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Abstract--Server replication improves the ability of  a service 
to handle a large number  of clients. One of  the important fac- 

tors in the efficient utilization of replicated servers is the ability 
to direct client requests to the "best" server, according to some 

optimality criteria. In the anycasting communicat ion paradigm, 
a sender communicates  with a receiver chosen from an anycast 
group of equivalent receivers. As such, anycasting is well suited to 

the problem of directing clients to replicated servers. 
This paper examines the definition and support of the anycasting 

paradigm at the application layer, providing a service that uses an 

anycast resolver to map an anycast domain name and a selection 
criteria into an IP address. By realizing anycasting in the appli- 

cation layer, we achieve flexibility in the optimization criteria and 

ease the deployment of  the service. 
As a case study, we examine the performance of our system for 

a key service: replicated web servers. To this end, we develop an 
approach for estimating the response time that a client will experi- 
ence when accessing given servers. Such information is maintained 

in the anycast resolver that clients query to obtain the identity of 

the server with the best estimated response time. Our performance 
collection technique combines server push with resolver probes to 

estimate the expected response time without undue overhead. Our 
experiments show that selecting a server using our architecture 
and estimation technique can improve the client response time by 
a factor of two over nearest server selection and by a factor of  four 

over random server selection. 

Index Terms--Anycasting, replication, server selection. 

I. INTRODUCTION 

U 
" SERS increasingly view the Internet as providing more 

than simple connectivity, but rather a range of  sophisti- 

cated and complex services. As this view becomes prevalent, it 

becomes important to provide explicit  support for the efficient 

delivery of networked services. Such support must be scalable to 

a large number of  geographically widespread users, while main- 

taining user-perceived quality of service (e.g., response time, 

throughput, reliability). 

Server replication [11] provides scalability by deploying 

multiple copies of  a server and sharing client load across 

the copies. Server replication is appealing because it offers a 

relatively straightforward method to potentially improve client 
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performance and reduce network load. A key issue in realizing 

this potential is the method used for server selection. That is, 

given a set of  servers, how does a client select the "best" server? 

A server selection system has the obvious design goal of 

improving client performance. In addition, a server selection 

system should satisfy the following goals. First, it should be 

flexible in the specification of  selection criteria. The "best" 

server will vary depending on the service and (potentially) 

on the preferences of  the clients. A server selection system 

should support a rich and flexible set of selection criteria. 

Second, it should be suitable for wide-area server replication. 

Although servers can be replicated locally in server farms, our 

interest is in server selection with global replication across 

geographically widespread locations. Local replication is both 

easier and more limited in ability to handle request load from 

widespread clients. Third, it should be deployable in the current 

Internet without modifications to the network infrastructure. 

Last, it should be scalable to a large number of  services, clients, 

and client requests. 

A number of services are currently replicated, using both 

local and global replication. The methods currently used for 

server selection include: 

1) Domain name system (DNS) modifications [18] to return 

one IP address from a set of  servers when the DNS server 

is queried. The DNS server typically uses a round-robin 

mechanism to allocate the servers to clients, thus this 

technique is best suited to local replication of  servers with 

comparable capacity. 

2) Network-layer anycasting [24], which associates a 

common IP anycast address with the group of  replicated 

servers. The routing protocol routes datagrams to the 

closest server, using the routing distance metric. Standard 

intradomain unicast routing protocols can accomplish 

this, assuming each server advertises the common IP 

address. The limitations of network-layer anycasting 

include lack of flexibility in the selection cr i te r ia- - the  

routing protocol determines the (single) criteria, typi- 

cally hop coun t - -and  difficulty in extending to wide-area 

selection. 

3) Router-assisted server selection, as in Cisco 's  Dis- 

tributedDirector product [7], [12]. This product asso- 

ciates a Cisco router with each replicated server to act 

as the server 's  agent. Client requests are directed to a 

central loca t ion- - the  DistributedDirector (DD) - -wh ich  

queries the server agents to determine either hop count 

or link latency between each server and the client. The 

DD redirects the client to a server using the query results. 

