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Abstract

In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid

Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability

of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load

appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data

sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners

do not have access to workstations with the memory capacity required to load even a segment, especially since the

state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the

size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply

required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete

reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe

a paged segment system that we have implemented, and explore the principles of memory management that can be

employed by the application for out-of-core visualization. We show that application control over some of these can

significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually

required. We show also that application control over data loading can be exploited by 1) loading data from alternative

storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these

techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we

have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are

promising.

i Both authors are employees of MRJ Technology Solutions at NASA Ames Research Center.
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Abstract

In the area of scientific visualization, input data sets are

often very large. In visualization of Computational Fluid

Dynamics (CFD) in particular, input data sets today can surpass

100 Gbytes, and are expected to scale with the ability of

supercomputers to generate them. Some visualization tools

already partition large data sets into segments, and load

appropriate segments as they are needed. However, this does

not remove the problem for two reasons: 1) there are data sets

for which even the individual segments are too large for the

largest graphics workstations, 2) many practitioners do not have

access to workstations with the memory capacity required to

load even a segment, especially since the state-of-the-art

visualization tools tend to be developed by researchers with

much more powerful machines. When the size of the data that

must be accessed is larger than the size of memory, some form

of virtual memory is simply required. This may be by

segmentation, paging, or by paged segments. In this paper we

demonstrate that complete reliance on operating system virtual

memory for out-of-core visualization leads to egregious

performance. We then describe a paged segment system that we

have implemented, and explore the principles of memory

management that can be employed by the application for out-of-

core visualization. We show that application control over some

of these can significantly improve performance. We show that

sparse traversal can be exploited by loading only those data

actually required. We show also that application control over

data loading can be exploited by 1) loading data from alternative

storage format (in particular 3-dimensional data stored in sub-

cubes), 2) controlling the page size. Both of these techniques

effectively reduce the total memory required by visualization at

run-time. We also describe experiments we have done on

remote out-of-core visualization (when pages are read by

demand from remote disk) whose results are promising.
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systems, stand-alone systems, 1.3.8 [Computer Graphics]
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visualization, out-of-core visualization.
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1 Introduction

Visualization provides an interesting challenge for computer

systems: data sets are generally quite large, taxing the capacities of

main memory, local disk, and even remote disk. We call this the

problem of big data. When data sets do not fit in main memory (in

core), or when they do not fit even on local disk, the most common

solution is to acquire more resources. This write-a-check algorithm

has two drawbacks. First, if visualization algorithms and tools are

worth developing, then they are worth deploying to more

production-oriented scientists and engineers who may have on their

desks machines with significantly less memory and disk. Some

researchers have noted that their software tools were not used in

practice for several years after development because the tools

required more power and memory than were available on the

average engineer's desk [15]. Second, there may not even be a

machine that supports sufficiently large main memory or local disk

for the data set one wishes to visualize. We find this in particular in

the area of visualization of Computational Fluid Dynamics (CFD).

When a single data set is larger than the capacity of main

memory, we must solve the problem of out-of-core visualization.

When a single data set is larger than the capacity of local memory

and disk, we must solve the problem of remote out-of-core

visualization. We address primarily the first of these in this paper,

although we also report what we believe are promising results from

experiments in remote out-of-core visualization.

Out-of-core visualization requires virtual memory of some

sort. We should be careful to distinguish between the idea of

virtual memory, and the implementation(s) supported today by most

operating systems (OSs). Virtual memory is simply the concept of

mapping a larger virtual address space into a smaller physical

space. Generally the larger virtual memory is partitioned into

"pieces" each of which is moved into real memory when it is

needed, at which time some "piece" that is (hopefully) no longer

needed may be moved out. When the pieces are of fixed-length, the

virtual memory is said to be in pages (or is said to be paged). When

the pieces are of variable-length, virtual memory is said to be in

segments (or is said to be segmented). When variable-length pieces

are themselves partitioned into fixed-length pieces, virtual memory

is said to be in paged segments. When pages or segments are

loaded as they are needed, the system is said to be demand driven

(e.g. demand paged). These are all well-studied schemes for virtual

memory (cf. [16, 24]), and previous results and concepts from this

area can be used productively for out-of-core visualization.

Perhaps the most well-known (often inadvertent) approach to

out-of-core visualization is strict reliance on operating system

virtual memory. To rely on the operating system for virtual

memory support, the application allocates a buffer that is

sufficiently large to hold the data set, and loads the data set into the

buffer. If the data set is larger than physical memory, the operating

system manages the discrepancy. The problem with this approach

is that it generally results in poor performance due to thrashing.

When a system thrashes, it spends more of its time replacing pages

in physical memory with new pages from disk than it does

accomplishing real work. We document this behavior in the current



paper,thrashinginCFDvisualizationhasalsobeendocumented
byUeng[26].Thrashingismoregenerallyaddressedin[2,10,
14,16,18].

