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Abstract

We developed a new hierarchical modular approach for
synthesis of area-minimal core-based data-intensive sys-
tems. The optimization approach employs a novel global
least-constraining most-constrained heuristic to minimize
the instruction cache misses for a given application, in-
struction cache size and organization. Based on this per-
formance optimization technique, we constructed a strat-
egy to search for a minimal area processor core, and an
instruction and data cache which satisfy the performance
characteristics of a set of target applications. The synthe-
sis platform integrates the existing modeling, pro�ling, and
simulation tools with the developed system-level synthesis
tools. The e�ectiveness of the approach is demonstrated
on a variety of modern real-life multimedia and communi-
cation applications.

1 Introduction

A typical application-speci�c core-based system con-
sists of a processor core, instruction and data cache cores,
and number of hardware accelerators and control blocks.
Numerous ASIC manuals and documents outline the fact
that most of the IC area is dedicated to the processor core
and associated caches. We present a novel hierarchical
fully modular approach for synthesis of core-based data-
intensive ASICs that focuses on minimizing area assigned
to the processor core and the cache subsystem with respect
to the performance requirements of a set of target applica-
tions. The system-level approach for design of core-based
implementations uses as a performance optimization tech-
nique a global least-constraining most-constrained proba-
bilistic heuristic as a compile-time strategy for basic block
static relocation [Kir97]. The goal of the synthesis ap-
proach is to select an area-minimal processor core and
cache con�guration that satisfy the performance require-
ments of a set of target applications.

Trace-driven simulation is used to accurately evaluate
performance of the cache subsystem and to obtain the ap-
plication execution pro�le. The on-line Stanford Cache
Design Tool (CDT [Fly96]) is used to estimate cache ac-
cess latency and area based on properties such as cache
total size, line size, feature size, replacement policy, and
associativity. Data extrapolated from the available litera-
ture for commercial programmable cores is used as a sim-
pli�ed model to approximate processor core performance
with respect to its area.

In order to bridge the gap between the pro�ling and
modeling tools from the two traditionally independent syn-
thesis domains (architecture and CAD), we developed a
new synthesis and evaluation platform. The platform in-
tegrates the existing modeling (Stanford CDT), pro�ling
(SHADE [Cme94]) and simulation (DINEROIII [Hill88])
tools with the developed system-level synthesis tools. Ap-
plication pro�les are acquired through the use of SHADE

augmented with custom trace analyzer. The result of the
trace analysis is an application control ow graph aug-
mented with information on spatial and temporal correla-
tion of branch executions. We evaluate cache subsystem
performance by running the application execution on the
DINEROIII cache simulator. The e�ectiveness of the ap-
proach and the constructed simulation and evaluation plat-
form is demonstrated on a variety of modern real-life ap-
plications, such as JPEG and MPEG codecs, GSM speech
encoders, and public key protocols.

2 Previous Work
The related work can be traced through two areas:

application-speci�c system optimization and evaluation.
Systems on silicon are becoming an important focus

area for both research and commercial developers [Bol94].
Shortened design cycles, due to market pressure, have en-
couraged the use of predesigned processor cores. At the
same time, market pressure to reduce system cost for con-
sumer products has spurred the development of system
level synthesis techniques [Pot95, Chi96, Sub96]. As em-
bedded applications have become more sophisticated and
commercially relevant, system level synthesis has also be-
come increasingly important [Gup93, Gaj94, Hen95, Lee96].

The increased interest in embedded system design with
reusable core components has encouraged the development
of high level architecture and ASIC evaluation models. For
example, The Microprocessor Report presents a monthly
summary of the area and performance of numerous com-
mercial processors [MPR96]. Instruction and data caches,
as the highest level of the memory hierarchy, have been
thoroughly studied in [Hill88, Jou93].

We have developed a new uni�ed framework for syn-
thesis and optimization that ties together some of the ex-
isting methods for system modeling and optimization. To
the best of our knowledge, this is the �rst synthesis to use
software code mapping to enable hardware savings.

3 Preliminary Discussion
In this section we describe the hardware performance

models for caches and processor cores. Three factors com-
bine to inuence system performance: cache miss rates,
processor performance, and system clock speed. The ap-
proach that we use here is to leverage existing models to
estimate the area and performance of both caches and pro-
cessor cores. This approach allows the synthesis approach
to be rapidly updated and applied to new environments
with new technology.