This solution is best suited to server selection within a 
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small to moderate-size domain, since it requires signif- 

icant coordinated deployment of  Cisco equipment and 

relies on routing tables to determine hop counts from a 

server to a client. For larger domains, scalability is likely 

to be an issue. 

4) Combined caching and server selection systems, such as 

developed in several recent commercial systems (e.g., 

Akamai J, Sandpiper 2), which operate their own system 

of caches containing content from a large number of 

servers. Client requests are directed to a cache, based on 

cache content and measurements of  network and server 

load. Relatively little information is available regarding 

the operation and performance details of such systems. 

The basic premise differs, however, from our focus on 

"pure" server selection without deployment of  caches. 

None of  the current solutions meet all of  the design criteria out- 

lined above. 

Our proposed solution begins with network-layer anycasting. 

We adopt a general view of anycasting as a communication par- 

adigm that is analogous to the unicast, broadcast, and multi- 

cast communication paradigms. In particular, we differentiate 

between the anycasting service definition and the protocol layer 

providing the anycasting service. The original anycasting pro- 

posal [24] can, therefore, be viewed as providing an anycasting 

service definition and examining the provision of  this service 

within the IP layer. 

We move anycasting to the application layer, allowing us to 

achieve flexibility in selection criteria, extension to the wide- 

area, and ease of  deployment. For scalability, we retain the best- 

effort nature of the original network-layer anycasting service 

definition. This paper describes our application-layer architec- 

ture and develops a case study using the architecture for repli- 

cated web servers. Our contributions are threefold: 

1) We generalize the original definition of  anycasting to de- 

sign an anycasting service that offers considerable advan- 

tages in flexibility over the traditional network-layer any- 

casting service. 

2) We develop an application-layer architecture to realize 

our anycasting service. Our architecture provides for scal- 

ability by using replicated resolvers to handle queries 

from a set of  clients and by organizing the resolvers into 

a DNS-style hierarchy. 

3) We examine the performance of  our system for client 

access to replicated web servers. We develop an ap- 

proach for estimating the client response time that 

combines server push with resolver probing. This metric 

is challenging to estimate because the response time is a 

function of  both server load (relative to capacity) and of  

path load between the server and client. Our experiments 

show that selecting a server using our architecture and 

estimation technique can improve the client response 

time by a factor of  two over nearest server selection and 

by a factor of  four over random server selection. 

The paper is structured as follows. In Section II we define 

anycasting as a paradigm and identify the components of  our 

1Available: http://www.akamai.com/ 

2Available: http://www.sandpiper.com/ 

application-layer architecture. Section III describes a key aspect 

of the architecture, specifically maintenance of  performance 

metric information. Sections IV and V consider the use of  the 

system for replicated web access. Our technique for estimating 

response time is developed in Section IV, while Section V 

describes a set of performance evaluation experiments. We de- 

scribe related work in Section VI and conclude in Section VII. 

II. APPLICATION-LAYER ANYCASTING: SYSTEM OVERVIEW 

The anycast paradigm shares characteristics with both the 

multicast and unicast paradigms. Similar to multicast, the any- 

cast paradigm consists of  groups of destinations, with the se- 

mantics that each destination in a given anycast group is equiv- 

alent in some sense. Similar to unicast, a sender that communi- 

cates with an anycast group typically interacts with one destina- 

tion, chosen from the anycast group. This section describes our 

anycasting service and the architecture for providing the ser- 

vice at the application-layer. We conclude the section with an 

assessment of  how well the architecture meets the design goals 

outlined in the Introduction. 

A. Architecture 

In our architecture, we define an anycast group to be a (po- 

tentially dynamic) set of  unicast or multicast IP addresses. Such 

a definition allows considerable flexibility in the types of  ser- 

vices that our selection method supports. We see two particu- 

larly useful consequences of  this definition. First, a set of  servers 

may be grouped together based on equivalence from a user's 

perspective. That is, "exact" replication is not required for mem- 

bership in the same group. A user might define an anycast group 

to contain, for example, the web sites for CNN Interactive, Time 

Magazine, and USA Today. Second, allowing multicast IP ad- 

dresses means we can support services that require multiple 

servers to provide a single instance of  the service. For example, 

a client may wish to merge or edit video clips that can be found 

on different sets of  replicated video servers. The desired service 

is provided by a group of  servers, one per video clip. 