Oneapproachtoout-of-corevisualizationthathasbeen
moresuccessfullyemployedthanrelianceonOSvirtualmemory
is thatof application-controlled segmentation. With this

approach the application chooses some natural unit (segment) of

data and specifically loads a segment when it is needed, possibly

replacing some segment that is no longer needed. This is similar

to the pre-virtual memory programming practice of overlaying

code (data) segments with new code (data) segments as the

former are no longer needed. Ueng et al. have successfully

employed this approach with unstructured CFD data [26]. They

spatially and hierarchically partition their data set in an octree,

implicitly defining a segment to be a node of this tree. They

load on demand each segment required by user-driven

visualization, replacing the segments previously (but no longer)

required. Kao 2 has successfully employed segmentation with

primarily structured CFD data [19]. He temporally partitions the

data set, implicitly defining a segment to be the data from one

time-step of unsteady flow simulation. He sequentially loads

each segment in order by time, calculating the visualization

time-step by time-step, and replacing older segments as they are

no longer needed.

While these purely segmented schemes have been

successful, they are limited in several respects. First, the choice

or computation of segment boundaries may be difficult, and in

general may involve run-time parameters not available. In

Ueng's approach octree decomposition is done off-line and the

tree cannot beeasily recomputed for machines with differing

capacities. Second, if any segment (or group of segments) is

significantly larger than the main memory of a given machine,

the application reverts to strict reliance on operating system

virtual memory. In Kao's approach a single temporal time-step

may still exceed the capacity of main memory. For example, we

are working with a structured grid data set at Ames for which a

single time step comprises 550 Mbytes. 3

However, we demonstrate in this paper that application-

controlled segmentation can be productively augmented with

application-controlled demand paging.

We first discuss the aspects of application-controlled

memory management that may affect application performance.

We then place our implementations and experiments in this

context. Following this are out-of-core visualization

experimental results, and some early remote out-of-core

visualization experimental results. We then address related

work, followed by conclusions and future work.

2 Application-controlled memory

management

There are several principles of memory management that

an application can exploit to improve performance. We discuss

these briefly before describing the implementations and

experiments we have performed to explore the issues in the

context of CFD visualization. Following this we discuss results

and the memory management issues in Section 4.

2.1 Sparse traversa/

We should expect many visualization algorithms to traverse

only a subset of the entire data set. If we assume for example that

traversal of each cell of 3-dimensional data results in the generation

of geometry, traversal of the entire data set would generate

geometry to fill 3-space, making the image visually difficult to

comprehend! There are of course algorithms that today must

traverse the full data set, but we argue in [9] that finding the

algorithm with the most parsimonious traversal is an important step

in out-of-core visualization.

The most common approach today is to pre-load the entire data

set before traversing it for visualization. If traversal really is sparse,

more data are touched than need be. In particular if the data do not

fit in physical memory, some of the data must be unnecessarily

paged by the operating system. As an alternative, we may load only

those data that are required as required. If not all of the data are

loaded, we say that the application takes advantage of sparse

traversal. This demand-driven strategy may be based on segments

(as in [26]) or on pages. In this paper, we report our extension of

Kao's temporal segmentation with demand paging in order to

support sparse traversal.

2.2 Replacement poficy

When more data are required than fit in physical memory, new

data must supplant old data. In general, as each virtual page of new

data must be brought into physical memory, some virtual page that

is already resident must be chosen as a victim for replacement. The

policy by which a victim is chosen is called the replacement policy.

The ubiquitous replacement policy in operating systems today is

Least Recently Used (LRU). That is, the page of the application that

has been accessed the least recently is selected as a victim. 4 We

have explored application-controlled replacement, but have not

found strategies competitive with ()S-controlled replacement. In

this paper we describe implementations that leave page replacement

to the operating system.

2.3 Load�store management

With reliance on the virtual memory of today's operating

systems, the movement of data between memory and disk is under

OS control. This leads to lost opportunities.

2.3.1 Page size

Commercial operating systems today support only fixed page

sizes (typically 4 or 16 Kbytes). Application-controlled variable

page sizes have been explored by researchers in operating systems

but the results have not propagated to widely used systems. The

problem with fixed page size is that the choice made by the

operating system may not be the right one for all applications. In

particular, the granularity of the page may be too coarse. As

example, consider a hypothetical visualization that requires a small

cluster of data from the center of a large cube of data. Suppose

further that the cube is partitioned into 8 large pages so that each

page holds some of the clustered data, forcing the application to

require the entire data set. Repartitioning the cube into 64 smaller

pages in general will force the cluster onto fewer pages, allowing

the visualization to require less memory. In this paper we report

experimental results concerning page size for CFD visualization of

structured grids.

2 Who previously went by the name Lane.

3 The simulation is currently steady, with work ongoing to

generate an unsteady data set of the same aircraft.

4 In practice, the replacement policy is typically more

complicated, also involving physically mapped pages from other

applications, disk cache, etc.



2.3.2 Translation

Multi-dimensional scientific data are often represented in

program code as multi-dimensional arrays. These arrays have

traditionally been stored in memory in row- or column-order.

That is, they are stored first linearly along one dimension, and

then along a second, and then along a third. The program

typically accesses the multi-dimensional array by indexing, e.g.

array[i]_'][k]. The compiler translates this reference by

multiplying by the appropriate strides in the array, and

generating a virtual address that is an offset from the beginning

of the array. The operating system then translates the virtual

address to a physical address. However, multi-dimensional

scientific data tend to be accessed coherently in three

dimensions, in particular as the result of 3-dimensional traversal.

