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ABSTRACT

Defect tolerance is a major issue in nano computing. In this
paper, an application-independent defect tolerant scheme
for reconfigurable crossbar nano-architectures is presented.
Architectural features are developed to reliably connect local
defect-free subsets of crossbars in order to generate a defect-
free architecture. It is also shown how to further reduce the
area overhead associated with this flow by relaxing some
constraints on the defect-free subsets. Experimental results
show more than 9x reduction in the area overhead without
any negative impact on the usability of modified defect-free
subsets.

1. INTRODUCTION

A considerable amount of research is currently focused
on developing nanoscale devices and alternative nanotech-
nologies to supersede conventional lithography-based CMOS
technology. It has been shown that using bottom-up self-
assembly techniques, it is possible to build nano devices,
such as carbon nanotubes (CNTs) and silicon nanowires
(NWs), without relying on lithography to define the small-
est feature size [1, 2, 3, 4]. Chemically self-assembled struc-
tures, as the building blocks for molecular-scale computing,
are by their nature very regular and therefore well suited to
the implementation of regular arrays similar to Field Pro-
grammable Gate Arrays (FPGAs) [5, 6].

It is now very well known that ultra high density and
ultra-small feature sizes at the nano-scale come with the
expense of excessive defect densities, both at the manufac-
turing and during lifetime operation of nano devices [1, 2,
5, 6]. This increased defect density is mainly due to inherent
non-determinism in chemical self-assembly processes used in
nano fabrication.

The programmability of crossbar nano-architectures can
be well exploited to implement defect and fault tolerant
schemes for the design mapped into this architectures. Af-
ter identifying defective resources using thorough test and
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precise fault localization, defects can be bypassed by post-
fabrication configuration. However, conventional applica-

tion dependent defect tolerant schemes are not very effec-
tive for nano-computing due to prohibitively large defect
map and excessively increased post-fabrication customized
design efforts. In our earlier publication, an alternative de-
fect tolerant flow, the so-called defect-unaware design flow,
is presented in which most design steps are unaware of the
existence and the location of defects in the chip [7]. This
is based on identifying universal defect-free subsets of cross-
bars within partially-defective crossbars that are used in the
design flow.

This paper present an application-independent defect tol-
erant crossbar array in which defect-free subsets of the cross-
bars are reliably connected. The contributions of this paper
are summarized as follows:

• A global application-independent defect tolerant ar-
chitecture is presented. The proposed architecture is
composed of user crossbars and permutation crossbars.
User crossbars can be used as logic blocks, intercon-
nect, or memory arrays, whereas the permutation cross-
bars provide connection among user crossbars.

• It is shown how to obtain an acceptable manufactur-
ing yield for the implementation of the permutation
crossbars.

• Finally, techniques to reduce the area overhead of the
application-independent defect tolerance are provided.

The rest of the paper is organized as follows. In Sec. 2,
some backgrounds on crossbar nano-architectures as well
as the defect-tolerant design flow are provided. The pro-
posed array-based defect-tolerant architecture is presented
in Sec. 3. Techniques for area overhead reduction of the
proposed defect tolerance are presented in Sec. 4. Finally,
Sec. 5 concludes the paper.

2. PROGRAMMABLE CROSSBAR ARCHI-

TECTURES

Two dimensional (2D) crossbars are the building blocks
of reconfigurable molecular architectures. In these archi-
tectures, two layers of orthogonal nanowires or carbon nan-
otubes form the crossbars [8, 9]. At each intersection (cross-
point), there is a programmable non-volatile switch. Such
n×n 2D crossbar can be represented by a bipartite graph [10].
In general, multiple pairs of orthogonal sets of nanowires can

730



overlap with each other such that the crossbar get inputs to
and produces outputs from each side (north, south, east,
and west) [6].

Goldstein has proposed the chemically assembled elec-
tronic nanotechnology (CAEN) architecture called NanoFab-

ric [6]. Nano logic arrays, also called Nanoblocks, implement
a diode-resistor logic since crosspoints act as programmable
diodes. In this non-inverting logic, inputs and their com-
plements are given to nanoblocks and the output function
and its complement are generated. DeHon has presented
another array-based nano-architecture using Programmable

Logic Arrays (PLAs) [5]. This architecture allows inversion
by using nanowire FET devices as buffers. Logic functional-
ity is achieved in the form of two-plane PLAs, implementing
NOR-NOR logic.