In our architecture, a client interacts with an anycast group 

via a query-response protocol illustrated in Fig. 1. The anycast 

query contains the anycast domain name (ADN), which identifies 

the group, and the selection criteria to be used in choosing from 

the group. The anycast response contains the IP address for the 

selected server. As illustrated in Fig. 1, the architecture centers 

around the use of  a hierarchy ofanycast resolvers that perform the 

ADN to IP address mapping. The resolver receives the anycast 

query and applies afilter to control the selection. A filter operates 

on a set of  anycast group members and returns a (possibly empty) 

subset. A second filter may be applied at the client. Filters may 

be content-independent (e.g., select any member at random), or 

based on performance metrics or policy information. 

To do the mapping, the resolvers maintain two types of  in- 

formation: 1) the list of IP addresses that form particular any- 

cast groups; and 2) a metric database of  information associated 

with each member of  the anycast group. As described further 

below, authoritative resolvers maintain the definitive list of  IP 

addresses for a group, whereas local resolvers cache this in- 

formation. A membership protocol updates the anycast group 
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Fig. 1. Anycast name resolution query/response cycle. 

information, and a service creation protocol defines new any- 

cast groups. We do not discuss the details of such protocols 

here; some effort in this area has been undertaken in the IETF 

[31]. Many of the metrics are locally significant, thus they are 

maintained independently at each anycast resolver that has the 

ADN group membership information cached. The authoritative 

resolver may provide its locally maintained metric information 

as a "hint" whenever it receives a request from another resolver 

for the anycast group member list for a given ADN. 

The structure of  ADNs influences the operation of the any- 

casting system in general, and the anycast resolver architec- 

ture in particular. We use a DNS-style naming and directory 

service architecture for scalability and ease of integration into 

the existing Internet infrastructure. While the anycast resolver 

is logically distinct from other name servers like DNS [21], 

the functions of  an anycast resolver could be integrated with 

the operation of DNS. In our scheme, an ADN is of  the form 

( S e r v i c e )  % <DoraainName). Such a name will typically be used 

as an argument to a library call that invokes the anycasting ser- 

vice and results in the mapping of this ADN to an IP address. 

The DomainName part of the system indicates the location of 

the authoritative anycast resolver for this ADN. The S e r v i c e  

part of the ADN identifies the service within the authoritative 

resolver. 

The architecture for handling anycast requests is shown in 

Fig. 2. Each network location is preconfigured with the address 

of its local anycast resolver in the same way local DNS servers 

are configured. An anycast client makes its initial anycast query 

to its local resolver. If  the resolver is authoritative for the ADN 

in the query or if it has cached information about the ADN, it 

can process the query immediately and return the appropriate re- 

sponse. Otherwise, the local resolver determines the address of  

the authoritative resolver for the DomainName part of  the ADN 

and obtains the anycast group information from this resolver. 

Determining the address of the authoritative anycast resolver 

for a particular domain can be done using techniques similar 

to DNS authoritative name determination [21]. 

Authoritative R e s o l v e r  

for ADN X 
Local  Anycas t  Reso lver  

3: request for ADN X ADN X 
2: determine authoritative resolver [members and metrics members I metrics 

5: cache ADN X members, metrics; 1. IP addr 01 metrics 0 
IP addr 1 metrics 1 initiate metric~ collection 4: list ofADN X e e e  e e ,  

1 : anycast request [ members and metrics 

for ADN X J ] 6.' ~ycast response 

C 
Anycas t  Client  

Fig. 2. Anycast request-handling architecture. 

B. Design Goals Revisited 

With respect to the design goals presented in the Introduc- 

tion, the proposed architecture clearly meets the first three goals. 

The user specifies the selection criteria by way of  the filters, 

thus supporting flexibility in selection. The resolvers maintain 

lists of  servers and explicitly track metrics associated with each 

server. These metrics may include both path and server-load 

characteristics, as is necessary for wide-area server selection. 

