

The algorithms used to visualize CFD data include
streamlines, streaklines, particle traces, vortex-core finding, as
well as the cutting planes, isosurfaces, and local isosurfaces
employed in other application domains.  Most of these are local
algorithms that only need to traverse a subset of the data in order
to calculate the synthetic geometry for a given visualization.
Most CFD visualization systems have supported visualization of
steady flows (single grid, single solution input) (e.g. [4, 5, 28]).
These have typically avoided the problem of big data by
requiring that both the grid and solution fit entirely in main
memory before the visualization begins.

At least one system supports unsteady flow visualization
(multiple grids, multiple solutions) – the Unsteady Flow
Analysis Toolkit (UFAT) [19].  Aside from the algorithmic
challenges that must be tackled to visualize flow through
multiple time steps, unsteady flows challenge the computer
system with significantly big data.  Typically the “solver”
outputs only 1 in 10, or 1 in 100 of the time steps due to limited
system, disk, and visualization system capacity.  But even then,
the output may have hundreds of time steps, each of which may
today surpass 500 Mbytes.

3.2 Unsteady Flow Analysis Toolkit (UFAT)
UFAT has implicitly employed segmentation to handle

such potentially large time-varying data sets.  In UFAT, each
grid for each time step is (implicitly) defined as a segment, as is
each solution for each time step.  UFAT explicitly interpolates
between a fixed number of time steps at once, and so when the
time step is advanced, the oldest solution segment is overlaid
with a new solution segment, similarly for grid segments.
However, UFAT loads an entire segment (or pair of segments)
when it advances time steps, and so before it is through loads the
entire data set.  In addition, if the grid plus solution data required
for any new time step are larger than physical memory, UFAT
relies on operating system virtual memory, and its performance
drops precipitously.  Finally, UFAT reads primarily PLOT3D
data files [28], which employ flat storage of data.  In the
remainder of this paper, we call this implementation of UFAT
the original UFAT.

3.3 Mapped UFAT
As discussed, the original UFAT employs application-

controlled segmentation.  When UFAT traces, say, particles
through an unsteady flow, it calculates the hypothetical paths of
massless particles through the flow over time.  At any point in
the calculation, it loads into memory the data for times t and
t+1.  When UFAT advances the time step to t+2, it reuses the
buffer it used for time t.  Now, if UFAT actually required all of
the data during each time step and there were insufficient
physical memory, it would be difficult to prevent thrashing.  On
the other hand, if the traversal through the data were sparse, it
would be advantageous to load only those pages actually

touched.  In order to demonstrate specifically the advantage of
sparse traversal, we have modified the original UFAT to memory
map input files (with the Unix system call mmap()) rather than read
them explicitly into memory.  The result is that a page from disk is
only read into physical memory when accessed.  If only a fraction f
of the data is required during traversal, then only the fraction f is
read from disk into memory.  At the end of processing of each
segment, mapped UFAT unmap()’s the segment, effectively freeing
the underlying mapped pages for subsequent reuse.  However,
mmap() does not offer the application control over page size, nor
does mmap() provide the semantics that would be required to
support translation of array references to packed cubed data files.
We call the mmap()’d implementation mapped UFAT.

3.4 Paged UFAT
In order to explore the advantages of additional application

control over memory management (in particular translation and
page loading), we have implemented in user-space a demand paging
system that takes control over some of the paging functions of grid
and solution input to UFAT.  The details of this implementation are
discussed below.  We call this implementation paged UFAT.

Paged UFAT implements demand paging of segments in a way
similar to mapped UFAT.  When a new segment is “loaded”, we
simply “map” the data contents (without loading data).  Then, as
data in the underlying segment are demanded, we allocate physical
pages and read the underlying data from disk.  Paged UFAT differs
from mapped UFAT in several respects.  First, page size is a
configurable parameter, allowing us to explore its effect on
performance.  For any given size however, physical page size must
be the same in memory as on disk.  Second, paged UFAT explicitly
allocates a pool of free pages for grid and solution data, in contrast
to mapped UFAT which treats all of physical memory as its pool.
This pool is partitioned into pages of the desired size. If the pool is
empty, we allocate additional memory and partition this into new
free pages.  Third, as UFAT references data that are not resident, we
request a free page from the data pool, and explicitly load and
unpack the data from disk into that page.