In volume rendering for example, it is well known that storage

in "cubes" results in more efficient access than storage in planes

(cf. [23]). We distinguish the traditional flat storage (row- or

column-order) from this alternative cubed storage. To introduce

support for cubed storage into applications written for flat

storage would require source code modification to use

something other than array references. Instead, we would like to

provide (as transparently as possible) translation from the

application's flat array references to alternative data

organizations in physical memory (e.g. cubed).

2.3.3 Loading

Support for alternative data storage organizations may

require additional processing when data are loaded from disk.

For example, when a larger cube of data is partitioned into

smaller sub-cubes, there is generally internal fragmentation

within the sub-cubes. Internal fragmentation is the loss of

memory within a page because of inefficiency in packing. In

this case, internal fragmentation arises whenever the dimensions

of the sub-cubes do not evenly divide the dimensions of the

larger cube. When this occurs, sub-cube pages must be padded

to align with the larger cube boundaries so the addresses of sub-

cubes can be calculated in closed form. We call the result of

such padding file bloat. In CFD data sets in particular, we have

found that bloat can result in files 200% larger than their flat

counterparts. 5 When data sets can be several hundred Gbytes,

such expansion of file size is simply unacceptable and it is clear

that cubed files must be packed or compressed on disk. In

general, such packing requires resort to variable-length pages.

While it is fairly easy to support storage and look-up of variable-

length pages on disk, it is much more challenging to support

reference by reference access to variable-length pages in

memory. 6 The obvious solution is to pack cubed files for more

efficient storage on disk, and unpack them when pages are

loaded into memory. The virtual memory primitives of today's

operating systems do not support such translation. In this paper

we report performance improvements that can be achieved when

application control over data loading is used to support access to

packed cubed files. We support such access by translating the

original array references in the application to variable-length

pages on disk that we then unpack into fixed-length pages in

memory.

5 This is true in particular of structured grids in CFD

because each data set generally comprises many smaller grids,

called zones.

6 In particular without hardware and operating system

support.

In many visualization applications there are derived data (or

derived fields) that are not stored with the data set - rather they are

derived at run-time. In general the entire derived field may be

eagerly calculated so that data are available when needed, or the

derived field may be lazily calculated only as pages are required

during traversah If the data set is enormous, eager evaluation is

more difficult than out-of-core visualization of the underlying data!

Alternatively, if the application has sufficient control over data

loading, derived data may be lazily calculated only when each page

is loaded. As with the underlying data, if the traversal is sparse

fewer pages need be calculated and managed. Although we note

demand paging of derived data as a promising direction, we do not

in the current paper report implementation or experimental results.

2.3.4 Storing

When the application loads a page of data from disk into

memory, the OS marks the page so that it will be later saved (i.e.

the OS marks the page as dirty). The OS does this because from its

point of view, the page has been written by the application. 7 When

the underlying physical memory is subsequently required for

another virtual page (i.e. the virtual page must be replaced), the OS

saves the data from the dirty page to disk for subsequent re-use.

This results in inefficiency for two reasons: 1) if the data were

originally read from disk, they need not be stored since they can be

re-read from the original file, 2) the data may not be required again

anyway, since a visualization application's traversal may not revisit

the same cell or cells. Ideally, the application would control which

data were stored when virtual pages were replaced, and which data

were simply discarded. Current operating systems do not support

this.

In the current paper, we describe an implementation that

unfortunately cannot take advantage of these opportunities (because

storage and page replacement are inextricably linked). However,

we believe performance improvements are available with more

application control over both policies. This is further discussed in

section 8.

3 Experimental methodology

Before discussing experimental methodology, we first review

CFD visualization and the original implementation of the software

package that we have used as test-bed - the Unsteady Flow

Analysis Toolkit (UFAT) [19]. Following this we discuss an

implementation of UFAT modified to use the Unix system call

mmapO in order to demonstrate the performance benefits of sparse

traversal. Then we describe a user-level demand-paging

implementation of UFAT we use to explore application control that

is not supported by mmapO. We finish this section with sundry

details of experimental methodology.

3.1 Visualization of Computational Fluid

Dynamics

Computational Fluid Dynamics (CFD) visualization systems

must process input data of several types, with some complexities.

The data may or may not be on a regular lattice (structured if they

are, unstructured if they are not). Furthermore, the coordinates of

the nodes of the lattice generally do not correspond to actual

coordinates in space. Coordinates in the lattice are generally

referred to as computational space, and the real locations to which

7 Even if the page is memory-mapped, the OS generally takes

this conservative approach so that it need not guarantee consistency

on the underlying file.



theycorrespondaregenerallyreferredtoasphysical space (cf.

[1, 6]). To implement these two spaces, the values at nodes in

the lattice are generally provided in one input file (solutions),

and the node-by-node mappings to physical space are generally

provided in another input file (grid). Each grid itself may

comprise multiple sub-grids, and each of these is generally

referred to as a zone. Furthermore, while there may be only one

solution if the flow is at equilibrium (steady), multiple solutions

may be input if the flow is time-varying (unsteady), and multiple

grids may be input if the mapping to physical space is itself

time-varying (that is, if the grid itself changes over time).

