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1 Introduction

The Globus grid toolkit is
opment of applications for

a collection of software components designed to support the devel-
high-performance distributed computing environments, or “compu-

tational grids” [14]. The Globus toolkit is an implementation of a “bag of services” architec-
ture, which provides application and tool developers not with a monolithic system but rather
with a set of stand-alone services. Each Globus component provides a basic service, such as
authentication, resource allocation, information, communication, fault detection, and remote
data access. Different applications and tools can combine these services in different ways to
construct ‘{grid-enabled” systems.

The Globus toolkit has been used to construct the Globus Ubiquitous Supercomputing
Testbed, or GUSTO: a large-scale testbed spanning 20 sites and included over 4000 compute
nodes for a total compute power of over 2 TFLOPS. Over the past six months, we and others
have used this testbed to conduct a variety of application experiments, including multi-user col-
laborative environments (tele-immersion), computational steering, distributed supercomputing,
and high throughput computing.

The goal of this paper is to review what has been learned from these experiments regarding
the effectiveness of the toolkit approach. To this end, we describe two of the application ex-
periments in detail, noting what worked well and what worked less well. The two applications
are a distributed supercomputing application, SF-Express, in which multiple supercomputers
are harnessed to perform large distributed interactive simulations; and a tele-immersion ap-
plication, CAVERNsoft, in which the focus is on connecting multiple people to a distributed
simulated world.

We believe that the results of these experiments indicate that the Globus toolkit architec-
ture is effective, at least for the applications considered to date. Large, complex applications
can be either adapted to execute in a grid environment (e.g., SF-Express) or developed from
scratch for grid computing (e.g., CAVERNsoft) without unusual difficulty, and with a saving
in cost, complexity, and usability relative to similar codes developed without our toolkit. The
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Table 1: Core Globus services. As of early 1998, these include only those services deemed
essential for an evaluation of the Globus design philosophy on realistic applications and in
medium-scale grid environments. Other services such as accounting, auditing, and instrumen-
tation will be addressed in future work

Service Name Description

Resource management GRAM Resource allocation and process management
Communication Nexus Unicast and multicast communication services
Security GSI Authentication and related security services
Information MDS Distributed access to structure and state information
Health and status HBM Monitoring of health and status of system components
Remote data access GASS Remote access to data via sequential and parallel interfaces
Executable management GEM Construction, caching, and location of executable

experiments also point to areas in which further work is required: for example, code and data
management, and fault tolerance.

In the rest of the paper, we provide a brief description of the Globus toolkit and describe two
applications in detail: the SF-Express and CAVERNsoft and describe how these applications
use Globus services. We conclude with a discussion of lessons learned and future work.

We note that the Globus toolkit is just one of several approaches being pursued to the
construction of grid applications; others include Legion [16], Web technologies [15, 25], and
CORBA [17]. Space does not permit comparisons with these alternative approaches.

2 The Globus Toolkit

The Globus toolkit comprises the core services listed in Table 1, plus a selection of higher-
level services defined in terms of these core services. Each core service defines an Application
Program Interface (API) that provides a uniform interface to a local service. For example,
the Globus Resource Allocation Manager (GRAM) service provides an API for requesting that
computations be started on a computational resource, and for managing those computations
once they are started [10]. Higher-level services use core services to implement more complex
global functionality. For example, resource brokers and co-allocators use services provided
by GRAMs and by the Globus information service (the Metacomputing Directory Service,
or MDS [12]) to locate available resources and to start computations across computations of
resources, respectively. Application-specific scheduling techniques [3] could also be used; see
also [8, 26, 22, 1].

The full paper will provide a more detailed description of the Globus toolkit. Individual
components are described in detail in other papers [14, 13, 12, 10].

3 Sl?-Express

The first application that we consider, SF-Express, is a distributed interactive simulation (DIS)
application that harnesses multiple supercomputers to meet the computational demands of
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. large-scale network-based simulation environments [21.]. A large simulation may involve many
tens of thousands of entities and requires thousands of processors. Globus services can be used
to locate, assemble, and manage those resources. For example, in one experiment in November
1997, SF-Express was run on 852 processors distributed over six GUSTO sites [6].