On the other hand, paged UFAT is similar to mapped UFAT in
that page replacement (when data requirements exceed physical
memory) is handled by the operating system, and in that all
allocated pages are returned to the “pool” after a segment is
processed.

3.4.1 Translation
For any general demand paging system, it is really a

requirement that the application be allowed to reference underlying
data via its native virtual addresses.  In our case, the underlying
UFAT code references data in computational coordinates (i.e. as
array[i,j,k,field]).  While this works when the data are laid out in
memory in row- or column-order, it does not work when the
underlying storage of the data are not flat (e.g. when the data are
stored in cubed format).

In order to support alternative underlying data storage (and
also to support compression on disk of the underlying data), we
translate the virtual computational coordinates into the underlying
“file coordinates”.  There are several steps in this translation.  First,
when UFAT references the underlying data (as array[i,j,k,field]),
we trap the call (by trapping the array reference at the FORTRAN
call site to a function call of the same name).  If the underlying page
is resident, we simply return the data.  Otherwise, we translate the
array reference into a virtual block address in the underlying file.
This translation differs depending on whether the underlying
storage is flat or cubed.  We translate to virtual block address
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because (as previously discussed) there may not be a one-to-one
mapping between storage in memory and storage on disk.  From
virtual block address, we translate to physical offset within the
file, then allocate a page from the free pool and read the data
into memory.  Once the page is resident, execution proceeds as
it would otherwise have, and we return the data originally
requested by the multi-dimensional array reference.

It is probably clear from this discussion that in the user-
space implementation of paged UFAT translation is very
expensive.  We have corroborated this expectation with profiling
and have found that our address translation consumes more CPU
cycles than any other UFAT routine.  For example, for the
shuttle data set (described below) address translation initially
accounted for 80% of CPU utilization.  We have made a first
pass at alleviating this high cost by taking advantage of the fact
that for most array references, neighbors are also soon
referenced.  We have added new translation routines that return
several values instead of one value, which amortizes the
translation cost over several cells.   This approach has reduced
the percentage of execution time taken by address translation,
and was enabled during the experiments reported below.  But
still, even with this technique, address translation on the shuttle
accounted for 50% of CPU utilization in the runs discussed
below.  We consider the positive results we report even stronger
in light of this cost.

3.4.2 Loading
Application control over loading is important in a number

of contexts:  1) when storage in memory does not correspond to
storage on disk, 2) when pages may be loaded from non-file
sources, 3) when the  application chooses lazy rather than eager
evaluation of derived data (e.g. when a derived field is defined
over an entire data set, but visualization is only desired of some
limited traversal through the data set).

In the current paged UFAT, we take advantage only of the
first of these opportunities.  In particular, when the underlying
file storage is cubed, regular addressing results in “holes” in the
underlying stored file. These holes can result in 200% bloat if
the underlying data are not “packed”.  We support packed files
by storing with each cubed file a block translation table which
provides the physical offset of the block within the file and the
number of bytes that the block actually comprises.  The virtual
block address, then, is used to index this table to find the actual
block.  When the block is read into memory, a full memory page
is allocated regardless of the actual underlying block length, and
any unused memory in the page is left uninitialized and
undefined.

3.5 Experimental methodology
We have employed the data sets shown in Table 1.  The

experiments we performed on these data sets were chosen to
emulate (or replicate) studies for which the data were originally
used, as described below.

Tapered cylinder. It is well known that the behavior of
vortices on the downstream side of flow past a cylinder is a
function of cylinder diameter.  The tapered cylinder was
designed to explore the vortex behavior on the downstream side
of a cylinder of continuously varying diameter [17].  We have
introduced per-timestep streamlines on the back side of the
cylinder to replicate (and exaggerate) the original experiments.
All frames (concatenated into one) from the particle trace are
shown in Color Plate 1.