The algorithms used to visualize CFD data include

streamlines, streaklines, particle traces, vortex-core fnding, as

well as the cutting planes, isosurfaces, and local isosurfaces

employed in other application domains. Most of these are local

algorithms that only need to traverse a subset of the data in order

to calculate the synthetic geometry for a given visualization.

Most CFD visualization systems have supported visualization of

steady flows (single grid, single solution input) (e.g. [4, 5, 28]).

These have typically avoided the problem of big data by

requiring that both the grid and solution fit entirely in main

memory before the visualization begins.

At least one system supports unsteady flow visualization

(multiple grids, multiple solutions) - the Unsteady Flow

Analysis Toolkit (UFAT) [19]. Aside from the algorithmic

challenges that must be tackled to visualize flow through

multiple time steps, unsteady flows challenge the computer

system with significantly big data. Typically the "solver"

outputs only 1 in 10, or 1 in 100 of the time steps due to limited

system, disk, and visualization system capacity. But even then,

the output may have hundreds of time steps, each of which may

today surpass 500 Mbytes.

3.2 Unsteady Flow Analysis Toolkit (UFA T)

UFAT has implicitly employed segmentation to handle

such potentially large time-varying data sets. In UFAT, each

grid for each time step is (implicitly) defined as a segment, as is

each solution for each time step. UFAT explicitly interpolates

between a fixed number of time steps at once, and so when the

time step is advanced, the oldest solution segment is overlaid

with a new solution segment, similarly for grid segments.

However, UFAT loads an entire segment (or pair of segments)

when it advances time steps, and so before it is through loads the

entire data set. In addition, if the grid plus solution data required

for any new time step are larger than physical memory, UFAT

relies on operating system virtual memory, and its performance

drops precipitously. Finally, UFAT reads primarily PLOT3D

data files [28], which employ fiat storage of data. In the

remainder of this paper, we call this implementation of UFAT

the original UFA T.

3.3 Mapped UFA T

As discussed, the original UFAT employs application-

controlled segmentation. When UFAT traces, say, particles

through an unsteady flow, it calculates the hypothetical paths of

massless particles through the flow over time. At any point in

the calculation, it loads into memory the data for times t and

t+l. When UFAT advances the time step to t+2, it reuses the

buffer it used for time t. Now, if UFAT actually required all of

the data during each time step and there were insufficient

physical memory, it would be difficult to prevent thrashing. On

the other hand, if the traversal through the data were sparse, it

would be advantageous to load only those pages actually

touched. In order to demonstrate specifically the advantage of

sparse traversal, we have modified the original UFAT to memory

map input files (with the Unix system call mmapO) rather than read

them explicitly into memory. The result is that a page from disk is

only read into physical memory when accessed. If only a fractionf

of the data is required during traversal, then only the fraction f is

read from disk into memory. At the end of processing of each

segment, mapped UFAT unmapO's the segment, effectively fleeing

the underlying mapped pages for subsequent reuse. However,

mmapO does not offer the application control over page size, nor

does mmapO provide the semantics that would be required to

support translation of array references to packed cubed data files.

We call the mmapO 'd implementation mapped UFA T.

3.4 Paged UFA T

In order to explore the advantages of additional application

control over memory management (in particular translation and

page loading), we have implemented in user-space a demand paging

system that takes control over some of the paging functions of grid

and solution input to UFAT. The details of this implementation are

discussed below. We call this implementation paged UFA T.

Paged UFAT implements demand paging of segments in a way

similar to mapped UFAT. When a new segment is "loaded", we

simply "map" the data contents (without loading data). Then, as

data in the underlying segment are demanded, we allocate physical

pages and read the underlying data fi'om disk. Paged UFAT differs

from mapped UFAT in several respects. First, page size is a

configurable parameter, allowing us to explore its effect on

performance. For any given size however, physical page size must

be the same in memory as on disk. Second, paged UFAT explicitly

allocates a pool of free pages for grid and solution data, in contrast

to mapped UFAT which treats all of physical memory as its pool.

This pool is partitioned into pages of the desired size. If the pool is

empty, we allocate additional memory and partition this into new

free pages. Third, as UFAT references data that are not resident, we

request a free page from the data pool, and explicitly load and

unpack the data from disk into that page.

On the other hand, paged UFAT is similar to mapped UFAT in

that page replacement (when data requirements exceed physical

memory) is handled by the operating system, and in that all

allocated pages are returned to the "pool" after a segment is

processed.

3.4.1 Translation

For any general demand paging system, it is really a

requirement that the application be allowed to reference underlying

data via its native virtual addresses. In our case, the underlying

UFAT code references data in computational coordinates (i.e. as

array[i,j, kfield]). While this works when the data are laid out in

memory in row- or column-order, it does not work when the

underlying storage of the data are not flat (e.g. when the data are

stored in cubed format).

In order to support alternative underlying data storage (and

also to support compression on disk of the underlying data), we

translate the virtual computational coordinates into the underlying

"file coordinates". There are several steps in this translation. First,

when UFAT references the underlying data (as array[i,j,k, field]),

we trap the call (by trapping the array reference at the FORTRAN

call site to a function call of the same name). If the underlying page

is resident, we simply return the data. Otherwise, we translate the

array reference into a virtual block address in the underlying file.