In conventional application-dependent defect tolerance,
defective resources are avoided in the physical design flow
after identified using test and diagnosis. Although this ap-
proach is able to recover majority of defect-free resources,
it has major shortcomings: the size of the defect map can
be prohibitively large and most design steps have to be per-
formed in a per-chip basis. This can also result in large
and unacceptable performance variations for a same design
mapped into different chips. All these make this approach
unsuitable for high-volume production.

An application-independent defect tolerant design flow is
presented in [7]. In this flow, defect tolerance is performed
once and the same recovered set of resources are used for
all applications. In the proposed flow, almost all design
steps are unaware of the existence and the location of defects
within the nano-chip. All design steps work with a universal
defect-free subset of the chip called the design view. There
is a final mapping phase at the end of physical design flow
that makes the connection between the defect-free design
view and the actual physical view of the nano-chip which
contains actual defects. This is the only defect-aware step
which has to be performed per chip.

For molecular crossbars, defect-free k×k crossbars within
the partially-defective n × n crossbars (k < n) can be iden-
tified. The size of the maximum defect-free crossbar can be
estimated using a sample of fabricated devices and this value
(k) will be used for all chips manufactured in the same pro-
cess environment. During the physical design, the original
design will be mapped (placed and routed) into an array of
k × k crossbars. Finding a defect-free k × k crossbar within
a partially defective n × n crossbar can be modeled as find-
ing the maximum biclique in the bipartite graph model of
the defective n × n crossbar. As shown in [10, 7], nanowire
and crosspoint defects can be modeled in the bipartite graph
of the crossbar to obtain the graph model of the defective
crossbar.

3. ARRAY-BASED DEFECT-FREE ARCHI-

TECTURE

Although the defect-free subset of each crossbar extracted
in the proposed design flow is universal (i.e. the size and
structure of all subsets are identical for all crossbars), defect-
free subsets of different crossbars cannot be easily connected
in the crossbar array. Consider the example of two 6 × 6
crossbars shown in Fig. 1. crossbar A gets inputs from north
and generates output in east direction. Crossbar B gets
input from west and generates outputs in south direction.
The input and output nanowires used in the 4×4 defect-free

subsets, shown in bold, are not matched. This is because the
information used for extracting the defect-free subset within
each crossbar is local, which means that only the defects of
the nanowires connected to that crossbar and the faults of
the crosspoints inside that crossbar are used to identify the
defect-free subset. As a result, the output nanowires of the
first crossbar participating in its defect-free subset do not
necessarily match with the input nanowires of the second
crossbar participating in its defect-free subset, as illustrated
in this example.

Crossbar BCrossbar A
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O4
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O6

Figure 1: Non-matching defect-free subsets of two
neighbor crossbars

In general, the defect-free subset locally obtained from
each crossbar do not necessarily match with defect-free sub-
sets of neighbor crossbars to form an array of defect-free
crossbars. However, another crossbar can be used to make
the matching between defect-free subsets of two crossbars.
For the crossbars shown in Fig. 1, a crossbar is used to
match the input and outputs nanowires of the defect-free
subsets of those two crossbars, as shown in Fig. 2. This n×n

crossbar, which makes the connection between k particular
input nanowires to k particular output nanowires using a
one to one matching, is called a permutation crossbar. In
this figure, the permutation crossbar gets input from west
and match them with east nanowires. The specific way that
these k input nanowires are matched with these k output
nanowires is not important. For example in Fig. 2, it is only
important that the 4 inputs of the permutation crossbar,
{O1, O2, O5, O6}, are matched in a one-to-one manner to
its 4 output nanowires {I ′1, I ′3, I ′4, I ′5}. Any mapping be-
tween these particular inputs and outputs is acceptable, as
long as it is defect-free. In Fig. 2, one possible one-to-one
defect-free matching is shown.