The architecture does not rely upon changes to the network in- 

frastructure, thus it is deployable in the current Internet. As we 

will see in the next section, modest changes to the servers can 

facilitate metric collection. 

Whether the architecture meets the scalability design goal is 

less clear. The architecture attempts to achieve scalability in 

three ways. First, the service is best-effort, thus explicitly al- 

lowing techniques that improve scalability at some sacrifice in 

optimal performance. For example, a given resolver might only 

track the performance at a subset of  servers that are deemed to 

be most promising, based on some (longer time-scale) mech- 

anism. We have not, however, fully explored the performance 

trade-offs associated with such scalability techniques. Second, 

we use DNS-style replication and hierarchy in the resolvers, 

thus reducing the load on any one resolver. Third, we have devel-, 

oped a relatively efficient mechanism to track server response 

time, using a combination of  light-weight server pushes and less 

frequent, heavier-weight probes. Various methods for metric 

maintenance are discussed next. The hybrid push-probe mech- 

anism is discussed in detail in Section IV, and the performance 

is evaluated in Section V. 

III. MAINTENANCE OF METRIC INFORMATION IN RESOLVERS 

The methods used by the resolver to maintain selection 

metrics are key to the performance of  the architecture. Metrics 

fall into three general categories: those that depend only on 

server characteristics, those that depend on characteristics of  

the server-client path, and those that depend on both server and 

path. A variety of  techniques will be used to maintain metric 

information, depending on factors such as the category, the 

accuracy required, and the cost of  burdening the network and/or 

the server. Examples of maintenance techniques include: 

R e m o t e  S e r v e r  P e r f o r m a n c e  P r o b i n g :  

In this technique, a probing agent makes periodic queries 

to the servers to estimate the performance that a client 

would experience. These queries appear to the server to 
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be legitimate client requests, and thus they measure ex- 

pected client performance. Probing agents would nor- 

mally be co-located with resolvers but may also be run- 

ning at other locations. Each probing agent acts as a 

proxy for real clients within a certain region, thus the 

farther away a client is (in Internet "distance") from a 

probing agent, the less useful the probe measurements. 

This technique measures network path performance and 

does not require server modification; on the other hand, 

the load on the network and servers may be significant. 

Server Push: 

In the server push technique [16], [17], the server 

monitors its performance and pushes this information 

to the resolvers when interesting changes occur. For 

additional scalability, the update information can be 

network-layer multicast to all resolvers that maintain 

information about the server. The anycast resolvers 

can join well-known multicast groups for each server 

that they are interested in, allowing the servers to 

disseminate performance information without knowing 

the identities of  the resolvers. 

The server can control the network traffic generated by 

this mechanism b2¢ adjusting the monitoring and push 

schedules. The primary advantages of this technique are 

scalability and accurate server measurements; the dis- 

advantages are that the servers must be modified and the 

network path performance is not easily measured. Some 

properties of  the one-way path from the server to each 

resolver could be measured as part of  the multicast push. 

For example, the hop count from the server to the re- 

solver could be determined via use of  the TTL. 

Probing for Locally Maintained Server Performance: 
A variation on the probing technique allows the probing 

agent to obtain server load information. Specifically, 

each server can maintain its own locally monitored 

performance metrics in a globally readable file. Remote 

probing locations can then read the information in the 

file (as opposed to attempting to exercise the server) 

to obtain the desired information. Since probes merely 

read from a locally maintained file, they may represent 

less of  a burden on the server than the probes that mimic 

client requests. 

User Experience: 

Users currently make server access decisions based in 

part on past experience. Collecting information about 

past experience offers a coarse method of maintaining 

server performance. The primary advantage of  this 

method is that the information is collected for free; no 

additional burden is placed on the server or the network. 

The quantity and accuracy of  the information can be 

increased by sharing of  experience among clients. For 

example, a gateway into a campus might maintain server 

performance information based on the experience of  all 

clients on the campus. An architecture for collection 

and sharing of such information is being developed in 

the SPANDS project [29]. 