This translation differs depending on whether the underlying

storage is flat or cubed. We translate to virtual block address



because (as previously discussed) there may not be a one-to-one

mapping between storage in memory and storage on disk. From

virtual block address, we translate to physical offset within the

file, then allocate a page from the free pool and read the data

into memory. Once the page is resident, execution proceeds as

it would otherwise have, and we return the data originally

requested by the multi-dimensional array reference.

It is probably clear from this discussion that in the user-

space implementation of paged UFAT translation is very

expensive. We have corroborated this expectation with profiling

and have found that our address translation consumes more CPU

cycles than any other UFAT routine. For example, for the

shuttle data set (described below) address translation initially

accounted for 80% of CPU utilization. We have made a first

pass at alleviating this high cost by taking advantage of the fact

that for most array references, neighbors are also soon

referenced. We have added new translation routines that return

several values instead of one value, which amortizes the

translation cost over several cells. This approach has reduced

the percentage of execution time taken by address translation,

and was enabled during the experiments reported below. But

still, even with this technique, address translation on the shuttle

accounted for 50% of CPU utilization in the runs discussed

below. We consider the positive results we report even stronger

in light of this cost.

3.4.2 Loading

Application control over loading is important in a number

of contexts: 1) when storage in memory does not correspond to

storage on disk, 2) when pages may be loaded from non-file

sources, 3) when the application chooses lazy rather than eager

evaluation of derived data (e.g. when a derived field is defined

over an entire data set, but visualization is only desired of some

limited traversal through the data set).

In the current paged UFAT, we take advantage only of the

first of these opportunities. In particular, when the underlying

file storage is cubed, regular addressing results in "holes" in the

underlying stored file. These holes can result in 200% bloat if

the underlying data are not "packed". We support packed files

by storing with each cubed file a block translation table which

provides the physical offset of the block within the file and the

number of bytes that the block actually comprises. The virtual

block address, then, is used to index this table to find the actual

block. When the block is read into memory, a full memory page

is allocated regardless of the actual underlying block length, and

any unused memory in the page is left uninitialized and

undefined.

3.5 Experimental methodology

We have employed the data sets shown in Table 1. The

experiments we performed on these data sets were chosen to

emulate (or replicate) studies for which the data were originally

used, as described below.

Tapered cylinder. It is well known that the behavior of

vortices on the downstream side of flow past a cylinder is a

function of cylinder diameter. The tapered cylinder was

designed to explore the vortex behavior on the downstream side

of a cylinder of continuously varying diameter [17]. We have

introduced per-timestep streamlines on the back side of the

cylinder to replicate (and exaggerate) the original experiments.

All frames (concatenated into one) from the particle trace are

shown in Color Plate 1.

Namc

Type

Tapered

cylinder

Unsteady

Single-

zone

Shuttle

Steady

Multi-zone

FI8

Unsteady

Multi-zone

High-wing

Steady

Multi-zone

Time 100 1 220 l

steps

Grid 1.5 14.4 26.9 246.4

(Mbytes)
Solution 2.5 18.0 33.7 308.0

(Mbytes)

Total 251.5 32.3 7432.0 554.4

(Mbytes)

Table 1. Data sets.

Name Shuttle F 18 H igh-wing

Machine

Tapered

cylinder

Indigo2

IRIX 6.2

Indigo2

IRIX 6.2

Onyx2

IRIX 6.4OS

Disk 4 4 14 4

(Gbytes)

Memory 128 128 1024 128

(Mbytes)

Indigo2

IRIX 6.2

Table 2. Test environment. Indigo2 and Onyx2 are 195 MHz

R10000's. All disks are standard SCSI.

Shuttle. One study conducted on the shuttle was done to

determine the behavior of debris that might collide with the it [6]

We have emulated this study by introducing a rake of particles at

the front of the shuttle's fuel tank, and traced streamlines. The

results are shown in Color Plate 2.

F18. Some of the studies conducted on the F18 focused on

vortex behavior beginning above the wing and proceeding to the

rear of the plane [13]. We have emulated some of the traces of this

study by introducing particles in and around the vortex core above

the wing, and calculating streaklines. The concatenated results

from the 220-frame animation are shown in Color Plate 3.

High-wing. The high-wing data set is under commercial non-

disclosure, and we are not able to publish a picture at the time of

this writing. However, one rake of streamlines was placed before

the wing and two were placed at engine exhausts. Among the three

rakes a trailing vortex was captured. This particular experiment

was illuminating for the principle investigators on the project at

NASA Ames Research Center.

All of our code has been based on Version 3.0 of UFAT. We

compiled all code with the SGI C compiler with flags "-n32" and

"-02". We performed experiments using the machines shown in

Table 2. Original UFAT and mapped UFAT were provided input

from PLOT3D files, paged UFAT was provided input from our own

file format that supports both flat and cubed storage. PLOT3D files

were automatically translated to our file format, and after

visualization with paged UFAT, graphical output files were

compared for equivalence.

In order to study the effects of limited available memory, we

used the system call mpinO effectively to remove memory from

each of the machines above. In a separate process that began before

and ran during each limited memory experiment, we allocated and

pinned sufficient memory to reduce the total memory available on

the workstation to the desired target. This target is the "memory

capacity" reported in the results in section 4. To compensate for

differences in kernel size between the actual machine and target

machines, we scaled slightly the amount of memory pinned.