An SF-Express computation is distributed across a large number of simulation nodes, where
each node is responsible for simulating the behavior of entities assigned to it. During the
simulation, entity state information, such as the position and velocity, is exchanged. Current
DIS implementations broadcast state update information, an approach that is not practical
for the large-scale simulations. SF-Express uses a technique called interest management to
reduce the amount of communication required. Simulation nodes are organized into groups
and a muter node is associated with each group. Routers keep track of which simulation nodes
contain entities that can potentially interact with one another, and entity state updates are sent
only between those routers responsible for interacting simulation nodes. Entities are assigned to
nodes in a way that preserves physical locality to further reduce communication requirements.

3.1 SF-Express Experiences

SF-Express is interesting as a test case for the Globus toolkit because a distributed implemen-
tation existed before work started on the use of Globus services. As illustrated in Table 2 and
explained in the following, a Globus-based implementation was constructed (and continues to
be constructed) by incorporating Globus services incrementally to improve existing fimctional-
ity or add new fi.mctionality. This incremental process made it possible to study the impact on
complexity and usability of incorporating Globus components.

Resource allocation and security. Prior to the use of Globus services, simply starting
SF-Express on multiple supercomputers was a painfid task. The user had to log in to each
site in turn and recall the arcane commands needed to allocate resources and start a program.
This obstacle to the use of distributed resources was overcome by encoding resource allocation
requests in terms of the GRAM API. GRAM and associated GSI services could then be used
to handle authentication, resource allocation, and process creation at each site.

Co-allocation. SF-Express requires that the allocation of the resources used by its simulation
nodes and routers, and the starting of the relevant processes, occur simultaneously. A Globus
co-allocation service coordinates multiple GRAM requests, constructing an unified job from
individual GRAM requests, or subjobs, and prevents application components from starting
until all the required resources have been obtained. As shown in Figure 1, the changes to
SF-Express required to interface to GRAM and the co-allocation service are minimal.

Fault detection. The nondeterministic nature of the DIS simulation algorithm means that a
simulation can sometimes continue in a useful fashion even if a component has failed. For this
reason, we use the Globus heartbeat monitor (HBM) to provide fault-detection and notification.
This Globus service provides a wide-area mechanism for monitoring the state of the components
of a computation, notifying a status monitor of failure.

Remote data access. SF-Express generates two types of file 1/0: it reads a variety of
databases and configuration files and writes an error log. We use the Global Access to Sec-
ondary Storage (GASS) service to simplify access to error logs. Each machine participating in
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Table2: Agrid-aware version of SF-Express is being constructed incrementally: Globus services
are incorporated one by one to improve functionality and reduce application complexity. The
Status field indicates code status asofearly 1998: techniques are in use (Y), experimental or
partial use (y), or remain to be applied in the future (blank).

Services

GRAM, GSI

+ Co-allocator

+ MDS

+ Resource
broker
+ Nexus

+ HBM

How used I Benefits I Statu

Start SF-Express Avoid need to log in to Y
on supercomputers and schedule each system
Distributed startup Avoid application-level Y
and management check-in and shutdown
Use MDS information Performance, portability Y
to configure computation
Use broker to locate Code reuse, portability Y
appropriate computers
Encode communication Uniformity of interface, Y
as Nexus RSRs access to unreliable comms
Routers check in with Provide degree of Y
application-level monitor fault tolerance

+ GASS Use to centralize error Avoid need to prestage Y
logging, access terrain data files I
database files, etc.