Shuttle. One study conducted on the shuttle was done to
determine the behavior of debris that might collide with the it [6]
We have emulated this study by introducing a rake of particles at
the front of the shuttle's fuel tank, and traced streamlines.  The
results are shown in Color Plate 2.

F18. Some of the studies conducted on the F18 focused on
vortex behavior beginning above the wing and proceeding to the
rear of the plane [13].  We have emulated some of the traces of this
study by introducing particles in and around the vortex core above
the wing, and calculating streaklines.  The concatenated results
from the 220-frame animation are shown in Color Plate 3.

High-wing. The high-wing data set is under commercial non-
disclosure, and we are not able to publish a picture at the time of
this writing. However, one rake of streamlines was placed before
the wing and two were placed at engine exhausts.  Among the three
rakes a trailing vortex was captured.  This particular experiment
was illuminating for the principle investigators on the project at
NASA Ames Research Center.

All of our code has been based on Version 3.0 of UFAT.  We
compiled all code with the SGI C compiler with flags “–n32” and
“–O2”.  We performed experiments using the machines shown in
Table 2.   Original  UFAT and mapped UFAT were provided input
from PLOT3D files, paged UFAT was provided input from our own
file format that supports both flat and cubed storage. PLOT3D files
were automatically translated to our file format, and after
visualization with paged UFAT, graphical output files were
compared for equivalence.

In order to study the effects of limited available memory, we
used the system call mpin() effectively to remove memory from
each of the machines above.  In a separate process that began before
and ran during each limited memory experiment, we allocated and
pinned sufficient memory to reduce the total memory available on
the workstation to the desired target.   This target is the “memory
capacity” reported in the results in section 4.  To compensate for
differences in kernel size between the actual machine and target
machines, we scaled slightly the amount of memory pinned.

Name Tapered
cylinder

Shuttle F18 High-wing

Machine Indigo2 Indigo2 Onyx2 Indigo2
OS IRIX 6.2 IRIX 6.2 IRIX 6.4 IRIX 6.2
Disk
(Gbytes)

4 4 14 4

Memory
(Mbytes)

128 128 1024 128

Table 2.  Test environment.  Indigo2 and Onyx2 are 195 MHz
R10000’s.  All disks are standard SCSI.

Name Tapered
cylinder

Shuttle F18 High-wing

Type
Unsteady
Single-

zone

Steady
Multi-zone

Unsteady
Multi-zone

Steady
Multi-zone

Time
steps

100 1 220 1

Grid
(Mbytes)

1.5 14.4 26.9 246.4

Solution
(Mbytes)

2.5 18.0 33.7 308.0

Total
(Mbytes)

251.5 32.3 7432.0 554.4

Table 1.  Data sets.
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However, it is important to note that all runs were subject to the
same memory environment.

Between all runs, we cleared the file cache by allocating
the bulk of memory available in user-space (which has the effect
in IRIX of reducing the pages available to the file cache) and by
subsequently randomly reading a file the size of the target
machine’s memory.

4 Out-of-core visualization
Summaries of results are shown in Tables 3 through 6.  The

data set is identified in the caption, the run in the leftmost
column, and the memory capacity (in Mbytes) is identified in
the topmost row by M=.  We have explored the performance of
original UFAT (Original), mapped UFAT (Mapped), and paged
UFAT with a range of block sizes and with cubed and flat
storage.  These are labeled as N-cubed and N-flat where N
corresponds to the following block and page sizes:

N Cube dimensions (cells) Page size  (bytes)
4 4 x 4 x 4 256
8 8 x 8 x 8 2K
16 16 x 16 x 16 16K
32 32 x 32 x 32 128K

4.1 Notes on the experiments
The tapered cylinder was only run in an environment of
unlimited memory because it is a small data set.  The shuttle was
run in environments between unlimited memory (M=128) and
limited memory (M=32).  The F18 was run between unlimited
memory (M=1024) and very limited memory (M=32).  The
high-wing is a 554 Mbyte data set that researchers at NASA
Ames currently wish to explore using their desktop machines;
hence, we have explored its behavior only with progressively
more limited memory (between M=128 and M=32).  Results for
original UFAT are not available for the high-wing, because that
application died due to insufficient swap space (the machine’s
configuration was standard – twice the swap space of main
memory).