In the application-independent defect-tolerant architec-
ture, the crossbars are divided into two sets of user cross-

bars (UCB) and permutation crossbars (PCB). UCBs are
used for the implementation of logic, programmable switch
block, or non-volatile memory array. The design view of an
n × n partially-defective crossbar used as a UCB is a k × k

defect-free complete crossbar (biclique). The extraction of
these defect-free bicliques and the manufacturing yield for a
particular value of k are discussed in [7, 11]. UCBs are con-
nected through PCBs. PCBs are transparent to the mapped
design and the design flow. In other words, only UCBs exist
in the design view and can be used for application mapping.
PCBs provide defect-free matching between their input and
output nanowires participating in the corresponding defect-
free subsets of the adjacent UCBs to that PCB.

Note that the defect-free configuration of each PCB (the
particular defect-free switches used for matching the required
inputs and outputs of the PCB) is determined once the
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defect-free subsets of the UCBs are identified using fine-
grained diagnosis information [12, 13]. Algorithms for find-
ing a defect-free matching within a crossbar are presented
in [14, 10]. Such algorithms can be used for determining the
PCB configuration. This process, similar to finding defect-
free k × k subsets of UCBs, is application-independent al-
though has to be perform per crossbar.

Crossbar BCrossbar A
Permutation
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Figure 2: Using permutation crossbar in connecting
two neighbor crossbars

Figure 3(a) shows this application-independent architec-
ture made of arrays of n × n UCBs and PCBs. Note that
from the manufacturing point of view, both UCBs and PCBs
are the same; they are molecular crossbars. The correspond-
ing design view, which is available for mapping applications
to this platform, is shown in Fig. 3(b). The design view only
consists of an array of k × k defect-free UCBs.

There are some implications of including PCBs in the ar-
chitecture in terms of extra delay and power consumption
that need to be considered in the design. However, PCB
delay and power consumption parameters can be included
as a part of UCB design parameters. Such UCB parame-
ters adjustment makes the design flow totally transparent
to existence of PCBs.
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Figure 3: (a) Defect tolerant architecture using
UCBs and PCBs (b) Design view

The size of defect-free subsets of UCBs (k) is chosen such
that for the defect density d of the fabrication process, a re-
quired percentage (referred to as yield, y) of n×n fabricated
devices have k×k defect-free subsets. Alternatively, if a par-
ticular size of the defect-free subset (to be used for applica-
tion mapping) is desired, the minimum size of the fabricated
crossbar (n) can be obtained based on d and y [11].

When a PCB is used for providing the one-to-one mapping
between defect-free subsets of its neighboring UCBs, there
should be at least one defect-free matching in the PCB to
provide this connection. Intuitively, the probability of find-
ing a defect-free matching (for PCBs) should be much higher
than that for finding a defect-free biclique (for UCBs). This
is because only k defect-free crosspoints are required for a

defect-free matching whereas k2 defect-free crosspoints are
needed for a biclique.

Figure 4 compares the yields of finding a k× k biclique in
an n×n UCB in the presence of switch open defects (up to
20% defect density) for various values of n and k. However,
the probability of finding a defect-free matching in a PCB
(for any arbitrary k inputs to any arbitrary k outputs in an
n × n PCB) is always 100% when up to 30% of switches
are defective (open defects). This confirms that the yield
of PCBs is not a limiting factor for the overall yield of the
crossbar array. In other words, the array yield is determined
only by the yield of UCBs, the maximum defect-free subset
of resources that can be used for application mapping.
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Figure 4: UCB yield for various values of n and k

4. REDUCING AREA OVERHEAD

Generally, application-dependent defect tolerance can re-
cover and use more defect-free resources within the fabric
compared to the application-independent approach. This
is because the application-dependent flow is tuned for each
particular application and defective chip. However, such
better recovery (utilization) of defect-free resources comes
at the expense of spending a considerable amount of design
efforts per chip and application. Nevertheless, it is possible
to hide some area overhead associated with the application-
independent flow. By defining different forms of “k × k

defect-free subsets” for logic and interconnect UCBs, it is
possible to reduce the required size of the fabricated cross-
bars for these UCBs.

It needs to be mentioned that the following approaches are
still application-independent, i.e. the size and the connec-
tion among defect-free subsets are identified before mapping
any particular application to the crossbar array.

4.1 UCB Overhead Reduction

The structure of UCBs, as described in Sec. 3, is a com-
plete yet smaller crossbar (complete k × k biclique). For
many applications, a complete structure is excessive. Next
it is described how to reduce the overhead of the application-
independent flow by extracting different structures for defect-
free subsets.