+ GEM Use to generate and Avoid configuration
I stageexecutable ] problems -

main (int argc, char **argv) {
router.inf o my_router;
rout er_inf o routers [MIX-ROUTERS];
/* Wait for rest of nodes to start */
ca-barriero;
/* Connect up routers *
my-router. addr = router_addro;
my-router port = router-porto;
/* Get locations of other routers */
sfe-exchange-info (&my-router,routers);

/* Start MPI in local set of nodes */
MPI_Init(argc ,argv);
/* Rest of code */

/* 1 */
/* 2 */
/* 3 */

/* 5 */

/* 7 */
/* 8 */

/* 10 */

/* 13 */

Figurel: The Globus-enhanced SF-Express startup code extends the code used on asingle
parallel computer with two new calls. The co-allocator library function ca-barrier (line 5)_is
added to ensure that the simulation proceeds only when all resources have been obtained. The
function sf e-exchange-inf o (line 10) uses GRAM and co-allocator functions to gather and
broadcast the IP addresses and port numbers ofall router nodes
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- SF-Express generates alogfile indicating thestatus of thesimulation on that machine. Prior to
using Globus, an SF-Express user had to log into the machine running a piece of the simulation
to examine the contents of the log. Using GASS, which supports append-mode file writes, we
can write logfile entries to a remote location. GASS also supports automatic fetching of files
when they are opened, in a similar fashion to UFO [2], and program-controlled presaging of
files. We plan to use this facility to provide access to the read-only files accessed by SF-Express.

3.2 SF-Express Lessons Learned

The Globus-based version of SF-Express was developed with relatively little effort and provided
improved functionality relative to the original code. The experience also revealed areas in which
existing Globus services could be improved and suggested additional opportunities for use of
Globus services in SF-Express.

The primary Globus deficiency revealed by this work relates to the implementation of the
co-allocation service. The co-allocation service initially designed for Globus provided a static
co-allocation model in which a request failed if any component of the request failed. While
this model proved to vastly simplify SF-Express startup, it had the deficiency that a startup
problem on any one computer required that we terminate the healthy components of the job
and restart the computation. Yet in practice, individual GUSTO components failed frequently.
Interestingly, software problems rather than hardware and network failures were the leading
cause of difficulty. Examples of failure states that we observed include system paralysis due
to generation of a large core file; failure of local scheduling systems; intermittent application
crashes (due to bugs in the original SF-Express code); and operator error. These problems were
especially troublesome because SF-Express has a startup time of over 15 minutes. Building on
this experience, we have designed a more flexible, dynamic co-allocation model in which the
contents of a co-allocation request can be modified up until the point the program starts to
execute.

Experience suggested three additional areas in which Globus components could be used in
an SF-Express implementation: configuration (using MDS information for autoconfiguration,
hence improving portability and performance); resource brokering (providing an SF-Express-
specific resource broker, hence reducing the need for human involvement in the resource selection
process); and communication (using Globus communication services to access multicast and
quality of service mechanisms, hence improving scalability and simulation performance. Space
does not permit further discussion of these issues in this extended abstract.

4 CAVERN

The second application that we consider is CAVERNsoft [18], a software infrastructure designed
,

to support the rapid development of tele-immersive applications. In tele-immersion, immersive
virtual reality environments are used over networks to provide shared access to simulated vir-
tual spaces for design, collaboration, entertainment, education, etc. [11] The producers and
consumers of the virtual environment as well as the datasets and simulations on which the
virtual space is based are frequently geographically distributed, placing heavy demands on
distributed computing support.

CAVERNsoft supports tele-immersive application development by providing runtime sup-
port for the definition, update, and access of shared virtual worlds. Its layered architecture
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has at its core an Information Resource Broker (IRB) that supports the
databases, andabove this libraries forthemanipulation ofavatars and
and video streams.

maintenance of shared
manipulation of audio

4.1 CAVERNsoft Experiences

The initial version of CAVERNsoft makes extensive use of the Globus toolkit’s communica-
tion service, and hence we focus our discussion on this aspect of the system. We also note
opportunities that we have identified for the use of other services.

Communication in tele-immersive applications is complicated by the variety of flows that
need to be handled. DeFanti and Stevens [11] identify nine distinct types of flow (control, text,
audio, video, tracking, database, simulation, haptics, rendering), each with distinctive require-
ments in terms of both performance and the mechanisms that can be used to implement the
flows. For example, tracking information need not be propagated reliabily but can almost al-
ways benefit from multicast, while database updates require reliable communication but cannot
always use multicast capabilities.