4.2 Overall results
Overall, performance of paged UFAT with 8 x 8 x 8 cubes

(2K pages) surpassed that of either original UFAT or mapped
UFAT.  Over all block sizes and over both storage formats
(cubed and flat), 8 x 8 x 8 cubes generally provided the best
performance amonged paged UFAT runs as well.  The tapered
cylinder is the most notable exception, where flow is
anomalously axis-aligned, and where flat storage results in
better performance.

In addition, paged UFAT degraded gracefully with
decreasing available memory, as can be seen in Figures 1
through 3.  At the same time, mapped UFAT degraded faster
than paged UFAT, and original UFAT clearly did not degrade
gracefully.  These results strongly suggest that out-of-core
visualization cannot be achieved simply by loading all data and
relying on operating system virtual memory.

Run M=1024 M=128 M=64 M=32
Original — 115.9 — —
Mapped — 116.6 — —
4-cubed — 83.6 — —
4-flat — 86.7 — —
8-cubed — 94.9 — —
8-flat — 67.3 — —
16-cubed — 107.4 — —
16-flat — 62.3 — —
32-cubed — 85.4 — —
32-flat — 71.76 — —

Table 3.  Tapered cylinder experimental results (seconds).

Run M=1024 M=128 M=64 M=32
Original — 8.5 14.9 25.7
Mapped — 9.8 9.1 13.8
4-cubed — 11.0 11.6 15.2
4-flat — 10.2 11.6 22.4
8-cubed — 8.6 9.3 11.0
8-flat — 11.4 11.8 24.9
16-cubed — 8.8 8.2 15.3
16-flat — 8.4 10.6 22.0
32-cubed — 8.2 10.0 21.3
32-flat — 8.2 8.7 21.6

Table 4.  Shuttle experimental results (seconds).

Run M=1024 M=128 M=64 M=32
Original 1051.6 1080.0 3369.7 5704.0
Mapped 588.8 592.3 620.8 843.5
4-cubed 392.3 414.2 478.5 598.8
4-flat 642.6 673.8 860.2 1167.4
8-cubed 326.5 331.5 372.8 462.2
8-flat 615.0 640.0 764.7 1094.3
16-cubed 387.6 391.8 434.3 611.8
16-flat 710.0 724.6 925.3 2138.6
32-cubed 501.1 502.6 826.0 1982.4
32-flat 611.9 602.2 872.4 2055.9

Table 5.  F18 experimental results (seconds).

Run M=1024 M=128 M=64 M=32
Original — N/A N/A N/A
Mapped — 111.1 247.7 671.1
4-cubed — 118.6 243.2 331.3
4-flat — 168.3 273.3 527.5
8-cubed — 81.7 129.3 248.6
8-flat — 131.8 247.5 786.2
16-cubed — 117.8 163.5 354.9
16-flat — 145.3 270.0 543.5
32-cubed — 148.8 339.9 899.8
32-flat — 151.7 370.1 817.3

Table 6.  High-wing experimental results (seconds).



7

 M=128 M=64 M=32
0

5

10

15

20

25

Se
co

nd
s

Original
Mapped
Paged (8-cubed)

Figure 1.  Comparative performance, Shuttle.
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Figure 2.  Comparative performance, F18.
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Figure 3.  Comparative performance, High-wing.

4.3 Sparse traversal
In order to provide a common basis of comparison, we

compare the original, mapped, and paged UFATs when all
utilize the same page size and flat storage.  The original and
mapped versions naturally employ 16K physical pages, while
paged UFAT does so when N=16.  Note from Tables 3 through
6 that the demand paged systems that can take advantage of
sparse traversal virtually always perform better (and when not,
they are roughly on par).  This is shown more graphically in
Figures 1 and 2 for the shuttle and F18.  Note from these figures
that it is even more important to take advantage of sparse
traversal as memory becomes more limited.