However,it isimportanttonotethatallrunsweresubjecttothe
samememoryenvironment.

Betweenallruns,weclearedthefilecachebyallocating
thebulkofmemoryavailableinuser-space(whichhastheeffect
inIRIXofreducingthepagesavailabletothefilecache)andby
subsequentlyrandomlyreadinga filethesizeof thetarget
machine'smemory.

4 Out-of-core visualization

Summaries of results are shown in Tables 3 through 6. The

data set is identified in the caption, the run in the leftmost

column, and the memory capacity (in Mbytes) is identified in

the topmost row by M =. We have explored the performance of

original UFAT (Original), mapped UFAT (Mapped), and paged

UFAT with a range of block sizes and with cubed and flat

storage. These are labeled as N-cubed and N-fiat where N

corresponds to the following block and page sizes:

_N Cube dimensions (cells) Page size (bytes)

4 4x4x4 256

8 8x8x8 2K

16 16 x 16 x 16 16K

32 32 x 32 x 32 128K

4.1 Notes on the experiments

The tapered cylinder was only run in an environment of

unlimited memory because it is a small data set. The shuttle was

run in environments between unlimited memory (M=128) and

limited memory (M=32). The F18 was run between unlimited

memory (M=1024) and very limited memory (M=32). The

high-wing is a 554 Mbyte data set that researchers at NASA

Ames currently wish to explore using their desktop machines;

hence, we have explored its behavior only with progressively

more limited memory (between M=128 and M=32). Results for

original UFA T are not available for the high-wing, because that

application died due to insufficient swap space (the machine's

configuration was standard - twice the swap space of main

memory).

4.2 Overall results

Overall, performance of paged UFAT with 8 x 8 x 8 cubes

(2K pages) surpassed that of either original UFAT or mapped

UFAT. Over all block sizes and over both storage formats

(cubed and flat), 8 x 8 x 8 cubes generally provided the best

performance amonged paged UFAT runs as well. The tapered

cylinder is the most notable exception, where flow is

anomalously axis-aligned, and where flat storage results in

better performance.

In addition, paged UFAT degraded gracefully with

decreasing available memory, as can be seen in Figures 1

through 3. At the same time, mapped UFAT degraded faster

than paged UFAT, and original UFAT clearly did not degrade

gracefully. These results" strongly suggest that out-of-core

visualization cannot be achieved simply by loading all data and

relying on operating system virtual memory.

Run M=1024 M=128 M=64 M=32

Original -- 115.9 -- --

Mapped -- 116.6 -- --

4-cubed -- 83.6 -- --

4-flat -- 86.7 -- --

8-cubed -- 94.9 -- --

8-flat -- 67.3 -- --

16-cubed -- 107.4 -- --

16-flat -- 62.3 -- --

32-cubed -- 85.4 -- --

32-flat -- 71.76 -- --

Table 3. Tapered cylinder experimental results (seconds).

Run M=1024 M=128 M=64 M=32

Original -- 8.5 14.9 25.7

Mapped -- 9.8 9.1 13.8

4-cubed -- 11.0 11.6 15.2

4-flat -- 10.2 11.6 22.4

8-cubed -- 8.6 9.3 11.0

8-flat -- 11.4 11.8 24.9

16-cubed -- 8.8 8.2 15.3

16-flat -- 8.4 10.6 22.0

32-cubed -- 8.2 10.0 21.3

32-flat -- 8.2 8.7 21.6

Table 4. Shuttle experimental results (seconds).

Run I M=1024 M=128 M=64 M=32

Original 1051.6 1080.0 3369.7 5704.0

Mapped 588.8 592.3 620.8 843.5

4-cubed 392.3 414.2 478.5 598.8

4-flat 642.6 673.8 860.2 1167.4

8-cubed 326.5 331.5 372.8 462.2

8-flat 615.0 640.0 764.7 1094.3

16-cubed 387.6 391.8 434.3 611.8

16-flat 710.0 724.6 925.3 2138.6

32-cubed 501.1 502.6 826.0 1982.4

32-flat 611.9 602.2 872.4 2055.9

Table 5. F18 experimental results (seconds).

Run M=1024 M=128 M=64 M=32

Original -- N/A N/A N/A

Mapped -- 111.1 247.7 671.1

4-cubed -- 118.6 243.2 331.3

4-flat -- 168.3 273.3 527.5

8-cubed -- 81.7 129.3 248.6

8-flat -- 131.8 247.5 786.2

16-cubed -- 117.8 163.5 354.9

16-flat -- 145.3 270.0 543.5

32-cubed -- 148.8 339.9 899.8

32-flat -- 151.7 370.1 817.3

Table 6. High-wing experimental results (seconds).
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4.3 Sparse traversal

in order to provide a common basis of comparison, we

compare the original, mapped, and paged UFATs when all

utilize the same page size and flat storage. The original and

mapped versions naturally employ 16K physical pages, while

paged UFAT does so when N=16. Note from Tables 3 through

6 that the demand paged systems that can take advantage of

sparse traversal virtually always perform better (and when not,

they are roughly on par). This is shown more graphically in

Figures 1 and 2 for the shuttle and F 18. Note from these figures

that it is even more important to take advantage of sparse

traversal as memory becomes more limited.