The on-line Stanford CDT is used to evaluate the im-
pact of cache design choices on area and latency. Caches
typically found in current embedded systems range from
128B to 32KB. Since higher associativity can result in
signi�cantly higher access time, we consider only direct
mapped, and 2-way set associative caches. We used a
�xed cache line size of 32 bytes. This decision attempts



to eliminate the well known cache penalty tradeo� prob-
lem. Large cache lines generally result in increased latency
while fetching from main memory, while short cache lines
increase access latency due to greater control hardware.
We estimated the cache miss penalty based on the oper-
ating frequency and external bus width for each system
investigated. This penalty ranges between 4 and 20 sys-
tem clock cycles. Write-back was adopted instead of write-
through due its superior performance in uniprocessor sys-
tems [Jou93], though at increased hardware cost. Each
of the processors considered is constrained by the Flynn
limit, and thus is able to issue at most a single instruction
per clock period. The caches were designed to have a sin-
gle access port. A sample overview of the estimated cache
model is presented in Table 1. Cache access latency and
area is computed for a number of organizations and sizes,
all with implementation feature size �xed at 0.5 �m and 6
transistors per CMOS SRAM cell.

Cache Property 1KB 2KB 4KB 8KB 96KB

Direct Area(mm2) 2.11 3.81 7.20 13.96 161.7
Mapped Clk(ns) 3.79 3.97 4.16 4.5 6.79

2-way Area(mm2) 2.38 4.02 7.29 13.8 156.1
Clk(ns) 5.67 5.75 5.94 6.23 8.54

Table 1: A sample of the cache area and latency model.

Microprocessor MHz MIPS Tech.(�m) mm2

ARM 810 75 80 0.5 29
Motorola 403GC 33 41 0.5 30
ARM StrongArm 200 230 0.35 33

i486GXSF 33 18 0.8 18
MIPS4650 133 175 0.6 32

Hitachi SH7708 100 100 0.6 34
LSI Logic CW4001 60 53 0.5 3.5
LSI Logic TR4101 81 30 0.35 2

Table 2: A sample of the processor model.

Information on microprocessor performance and area
was collected from datasheets as well as from the CPU
Center Info web site [CPU]. A sample of the collected data
is presented in Table 2. The range of microprocessor core
area varies from 2 to 34 mm2, while the clock frequencies
range within 33-200MHz.

4 The New Synthesis Approach
Figure 1 illustrates the synthesis framework. In this

section we describe the role of each module and how mod-
ules are combined into an integrated synthesis system.

The core module in the synthesis ow is a global least-
constraining most-constrained heuristic that guides the al-
gorithm for basic block relocation [Kir97]. Basic blocks
are repositioned statically, in a way that frequently se-
quentially executed basic blocks are mapped into di�erent
cache lines. The temporal correlation of branch outcomes
is used to further improve cache performance by putting
additional constraints on the basic block mapping. Code
repositioning is accomplished with negligible increase in
the static program memory size. The modi�cation re-
quired to the program involves basic block motion, branch
target updating, and branch insertion.

The application driven search for a core and cache sys-
tem with minimal area requires using trace-driven cache
simulation for each promising point considered in the de-
sign space. We attack these problems by carefully search-
ing the space using bounded divide-and-conquer search al-
gorithms with conservative sharp bounds and by providing
powerful performance estimation techniques.

The developed synthesis tools are augmented with the
ability to synthesize a single-chip programmable ASIC sys-
tem which satis�es the requirements of multiple applica-
tions. This system requirement represents a realistic de-
sign expectation for most modern non-preemptive multi-
task application speci�c systems. The synthesis technique
considers each microprocessor core and selects the instruc-
tion and data cache design with minimal area that satis-
�es the individual performance requirements of all applica-
tions. The con�guration which has the minimum processor
and cache total area is returned as the best solution.
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Figure 1: The hierarchical modular synthesis approach.