Finally, note that when paged UFAT works with the same
16K pages (16-flat) that mapped UFAT must work with, paged
UFAT is generally slower.  This is because of the overhead that
paged UFAT incurs in managing memory in user-space, without
hardware and operating system support.  The fact that cubed
storage and smaller pages can make paged UFAT faster is all

the more compelling evidence that these are important performance
issues for out-of-core visualization.

The percentage of blocks touched during visualization bears
out the hypothesis that streakline and streamline traversal in CFD
visualization is sparse.  Below are shown the percentages of blocks
touched by paged UFAT for 8 x 8 x 8 cubes:

Percentage of pages touched
Grid Solution Overall

Tapered cylinder 42.6 17.2 23.1
Shuttle 27.9 6.3 15.9
F18 15.5 2.3 6.1
High-wing 18.9 2.3 9.7

Sparse traversal can also be seen in the working sets of Figures
6 and 7.  The working set is defined as the set of blocks required
during some period of time (in our case a single time step).  In these
are graphed the fractions of grid and solution pages required during
traversal.  The darker lines show cubed working sets, the ligher
lines show flat working sets.  These pictures confirm that generally
only a fraction of the pages are required.  However, several
additional observations deserve note.  First, grid working sets are
“peaky”, surpassing 50% of the total pages at times.  This is
because the current algorithms in UFAT search the grid when
streaklines or streamlines cross zone boundaries.  Second, there are
clearly patterns of access where it should be possible to exploit
better page replacement strategies than LRU.  We do not do so in
the current paper but mention it in passing.  Third, these graphs
make it clear that the working sets of cubed files are smaller than
they are for flat files, and that at least for solution data smaller page
size leads to reduced working set size.  These are the topics of the
next two sections.
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Figure 4.  Sparse traversal in Shuttle.
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Figure 5.  Sparse traversal in F18.
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Figure 1.  Working set for N=4, F18.
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Figure 2.  Working set for N=8, F18.

4.4 Load/store management
As discussed in section 3.4.2, paged UFAT takes control

over two aspects of page load/store management, in particular
translation and page loading.  By doing so, it can support
alternative page sizes, and alternative page storage formats
(without wasting disk storage with bloated files).  Using the
standard system services available today, in particular mmap(), it
is not possible to support these features.  In this section we
examine the performance improvements that they provide.

4.4.1 Cubed vs. flat storage
It is clear from Figures 6 and 7 and from inspection of

Tables 3 through 6 (especially for the F18 and high-wing) that
for fixed page size, cubed storage is generally significantly
better than flat storage.   This is because for most 3-dimensional
traversals, cubes provide better locality of reference than do
planes.  As a result, fewer pages are required at run-time.  This
trend is most noticeable for all runs as memory pages become
scarcer. Cubed storage allows the application to take better
advantage of the pages that are available.

Finally, we make two observations.  First, without support
for translation to cubed format from linear array references, the
application cannot take advantage of such storage without

modification.  Second, without support for application processing
during page loading (which mmap() does not provide) packed cubed
files cannot be supported.

4.4.2 Page size
There are two competing forces affecting the dependency of

performance on page size.  Paged UFAT requires its own internal
page tables in order to manage its own demand paging.  As blocks
become smaller the page tables grow, themselves consuming
memory.  On the other hand, smaller blocks allow finer granularity
and in general result in a smaller working set.  In our experiments,
we have found the cross-over of these two curves with 2 Kbyte
pages (8 x 8 x 8).  This trend is shown graphically for the F18 in
Figure 8.

Finally, the standard page size is 16 Kbytes on the machines
and operating systems we used as platform.  We note that without
application control over loading pages, our smaller pages would not
have been employable.
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Figure 3.  Page size sensitivity for cubed storage, F18.
(32x32x32 at M=32 deliberately omitted because of its effect on
graph scale).

5 Remote out-of-core visualization
The second problem we address in this paper is remote out-of-

core visualization – the local visualization of data sets that are
stored remotely because they do not fit on local disk.  In this model
a file server provides pages to smaller local workstations on
demand.  To explore the viability of this architecture, we have run
paged UFAT and mapped UFAT on the same mid-range
workstation as in the Table 2, with the high-wing stored on remote
server accessible via the Network File System (NFS) over 10 Mbit
Ethernet.  Ideally, this architecture would be supported at least by
100 Mbit Ethernet.  However, even over the slower network link the
results are encouraging.  The results for the high-wing are shown in
Table 7.