Finally, note that when paged UFAT works with the same

16K pages (16-flat) that mapped UFAT must work with, paged

UFAT is generally slower. This is because of the overhead that

paged UFAT incurs in managing memory in user-space, without

hardware and operating system support. The fact that cubed

storage and smaller pages can make paged UFAT faster is all
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Figure 4. Sparse traversai in Shuttle.
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the more compelling evidence that these are important performance

issues for out-of-core visualization.

The percentage of blocks touched during visualization bears

out the hypothesis that streakline and streamline traversal in CFD

visualization is sparse. Below are shown the percentages of blocks

touched by paged UFAT for 8 x 8 x 8 cubes:

Tapered cylinder

Shuttle

FI8

High-wing

Percentage of pages touched

Grid Solution Overall

42.6 17.2 23.1

27.9 6.3 15.9

15.5 2.3 6.1

18.9 2.3 9.7

Sparse traversal can also be seen in the working sets of Figures

6 and 7. The working set is defined as the set of blocks required

during some period of time (in our case a single time step). In these

are graphed the fractions of grid and solution pages required during

traversal. The darker lines show cubed working sets, the ligher

lines show fiat working sets. These pictures confirm that generally

only a fraction of the pages are required. However, several

additional observations deserve note. First, grid working sets are

"peaky", surpassing 50% of the total pages at times. This is

because the current algorithms in UFAT search the grid when

streaklines or streamlines cross zone boundaries. Second, there are

clearly patterns of access where it should be possible to exploit

better page replacement strategies than LRU. We do not do so in

the current paper but mention it in passing. Third, these graphs

make it clear that the working sets of cubed files are smaller than

they are for fiat files, and that at least for solution data smaller page

size leads to reduced working set size. These are the topics of the

next two sections.
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modification. Second, without support for application processing

during page loading (which mmapO does not provide) packed cubed

files cannot be supported.

4.4.2 Page size

There are two competing forces affecting the dependency of

performance on page size. Paged UFAT requires its own internal

page tables in order to manage its own demand paging. As blocks

become smaller the page tables grow, themselves consuming

memory. On the other hand, smaller blocks allow finer granularity

and in general result in a smaller working set. In our experiments,

we have found the cross-over of these two curves with 2 Kbyte

pages (8 x 8 x 8). This trend is shown graphically for the F18 in

Figure 8.

Finally, the standard page size is 16 Kbytes on the machines

and operating systems we used as platform. We note that without

application control over loading pages, our smaller pages would not

have been employable.

800 -
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Figure 2. Working set for N=8, F18.

4.4 Load�store management

As discussed in section 3.4.2, paged UFAT takes control

over two aspects of page load/store management, in particular

translation and page loading. By doing so, it can support

alternative page sizes, and alternative page storage formats

(without wasting disk storage with bloated files). Using the

standard system services available today, in particular mmapO, it

is not possible to support these features. In this section we

examine the performance improvements that they provide.

4.4.1 Cubed vs. flat storage

It is clear from Figures 6 and 7 and from inspection of

Tables 3 through 6 (especially for the F I8 and high-wing) that

for fixed page size, cubed storage is generally significantly

better than fiat storage. This is because for most 3-dimensional

traversals, cubes provide better locality of reference than do

planes. As a result, fewer pages are required at run-time. This

trend is most noticeable for all runs as memory pages become

scarcer. Cubed storage allows the application to take better

advantage of the pages that are available.

Finally, we make two observations. First, without support

for translation to cubed format from linear array references, the

application cannot take advantage of such storage without

M=1024

- 4- M=128

...+.. M=64

- -x--- M=32

(t,... ° .,,0. ° X . ""

I I I

4x4x4 8x8x8 16x16x16 32x32x32

Figure 3. Page size sensitivity for cubed storage, F18.

(32x32x32 at M=32 deliberately omitted because of its effect on

graph scale).

5 Remote out-of-core visualization

The second problem we address in this paper is remote out-of-

core visualization - the local visualization of data sets that are

stored remotely because they do not fit on local disk. In this model

a file server provides pages to smaller local workstations on

demand. To explore the viability of this architecture, we have run

paged UFAT and mapped UFAT on the same mid-range

workstation as in the Table 2, with the high-wing stored on remote

server accessible via the Network File System (NFS) over 10 Mbit

Ethernet. Ideally, this architecture would be supported at least by

100 Mbit Ethernet. However, even over the slower network link the

results are encouraging. The results for the high-wing are shown in

Table 7.

M=128 M--64 M=32

Loc. Rem. Loc. Rem. Loc. Rem.

81.7 183.3 129.3 206.9 248.6 259.0

[Mapped 111.1 261.8 247.7 347.0 671.1 1104. I

Table 7. Remote demand paging for paged UFAT

(cubed 8 x 8 x 8) and mapped UFAT. Local (Loc.) and Remote

(Rem.) times are shown (seconds).



,6

As can be seen, the degradation for paged UFAT is at worst

somewhat greater than a factor of 2, and for very limited

memory (M=32) remote and local are essentially at parity.