Historically, tele-immersion systems (and other similar applications) have either used a single
low-level communication protocol for all flows (e.g., TCP/IP [24], ISIS [4, 7]), or have used a
mixture of different, often specialized APIs for different flows [20, 23, 19]. Neither approach is
ideal. We believe that a better approach is to code to a single API that allows both high-level
specification of communication structure and independent specification of the mechanisms used
to achieve that communication. Nexus, the communication component of the Globus toolkit,
meets this requirement.

The Nexus communication library allows applications to define communication links over
which can be performed asynchronous remote procedure calls called remote service requests
(RSRS). Associated operations allow us to select the underlying communication protocol used
for a particular RSR according to when, where, and what is being communicated [13]. This
means that if two components of a CAVERNsoft application are located on different nodes
of a parallel computer, Nexus operations can be mapped onto efficient local communication
methods, such as MPI; if the components are located on different computers, Nexus commu-
nication operations can be mapped into unreliable, wide-area communication protocols. More
importantly, this flexibility means that CAVERNsoft can speci~ all communication operations
in terms of a single abstraction (and API) and then vary the method used according to the
type of flow that the communication is associated with. For example, tracking events can be
performed with an unreliable multicast protocol, while database updates are propagated with
reliable unicast or multicast.

Nexus also allows quality of service (QoS) specifications to be associated with communica-
tion links. These specifications can then be translated into a RSVP [5] or similar [9] reservations
if the underlying network supports this capability. MDS information can be used to determine
the capabilities and utilization of the underlying networks, and hence to evaluate trade offs
between different protocols.

4.2 CAVERNsoft Lessons Learned

CAVERNsoft is a second-generation tele-immersion system, designed in response to lessons
learned with an earlier prototype [23]. A comparison of these two systems shows that the use of
Nexus in CAVERNsoft reduces the complexity of the communication code, while also increasing
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its portability. A single clean abstraction and API is used for all communication operations,
regardless of type and application-specific details, and hence of the actual mechanisms used to
implement the flow on a particular computer. This simplicity and portability are precisely the
results we aimed to achieve with the Globus toolkit.

Having completed construction of this initial CAVERNsoft prototype, we are considering
a number of extensions that will involve the use of additional Globus toolkit components. A
first step is to use Globus security infrastructure and resource management mechanisms to
handle authentication and resource allocation on distributed resources; currently, these tasks
are handled in a rather ad-hoc manner. A next task will be to use MDS to guide optimized
configuration decisions for the IRB implementation. We also anticipate that the Globus instru-
mentation service will be of use.

5 Conclusions

We have used the Globus toolkit to implement a variety of distributed computing applications,
two of which we have described here. Each application typically uses a different set of grid
services. Nevertheless, all have in common that an existing application code or application
structure was modified for grid execution fairly easily by introducing appropriate components
chosen from the Globus “bag of services.” This means that the application did not have to be
entirely rewritten before it could operate in a grid environment: services could be introduced
into an application incrementally, with functionality increasing at each step. In this respect,
we believe that our initial experiments with the toolkit have been a success and suggest that
the approach should be pushed further.

Our experiments also teach us lessons about the grid environment, most notably the impor-
tance of fault tolerance. While detecting and dealing with failure are known to be critical issues
in distributed systems, we have been astonished by the range of error conditions that we have
encountered. Fortunately, we find that relatively simple techniques can render applications
signicantly more robust. In this respect, the integrated, network accessible information service
provided by Globus (MDS) proved to be valuable as a mechanism for detecting and recovering
from failure. MDS information allowed us develop a range of general and application-specific
high-level tools such as resource brokers and status monitors.

Future work will focus on further refining the current Globus services by studying their use
in additional applications. We are continuing to work with both SF-Express and CAVERNsoft
to make them more grid-aware. We are also working to extend the Globus toolkit to incorporate
additional services, notably in the area of executable management. Our goal is to make these
and other applications robust and simple enough so that the use of computational grids becomes
commonplace.
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