M=128 M=64 M=32
Loc. Rem. Loc. Rem. Loc. Rem.

Paged 81.7 183.3 129.3 206.9 248.6 259.0
Mapped 111.1 261.8 247.7 347.0 671.1 1104.1

Table 7.  Remote demand paging for paged UFAT
(cubed 8 x 8 x 8) and mapped UFAT.  Local (Loc.) and Remote

(Rem.) times are shown (seconds).
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As can be seen, the degradation for paged UFAT is at worst
somewhat greater than a factor of 2, and for very limited
memory (M=32) remote and local are essentially at parity.

6 Related work
Researchers in operating systems have recently explored

extensions to standard systems to support more application
control over virtual memory.  The case for these extensions has
been made repeatedly (cf. [2, 10, 14, 18, 21, 27]).  Some
research prototypes have added more application control [11, 14,
20, 21, 27] but these features have unfortunately not found their
way into commercial operating systems.  Appel and Li have
demonstrated by operating system modification that application
control over write-back policies can improve performance by
discarding dirty data that really are garbage or that can be
rederived [3].  Just such control would be desirable for
visualization where data can be re-read from disk.  Cao et al.
have explored application control over file caching [7, 8].  Their
focus has primarily been on efficient implementation and on
global performance.

In the visualization domain, Song has demonstrated that the
problem of big data can be mitigated in a data flow system by
reducing the granularity of data flow nodes [25].  For
visualization of earth sciences data, the Common Data Format
(CDF) library [22] implements a simple form of demand-paged
segments.  In our terminology, CDF maps a segment to each
file, and independently demand pages each of these segments.
Since a cache is associated with each file, the memory in use
grows with the total number of open files.  Application control
over this growth is difficult unless the application keeps track of
its own access patterns on the underlying data.  We are unaware
of studies on CDF that explore alternative page sizes,
replacement policies, and data storage and organization, and so
cannot address the trade-offs in demand-paged segments for
earth sciences data.

In a different visualization domain, Funkhouser explicitly
used segmentation to explore architectural databases at
interactive rates [12].  He partitioned objects hierarchically in an
approach similar to the one taken by Ueng for unstructured CFD
data [26].  He was able to visualize at interactive rates a
database roughly 10x the size of main memory.  While these
results and the techniques they suggest are of interest, the
differences with respect to scientific visualization should be
explicitly noted:
• With synthetic imagery, data traversal is driven by

direction of travel of a viewer; in scientific visualization
data traversal is driven by the visualization algorithm (and
is generally unrelated to the viewer) and geometry is not
generated until after traversal.

• With synthetic imagery, data that will not be needed can be
explicitly culled by fairly well-known algorithms; in
scientific visualization, it is not yet clear which data can be
culled and which data cannot be culled (and in any event is
visualization algorithm-specific).

• The sizes of the biggest synthetic data are significantly
smaller than those encountered in scientific visualization.

7 Conclusions
When a single data set that we wish to visualize is larger

than the capacity of main memory, we must solve the problem
of out-of-core visualization.  When a single data set is larger
than the capacity of local memory and disk, we must solve the

problem of remote out-of-core visualization.  We have addressed
primarily the first of these in this paper, although we have reported
what we believe are promising results from experiments in remote
out-of-core visualization.

To tackle out-of-core visualization, we have built upon a
previous technique to limit the size of data that must be in core at
any time, in particular segmentation.  Previous authors have used
application-controlled segmentation.  In particular, they have
partitioned their data sets along natural boundaries, defining each
subset as a segment, and loaded segments only when they were
needed.  We have added application-controlled demand paging to a
previous segment-based system, and in doing so have demonstrated
significantly better performance than previously achieved by simple
reliance on operating system virtual memory.  Furthermore, we
have demonstrated better performance not only when data size
exceeded physical memory (limited memory) but also when
physical memory was sufficient to hold the data (unlimited
memory).