4.1.1 Logic UCBs

In logic mapping, only a random (arbitrary) defect-free
matching is sufficient [14]. In this case, the structure (de-
sign view) of the logic UCBs can be similar to PCBs. This
means that the size of the fabricated crossbar to be used as
a logic UCB with a required size (k) can be greatly reduced
compared to the general UCBs. Figure 5 compares the size
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of the fabricated crossbars to achieve defect-free 16 × 16
bicliques (general UCBs) and matchings (logic UCBs) for
different open defect densities. Approaches to identify and
extract defect-free matching from a defective crossbar are
described in [14, 10]. With 20% open defect density, it is
possible to extract a defect-free 16 × 16 matching from a
16 × 16 fabricated crossbar to implement logic whereas the
size of the fabricated crossbar to achieve a 16×16 defect-free
biclique is 126 × 126.
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Figure 5: Size of the fabricated crossbar to achieve
defect-free 16 × 16 biclique and matching

4.1.2 Interconnect UCBs

For the UCBs used as interconnect switch blocks, it might
not be required to have a complete block in which each in-
put is connectable (through programmable switches) to all
outputs. In contemporary FPGAs, each input of the switch
block is connectable to only few outputs. For example in
Xilinx Virtex series, each single line is connectable to only
3 other single line in a 24 × 24 switch block [15]. These
sparse switch block structures are able to provide the re-
quired routability for the logic block array with a reasonable
routing delay and congestion. A k×k switch block structure
in which each node is connected to exactly m other nodes
through programmable switches is modeled by an m-regular

bi-graph. In these structures, typically m ≪ k.
Similar to an FPGA-like switch block structure, instead of

extracting defect-free k×k bicliques for interconnect UCBs,
it is possible to use defect-free m-regular bi-graphs where
m ≪ n. Since the number of edges (defect-free switches) in
an m-regular bi-graph (mk) is much smaller than that in a
complete bi-graph (k2), the size of the fabricated crossbar
(n) to yield an interconnect UCB of a required size (k) can
be considerably reduced.

A heuristic greedy algorithm for finding the maximum m-
regular subset of a bipartite graph is presented in Fig. 6. In
the proposed algorithm, a variation of m-regular bi-graphs
is extracted in which each node is connectable to at least (in
contrast to “exactly”) m nodes in the other partition.

The approach is based on converting this problem to the
dual problem in the complement graph. Since the goal is
to extract the nodes with degrees of at least m, nodes with
degrees less than or equal to n−m are selected in the com-
plement graph. In the proposed heuristic, the nodes in the
complement graph are sorted based on their degrees in the
decreasing order and nodes with maximum degrees, along
with their incident edges, are removed from the graph. If
r nodes are removed from one partition (U), then the de-
gree of nodes in the other partition (V ) needs to be at most
n − (m + r) to be selected in the m-regular subset. Since

1 Function HasRegular(G(U, V, E), m)
2 Obtain G(U, V, E), E = K|U|,|V | − E

3 Sort U based on d(u) in G (decreasing order)
4 Sort V based on d(v) in G (decreasing order)
5 toggle ←true

6 regU ← false,regV ← false

7 Repeat
8 if toggle then
9 u ← node in U with maximum degree
10 if d(u) > |V | − m then
11 U ← U − {u}
12 for each v′ ∈ V such that (u, v′) ∈ E do
13 d(v′) ← d(v′) − 1
14 Re-sort V accordingly
15 else
16 regU ← true

17 else
18 v ← node in V with maximum degree
19 if d(v) > |U | − m then
20 V ← V − {v}
21 for each u′ ∈ U such that (u′, v) ∈ E do
22 d(u′) ← d(u′) − 1
23 Re-sort U accordingly
24 else
25 regV ← true

26 toggle ← ¬toggle

27 Until U = φ ∨ V = φ ∨ (regU ∧ regV )
28 return |U | × |V | as the largest m-regular subgraph

Figure 6: Algorithm for extracting m-regular subset

nodes with highest degree are directly removed from U (and
alternatively V ), |U | − m = (n − r) − m = n − (m + r).
Deleting the nodes with the maximum degree allows us to
remove a maximum number of edges with a minimum node
removal. This increases the chance of finding a large set of
nodes with the required degree, n − (m + r), in the sub-
set of remaining nodes. In the node removal process, the
algorithm alternates between two partitions such that the
difference in the number of removed nodes from two par-
titions is at most one. This process terminates when the
degrees of all nodes in the reduced complement graph be-
come at most n − (m + r). This means that each node is
connected to at least m nodes in the other partition and
hence, the algorithm works correctly.