System performance is evaluated using a platform which
integrates simulation, modeling, and pro�ling tools (see
Figure 2). SHADE is a tracing tool which allows users
to de�ne custom trace analyzers and thus collect rich in-
formation on runtime events. SHADE currently pro�les
only SPARC binaries. The executable binary program is
dynamically translated into host machine code. The tool
provides to the translated code a stream of data directly
executed to simulate and trace the original application
code. A custom analyzer composed of approximately 2,000
lines of C code, is linked to SHADE to control and ana-
lyze the generated trace information. The analyzer sources
relevant trace information from SHADE and builds a con-
trol ow graph (CFG) corresponding to the dynamically
executed code. The analysis consists of two passes. The
�rst pass determines the boundaries of basic blocks, while
the second pass constructs a CFG by adding control ow
information between basic blocks. We also collect the fre-
quencies of control transfers through each basic block, and
branch temporal correlation [Kir97]. Once the CFG is ob-
tained, an algorithm is employed to reposition application
basic blocks in such a way that instruction cache misses
are minimized. Our experimentation uses a basic block
relocation look up table to simulate the relocation of ba-
sic blocks in main memory. An entry in the basic block
relocation table consists of two elements: the original and
optimized starting address of the basic block. To simulate
cache performance of a given application and data stream,
we use a trace-driven cache simulator DINEROIII. System
cache is described using a number of qualitative and quan-
titative parameters such as instruction and data cache size,
replacement policy, associativity, etc.

The system optimization process is composed of a se-
quence of activations of each of these tools. The SHADE
analyzer traces program and data memory references as
well as the CFG. The CFG is used to drive the code repo-
sition module which produces a new application mapping
table. Stream of references are sent to a program that uses
the basic block relocation look up table to map from the



original into the optimized address space. The remapped
trace of addresses, along with all unmodi�ed data memory
references, are sent to DINEROIII for cache simulation.
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Figure 2: Synthesis ow of application-driven pro-
grammable core-based systems.

The �nal system performance was computed using the
following formula: CPI = SysClkFreq

MIPS
+CacheMissRatio �

CacheMissPnlty, where CacheMissRatio was computed
during the trace driven simulation of the cache subsystem.
CacheMissPnlty, SysClkFreq, and MIPS are system
parameters introduced in Section 3.

5 Synthesis Optimization Algorithms
The problems encountered in the synthesis of systems

on silicon and competitive optimization algorithms are de-
scribed in this section. First, the algorithm for basic block
relocation is discussed. Then, based on the obtained code
repositioning table and therefore, improved cache perfor-
mance, we assemble an area-e�cient system con�guration
(core and cache structure) which satis�es application spe-
ci�c performance requirements. Finally, a case study is
performed involving application-driven system resource al-
location a set of non-preemptive target applications.

For each type of processor core
For I cache :: size = 128B::maxB; sets = 1::2
Selection: Perform Binary Search for
D cache of minimal size such that the
con�guration (core; I cache;D cache)
satis�es the application performance requirements.

Return the overall con�guration of minimal total area.
At any point during the algorithm, search is
terminated along paths dominated by any other
already pessimistically evaluated solution.

Figure 3: Pseudo code for the resource allocation proce-
dure.

The proposed application-driven system-level synthesis
technique employs basic block repositioning based upon
pro�le information for optimization of the program execu-
tion performance. Block repositioning aims for application
execution on �xed hardware resources with minimal num-
ber of cache misses. The optimization problems involved
in the basic block relocation are de�ned, their computa-
tional complexity is established, and an e�cient algorithm
is proposed in [Kir97].

The second phase of the synthesis strategy conducts a
search for a minimal-area system con�guration which sat-
is�es the performance requirements of the target applica-
tion. The search algorithm is described using the pseudo-
code shown in Figure 3.

For each microprocessor core type we perform a search
for the smallest overall cache structure which satis�es the
application's requirements. The search starts by selecting
a set of instruction cache sizes among which it is reason-
able to expect that the best solution is found. For each of
the sample I-cache sizes, a search is performed in order to
�nd the smallest D-cache size which results in cache miss
ratio smaller than some value de�ned by the application's
guaranteed timing constraints. Since the function that de-
scribes a cache miss ratio monotonically decreases with the
increase of the cache size we employ binary search on the
logarithmic scale of data cache sizes. The �nal solution is
a con�guration of a core, I-cache and D-cache which has
the smallest total area. The search is terminated when
the current solution is dominated by some existing mini-
mal solution. Dominated solutions are found in one of the
following two ways:

� For Fixed core A, the best cache subsystem so far
recorded for A totals Q bytes. Fixed I-cache equals
P bytes. We do not evaluate D-caches larger than
Q� P bytes.

� Best core-cache con�guration totals R square mil-
limeters. If we use core A of area X we terminate
the search whenever the sum of the I-cache and D-
cache exceeds R�X square millimeters.