The principles we have exploited can be summarized as
follows:

Sparse traversal.  When only a subset of the data are required
for a given visualization, demand loading only those pages
necessary leads in general to better performance.  When memory is
limited demand paging is even more important to sustain acceptable
performance.  We have found that even with unlimited memory,
demand paging leads to better performance than loading the entire
data set.

Page size.  The finer the grain of page size, the fewer pages
required for given traversal.  We have found the best overall
performance with page sizes smaller than those supported by the
standard operating system(s).

Cubed storage. When data are stored in “cubes” rather than in
flat planes, there is generally better locality of reference.
Improvement in locality reduces the number of pages a
visualization application requires at run-time.    We have found that
cubed storage results in significantly better performance than flat
storage.  However, cubed storage generally leads to larger files (by
as much as a factor of 2).  To solve this, we have translated at run-
time from a packed file representation on disk to an unpacked
representation in memory.  This has allowed us to support cubed
storage with minimal increase in disk storage requirements.

We note that exploitation of the second two of these requires
memory management support not present in today’s operating
systems.  This suggests that for the near term, out-of-core
visualization will require support by user-level memory
management.

We have also explored remote out-of-core visualization (where
demand paging is from a remote data server).  Our results are
promising, showing only roughly a factor of 2 slow-down over our
best local out-of-core visualization.

8 Future Work
We intend to explore approaches that draw more support for

application-controlled memory management from the operating
system.  We also believe there is opportunity to take advantage of
additional techniques to improve out-of-core visualization
performance, in particular prefetching and data set indexing.  There
may be other visualization applications that can exploit demand-
paged segmentation, and we welcome collaboration in exploring
other domains.  Finally, we believe that remote out-of-core
visualization is a very promising approach to provide visualization
tools to a broader user community.



10

9 Acknowledgements
The authors are grateful to David Kenwright whose help

with CFD visualization and its tools has been indispensable.
The authors would like also to thank Scott Murman and Ken
Gee for allowing us to use and helping us to acquire the F18
data, Karlin Roth for use of the high-wing data set, David
Kenwright and David Kao for help with UFAT, Sandy Johan for
help acquiring the data sets, and Bryan Green for help with the
machines we required to process the F18 data set.  We thank
David Kao for his mmap() code that we dusted off and
refurbished for the current paper.

10 References
1. J. Anderson, Computational Fluid Dynamics:  The Basics

with Applications, McGraw-Hill, New York NY, 1995.
2. T. Anderson, “The Case for Application-Specific Operating

Systems," Proceedings of the Third Workshop on
Workstation Operating Systems, April 1992, pp. 92-94.

3. A. Appel and K. Li, “Virtual Memory Primitives for User
Programs,” Proceedings of the 4th Symposium on
Architectural Support for Programming Languages and
Operating Systems, Santa Clara CA, April 1991.

4. G. Bancroft et al., “FAST:  A Multi-Processed
Environment for Visualization of Computational Fluid
Dynamics,” Proceedings of Visualization ’90, San
Francisco CA, October 1990, pp. 14-27.

5. S. Bryson and C. Levit, “The Virtual Wind Tunnel,” IEEE
Computer Graphics & Applications, Vol. 12, No. 4, July
1992, pp. 25-34.

6. P. Buning et al., “Flowfield Simulation of the Space Shuttle
Vehicle in Ascent,” Fourth International Conference on
Supercomputing, Vol. II, Supercomputer Applications,
Kartashev & Kartashev, eds, 1989, pp. 20-28.

7. P. Cao, E. W. Felten, and K. Li, “Application-Controlled
File Caching Policies,” Proceedings of the 1994 Summer
USENIX, June 1994.

8. P. Cao, E. W. Felten, and K. Li, “Implementation and
Performance of Application-Controlled File Caching,”
Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation (OSDI), November
1994, pp. 165-177.