Table I summarizes the four techniques based on performance 

and cost dimensions. The first three columns are measures of  

system overhead. The Net Load column represents the number 

TABLE I 

COMPARISON OF METRIC COLLECTION TECHNIQUES 

Net Server Server Exercises Accuracy 

Load Mod ' Load Net Path 

Probing 2PTp No High Yes Moderate 

Server Push T0 Yes Low No* High 

Reading Server Log 2PT e Yes Moderate Yes High 

User Experience None No None Yes Low/V~ies 

(* Can measure one-way path information) 

of messages generated per unit time to obtain the metric data 

from one server, where P is the number of  probing agents, Tp 

is the period of  probing, T8 is the period of  server push. The 

Server Push messages can be multicast rather than unicast, re- 

ducing their burden. The Server Mod column indicates whether 

the server must be modified to allow the metric to be collected. 

The Server Load column expresses (relatively) how much ad- 

ditional load is placed on the server by the collection of  the 

metric data. The last two columns are performance measures, 

indicating whether the method exercises network path, and (rel- 

atively) how accurately the method is able to maintain the met- 

tics that it can evaluate. 

The appropriate technique to use for maintaining perfor- 

mance metric information is highly dependent on the service 

details and context. In the next two sections we examine 

in detail a technique that is well suited to selection among 

replicated web servers. 

IV. CASE STUDY: W E B  SERVER RESPONSE TIME 

We turn our focus to the issue of how our application-layer 

architecture can be used for selection amongst replicated web 

servers. In particular, we design and evaluate a performance 

monitoring system for the estimation of  service response time 

experienced at a client and use the estimates to guide selection 

of  servers within our system. 

The response time metric is important because it directly cor- 

relates with a user's perception of the quality of  service. In ad- 

dition, it is a very difficult metric to monitor since it depends 

on server capabilities (e.g., speed and number of  processors at 

the server), current server load (e.g., number of  queries cur- 

rently being served), network path characteristics (e.g., propa- 

gation delay on the path), and current path load. Thus, the metric 

collection technique must measure both server and path perfor- 

mance. 

The metric collection technique should meet two basic goals. 

First, it should be scalable to a large number of  servers, any- 

cast groups, and clients. The load placed on any component of  

the system--servers,  network resources, resolvers, clients--hn 

collecting metric data must be kept "reasonable". Second, the 

metric collection should be relatively accurate. The service pro- 

vided by anycasting can inherently deal with inaccuracy in the 

absolute values of  the metrics, since the service makes a relative 

selection amongst servers. The service is also somewhat robust 

against errors in the relative values of the metrics, due to the 

best-effort nature of  the service. The performance penalty as- 

sociated with out-of-date or slightly inaccurate metric data will 
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not typically be severe; rather than selecting the "best" server, 

the service may identify a "nearly-best" server. 

The two goals constrain the design of the metric collection 

technique in the following ways. First, metric updates should 

occur primarily in response to significant changes in metric 

value, rather than on a periodic basis. This implies monitoring 

of metric values to determine when updates are needed. Second, 

servers should have some control over the load incurred due to 

metric collection. A server should be able to decrease metric 

collection load, if desired. 

A: Overview: Metric Collection Technique 

To build a metric collection technique meeting the goals 

and constraints outlined above, we combine the probing and 

server-push techniques described in Section III. Probing gives 

the most accurate estimate of  what the probing agent expects in 

terms of server response time. Probes, however, can represent 

a significant overhead if performed frequently. Server pushes, 

while more lightweight, are less accurate predictors of response 

time since they only propagate server performance information. 

Our technique combines server push with less frequent periodic 

probing. 

1) Server-Push Algorithm: The server will measure its per- 

formance and push performance information according to an 

update algorithm. To define the way the server measures its per- 

formance, consider the server response cycle 

assign process to handle query 

parse query 

locate requested file 

repeat until file is written: 

read from file 

write to socket 

To assess its performance, the server measures the time from 

just after assigning the process until just before doing the first 

read. These measured values are averaged and smoothed before 

being used in the update algorithm described below. (Note that 

this is the cycle used by the Apache server. We expect that other 

web servers will have a similar high-level processing structure. 