Removing nodes with maximum degrees modifies the de-
grees of remaining nodes in the graph. By implementing U

and V sets as binary heaps, deletion and reordering can be
performed in a logarithmic time. If |U | + |V | = O(n), the
initial sorting takes O(n log n) (lines 3-4). The repeat-until
loop (lines 7-27) will be executed n times in the worst case,
since at each step at least one node is removed from U or
V . The execution of the body of the loop takes O(log n) as-
suming that the binary heap is used for the implementation
of U and V sets (deletion and reordering). Therefore, the
worst case time complexity of this algorithm is O(n log n).

In the presence of switch short defects, the area overhead
is noticeably higher since there should not be any defective
short switches between the k input nanowires and k output
nanowires participating in the defect-free m-regular subset.
Figure 7 compares the area overhead of 16×16 biclique and
8-regular structure for both open and short defects. For 20%
defect denisty, only a 42×42 crossbar is required to be fabri-
cated to yield a defect-free 16×16 8-regular structure. This
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is 9x smaller than the size of the crossbar to achieve a defect-
free 16× 16 biclique. Therefore, using m-regular defect-free
subsets for interconnect UCBs provides a sufficient degree
of routability with much reduced area overhead.
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4.2 PCB Overhead Reduction

In the architecture presented in Fig. 3 (a), there is a PCB
between each two UCBs. However, it might be possible
to directly match the outputs of a UCB to the inputs of
its neighboring UCB without using a PCB if the k output
nanowires of a crossbar participating in its defect-free subset
are exactly the same as the k defect-free input nanowires of
the neighbor crossbar.

Since the value of k is fixed for all fabricated crossbars
within the fabric, the actual maximum defect-free subsets of
all crossbars in the fabric can be extracted and compared for
a possible match of k signals between neighboring crossbars.
Consider that the maximum defect-free subset (biclique, m-
regular, or matching, depending on the particular use) of
a crossbar A is k1 × k2 where k1, k2 ≥ k. The maximum
defect-free subset of the neighboring crossbar B is k′

1 × k′
2

(k′
1, k

′
2 ≥ k). If the intersection between k2 defect-free out-

puts of crossbar A with k′
1 defect-free inputs of crossbar

B is at least k, these two (UCB) crossbars are adequately
matched and can be directly connected without a PCB. Fig-
ure 8 shows an example in which two UCBs are required to
have 4×4 defect-free subsets. However in UCB1, k2 = 6 and
in UCB2 k′

1 = 5, and the overlap between defect-free inputs
and outputs (shown in bold) is 4. Therefore, no PCB is re-
quired to connect these two UCBs. As the size of the actual
defect-free subset of the crossbar becomes larger than the
required defect-free size, the possibility of such direct match
increases. This process, although performed in a per-chip
basis, is still application-independent, i.e. before mapping
applications to the chip.

UCB 2UCB 1
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I'4

I'5

I'6
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O7

O8

I'7

I'8

Figure 8: Connecting UCBs without a PCB

5. SUMMARY AND CONCLUSIONS

Defect tolerance is an integral part of nano-computing
to control the excessive number of defects introduced by

self-assembly fabrication processes used in nanotechnologies.
The fine-grained reprogrammability of molecular crossbar
architectures can be exploited to implement defect tolerant
schemes.

In this paper, an application-independent defect tolerant
architecture is presented in which a universal (application-
independent) defect-free subset of fabricated resources are
extracted and used in the design flow. It is shown how
to connect locally-extracted defect-free subsets of the cross-
bars to achieve an array-based defect-free architecture. Fi-
nally, techniques to reduce the area overhead of the proposed
defect-tolerant flow have been presented. These techniques
result in more than 9x area overhead reduction by using
different defect-free subsets for logic and interconnect cross-
bars.
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