Since trace-driven simulation is performed every time
a particular cache system is evaluated, we opt to use an
approximation method in order to get faster but still accu-
rate con�guration performance measurements. In order to
generate optimistic estimations we analyze the \quality"
of application's CFG partitioning based on the pro�le in-
formation. The cost function used to evaluate the solution
is:

Cost(TCFG;SetOfPart:) =

��

P
i;j2SetOfP art:;i6=j
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P
i2SetOfPart:
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This function is directly proportional to the sum of
weights of edges that connect nodes between any two dif-
ferent cache line partitions and sum of weights of edges
that connect nodes in the same cache line partition. The
cost function is normalized with the cardinality of the set
of edges which connect nodes in di�erent cache line parti-
tions. Parameters � and � were experimentally determined
and validated using the meta-algorithmics methodology
[Kir97]. The resulting performance estimation o�set was
within 5% of the simulated performance measurements.

The performance estimation function was used in our
experiments in the following way. For a �xed I-cache size
and a given microprocessor core we used a performance
estimation technique to select the W most promising so-
lutions (W = 3). Then, for those W solutions we used
trace-driven simulation to �nd the D-cache size which re-
sults in the minimal number of overall cache misses.

Finally, previous algorithm is augmented with a capa-
bility of �nding the minimal area-optimal core and cache
con�guration such that performance requirements of mul-
tiple non-preemptive applications are satis�ed. Such syn-
thesis task corresponds to the real-life case since many em-
bedded communications and computing systems are com-
posed of a set of non-preemptive real-time applications. In



order to provide multiple application targeted resource al-
location, the algorithm presented in Figure 3 needs only
be augmented with an improved selection step. The mod-
i�cation includes considering a conjunction of application
requirements, rather than ful�lling a single performance
constraint (see Figure 4).
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Figure 4: Best instruction cache setups for a single core,
four applications with �xed performance requirements and
a set of �xed data cache sizes.

6 Experimental Results
We used six applications to demonstrate the e�ective-

ness of the approach: JPEG software (Independent JPEG
Group), MPEG-1 and MPEG-2 software (MPEG Software
Simulation Group), PGP software, and implementation
of the GSM and G.721 wireless communication protocols.
The developed application driven synthesis approach re-
sulted in area-minimal system con�gurations as presented
in Table 3. The �rst column contains the application de-
scription. The next three columns describe the allocated
core and cache con�guration followed by the total required
area for the system. The obtained results acknowledge the
domination of LSI Logic cores due to their exceptional per-
formance vs. area ratio. The size of these cores points out
to the fact that de�ning an area minimal cache subsystem
for a particular application is a goal of major importance
for the system designer. The diversity of selected cache
structures implies that �nding the area-minimal cache sub-
system is an important task.

Appl. Core I-$ D-$ mm2 $/Total
JPEG enc. CW4001 1KB 1KB 7.7 43%
JPEG dec. CW4001 1KB 2KB 9.4 63%
PGP encr. TR4101 512B 1KB 5.0 60%

MPEG dec. StrongArm 1KB 512B 36 8%
G.721 enc. TR4101 1KB 128B 4.3 53%

GSM enc. CW4001 512B 128B 4.7 25%

Table 3: Area-minimal system con�gurations for a given
applications.

Appl. Processor I-$ D-$ mm2 $/Total

G.721 enc. StrongARM 1KB 1KB 37 9%
MPEG dec.
JPEG dec.
PGP encr.

GSM enc. CW4001 1KB 2KB 9.4 63%
JPEG dec.
JPEG enc.
PGP encr.

Table 4: Area-minimal system con�gurations for two ap-
plication mixes.

We assembled two application mixes and performed
search for area minimal con�gurations that satisfy perfor-
mance requirements of all applications in the mix. The re-
sults are presented in Table 4. The columns in Table 4 cor-
respond to the columns in Table 3. The area-optimal cache
con�guration for each application mix is selected among
cache subsystems with dominating performance. The per-
centage of the total IC's area dedicated to the cache sub-
system, as well as strong diversity among selected minimal
area cache subsystems for di�erent applications and di�er-
ent timing constraints indicate the necessity of involving
sophisticated system level synthesis approaches in order to
minimize product's total area while still satisfying prod-
uct's timing constraints.

7 Conclusion
We developed and evaluated a novel hierarchical ap-

proach for synthesis of programmable core-based applica-
tions. The approach synthesizes an area-optimal processor
and cache system for the most common system environ-
ment, a set of non-preemptive target applications. The
e�ciency of the synthesis approach was tested on a set of
modern multimedia and communication applications.
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