9. M. Cox and D. Ellsworth, “Managing Big Data for
Scientific Visualization,” ACM SIGGRAPH ’97 Course #4,
Exploring Gigabyte Datasets in Real-Time:  Algorithms,
Data Management, and Time-Critical Design, ACM
SIGGRAPH ’97, August 1997.

10. R. Draves, “The Case for Run-Time Replaceable Kernel
Modules,” Proceedings of the Fourth Workshop on
Workstation Operating Systems, October 1993, pp. 160-
164.

11. D. R. Engler, S. K. Gupta, M. F. Kaashoek, “AVM:
Application-Level Virtual Memory,” Proceedings of the
Fifth Workshop on Hot Topics in Operating Systems
(HotOS-V), May 1994, pp. 72-77.

12. T. A. Funkhouser, Database and Display Algorithms for
Interactive Visualization of Architectural Models, Ph.D.
dissertation, University of California at Berkeley, 1993.

13. K. Gee, S. Murman, and L. Schiff, “Computation of F/A-18
Tail Buffet,” Journal of Aircraft, Vol. 33, No. 6, Nov-Dec
1996, pp. 1181-1189.

14. K. Harty and D. R. Cheriton, “Application-Controlled Physical
Memory Using External Page-Cache Management,” Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, October
1992, pp. 187-197.

15. J. Hultquist, personal communication, December 1996.
16. K. Hwang and F. Briggs, Computer Architecture and Parallel

Processing, McGraw Hill, New York NY, 1984.
17. D. Jespersen and C. Levit, “Numerical Simulation of Flow

Past a Tapered Cylinder,” RNR Technical Report RNR-90-
021, NASA Ames Research Center, October 1990.

18. G. Kiczales, J. Lamping, C. Maeda, D. Keppel, D. McNamee,
“The Need for Customizable Operating Systems,” Proceedings
of the Fourth Workshop on Workstation Operating Systems,
October 1993, pp. 165-169.

19. D. Lane, “UFAT:  A Particle Tracer for Time-Dependent Flow
Fields,” Proceedings of Visualization ’94, Washington DC,
October 17-21, 1994, pp. 257-264.

20. C. H. Lee, M. C. Chen, and R. C Chang, “HiPEC:  High
Performance External Virtual Memory Caching,” Proceedings
of the First USENIX Symposium on Operating Systems Design
and Implementation (OSDI), November 1994, pp. 153-164.

21. D. McNamee and K. Armstrong, “Extending the Mach
External Pager Interface to Accommodate User-Level Page
Replacement Policies,” Proceedings of the USENIX
Association Mach Workshop, 1990, pp. 17-29.

22. National Space Science Data Center, CDF User’s Guide,
Version 2.4, NASA/Goddard Space Flight Center, February
1994.

23. U. Neumann, “Parallel Volume-Rendering Algorithm
Performance on Mesh-Connected Multicomputers,”
Proceedings of the 1993 Parallel Rendering Symposium, San
Jose CA, October 1993, pp. 97-104.

24. A. Silberschatz, J. Peterson, and P. Galvin, Operating System
Concepts, Addison-Wesley, Reading MA, 1991.

25. D. Song and E. Golin, “Fine-Grain Visualization Algorithms in
Dataflow Environments,” Proceedings of Visualization ’93,
October 1993, pp. 126-133.

26. S. K. Ueng, K. Siborski, and K. L. Ma, “Out-of-Core
Streamline Visualization on Large Unstructured Meshes,”
ICASE Report No. 97-22, Institute for Computer Applications
in Science and Engineering, NASA Langley Research Center,
April 1997.

27. M. Young, Exporting a User Interface to Memory
Management from a Communication-Oriented Operating
System, Ph.D. dissertation, Carnegie Mellon University,
November 1989.

28. P. Walatka and P. Buning, PLOT3D User’s Manual Version
3.6, NASA Technical Memorandum 101067, NASA Ames
Research Center, 1989.



11

Plate 1.  Tapered cylinder.  Concatenated
frames from an unsteady-flow particle trace
simulation.

Plate 2.  Shuttle.  Single frame showing
steady flow streamlines.

Plate 3.  F18.  Concatenated frames from
an unsteady-flow particle trace simulation.