6 Related work

Researchers in operating systems have recently explored

extensions to standard systems to support more application

control over virtual memory. The case for these extensions has

been made repeatedly (cf. [2, 10, 14, 18, 21, 27]). Some

research prototypes have added more application control [l l, 14,

20, 21, 27] but these features have unfortunately not found their

way into commercial operating systems. Appel and Li have

demonstrated by operating system modification that application

control over write-back policies can improve performance by

discarding dirty data that really are garbage or that can be

rederived [3]. Just such control would be desirable for

visualization where data can be re-read from disk. Cao et al.

have explored application control over file caching [7, 8]. Their

focus has primarily been on efficient implementation and on

global performance.

In the visualization domain, Song has demonstrated that the

problem of big data can be mitigated in a data flow system by

reducing the granularity of data flow nodes [25]. For

visualization of earth sciences data, the Common Data Format

(CDF) library [22] implements a simple form of demand-paged

segments. In our terminology, CDF maps a segment to each

file, and independently demand pages each of these segments.

Since a cache is associated with each file, the memory in use

grows with the total number of open files. Application control

over this growth is difficult unless the application keeps track of

its own access patterns on the underlying data. We are unaware

of studies on CDF that explore alternative page sizes,

replacement policies, and data storage and organization, and so

cannot address the trade-offs in demand-paged segments for

earth sciences data.

In a different visualization domain, Funkhouser explicitly

used segmentation to explore architectural databases at

interactive rates [12]. He partitioned objects hierarchically in an

approach similar to the one taken by Ueng for unstructured CFD

data [26]. He was able to visualize at interactive rates a

database roughly 10x the size of main memory. While these

results and the techniques they suggest are of interest, the

differences with respect to scientific visualization should be

explicitly noted:

• With synthetic imagery, data traversal is driven by

direction of travel of a viewer; in scientific visualization

data traversal is driven by the visualization algorithm (and

is generally unrelated to the viewer) and geometry is not

generated until after traversal.

• With synthetic imagery, data that will not be needed can be

explicitly culled by fairly well-known algorithms; in

scientific visualization, it is not yet clear which data can be

culled and which data cannot be culled (and in any event is

visualization algorithm-specific).

• The sizes of the biggest synthetic data are significantly

smaller than those encountered in scientific visualization.

7 Conclusions

When a single data set that we wish to visualize is larger

than the capacity of main memory, we must solve the problem

of out-of-core visualization. When a single data set is larger

than the capacity of local memory and disk, we must solve the

problem of remote out-of-core visualization. We have addressed

primarily the first of these in this paper, although we have reported

what we believe are promising results from experiments in remote

out-of-core visualization.

To tackle out-of-core visualization, we have built upon a

previous technique to limit the size of data that must be in core at

any time, in particular segmentation. Previous authors have used

application-controlled segmentation. In particular, they have

partitioned their data sets along natural boundaries, defining each

subset as a segment, and loaded segments only when they were

needed. We have added application-controlled demand paging to a

previous segment-based system, and in doing so have demonstrated

significantly better performance than previously achieved by simple

reliance on operating system virtual memory. Furthermore, we

have demonstrated better performance not only when data size

exceeded physical memory (limited memory) but also when

physical memory was sufficient to hold the data (unlimited

memory).

The principles we have exploited can be summarized as

follows:

Sparse traversal. When only a subset of the data are required

for a given visualization, demand loading only those pages

necessary leads in general to better performance. When memory is

limited demand paging is even more important to sustain acceptable

performance. We have found that even with unlimited memory,

demand paging leads to better performance than loading the entire

data set.

Page size. The finer the grain of page size, the fewer pages

required for given traversal. We have found the best overall

performance with page sizes smaller than those supported by the

standard operating system(s).

Cubed storage. When data are stored in "cubes" rather than in

flat planes, there is generally better locality of reference.

Improvement in locality reduces the number of pages a

visualization application requires at run-time. We have found that

cubed storage results in significantly better performance than flat

storage. However, cubed storage generally leads to larger files (by

as much as a factor of 2). To solve this, we have translated at run-

time from a packed file representation on disk to an unpacked

representation in memory. This has allowed us to support cubed

storage with minimal increase in disk storage requirements.

We note that exploitation of the second two of these requires

memory management support not present in today's operating

systems. This suggests that for the near term, out-of-core

visualization will require support by user-level memory

management.

We have also explored remote out-of-core visualization (where

demand paging is from a remote data server). Our results are

promising, showing only roughly a factor of 2 slow-down over our

best local out-of-core visualization.

8 Future Work

We intend to explore approaches that draw more support for

application-controlled memory management from the operating

system. We also believe there is opportunity to take advantage of

additional techniques to improve out-of-core visualization

performance, in particular prefetching and data set indexing. There

may be other visualization applications that can exploit demand-

paged segmentation, and we welcome collaboration in exploring

other domains. Finally, we believe that remote out-of-core

visualization is a very promising approach to provide visualization

tools to a broader user community.
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Plate 1. Tapered cylinder. Concatenated

frames from an unsteady-flow particle trace

simulation.

Plate 2. Shuttle. Single frame showing

steady flow streamlines.

Plate 3. F18. Concatenated frames from

an unsteady-flow particle trace simulation.