If this is not the case, the server measurements will need to be 

modified accordingly.) 

We want the server to push performance information when- 

ever its measured performance has changed sufficiently to be 

"interesting," with some constraint on the maximum frequency 

of updates so as to bound the overhead of  the updating mecha- 

nism. The task of  updating link state in a distributed routing en- 

vironment has precisely the same criteria, thus we have adopted 

the link state update algorithm used in the ARPANET [25]. The 

update algorithm is parameterized by a measurement interval 

I ,  a maximum threshold T, and a reduction factor R. The al- 

gorithm maintains a current threshold C, initialized to T. The 

server measures its performance over each interval I .  If  the new 

measured value changes from the previous measurement by at 

least C, the new measurement is pushed, and C is reset to T. If  

the state does not change by at least C, Cis reduced by _R. When 

C becomes 0, the state will be pushed, and C will be reset to T. 

The algorithm will send updates at least every T I / R  time units 

and at most every I time units. 

2) Agent Probe Mechanism: The probe is made to a well- 

known file that is maintained at anycast-aware servers specif- 

ically to service probe requests. The file contains the most re- 

cent measured performance value by the server and is padded 

with dummy data. Each probe results in a response time mea- 

surement, taken from just before sending the query to just after 

receiving the complete response. This time' depends on server 

and path characteristics and on the size of the file being probed. 

3) Hybrid Push~Probe Technique: We combine the perfor- 

mance value pushed by the server with the response time mea- 

sured by the probes to keep an estimate of  server response time. 

The idea is to use the probes to get a measurement of  the re- 

sponse time that includes the network path. The measurement 

is then used to calibrate the more frequently pushed server time 

value to get an expected response time at a given resolver. 

Specifically, let R denote the most recent measurement of re- 

sponse time when probing for the well-known file. As indicated 

earlier, the server includes in the well-known file the most recent 

performance value measured as described above. Let S denote 

the server time value reported in the file during the most re- 

cent probe. In between consecutive probes the server typically 

pushes a sequence of  server values. Let S(i) denote the ith value 

pushed by the server. The resolver adjusts the server-reported 

value S(i) by multiplying by an adjustment factor A = R/S .  

Thus, the resolver estimates the current response time as R(i) = 

A * S(i). Typically, the probes will occur less frequently than 

the server pushes its measured time value, thus a given adjust- 

ment factor will be used to adjust a sequence of  pushed server 

values, until the next probe occurs and updates A. 

As will be shown by the results of  the experiments, this tech- 

nique works quite well for our purposes. To understand the in- 

tuition behind it, we note that the value of  S is the average time 

until the server begins to serve a page and includes delays in- 

curred because of the need to process other requests at the server. 

In a sense S is the time required for the request to receive one 

unit of service and A = R / S  is an estimate of the number of  

units of service required to service a page. While S is a function 

of server load, the value of  R, and consequently A, is strongly 

dependent on the characteristics of  the path from server to client. 

B. Evaluation of Push-Probe Technique 

In Section V, we examine the performance of  the overall any- 

casting system. Prior to combining all parts of  the system, we 

evaluate the accuracy of the metric collection technique in isola- 

tion. To do this, we experimented with various locations and ca- 

pabilities of  servers and resolvers, variations in server load, and 

alternative file sizes. Fig. 3 shows a typical result, plotting the 

estimated and actual values of  response time over 270 queries. 

The x-axis indicates the index of each query. 

In this particular experiment, the probing agent was at the 

University of  Maryland, College Park, and the server was lo- 

cated 12 Internet hops away at Georgia Tech, Atlanta. The agent 

made requests to the server according to an access log file from a 

real server. That is, the access log file was used to determine the 

time of the query (relative to the starting time of  the experiment) 

and the size of  the particular file to request. Approximately 26 

minutes elapsed from the first to the last access, thus the average.  

interarrival time of  accesses was 5.8 s. The server was loaded 
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Fig. 3. Response time estimation using proposed metric collection technique• 

by other clients that also made log-driven requests. The server 

pushed its load using the push algorithm with threshold value 

(T)  0.01, reduction factor (R) 0.002 and measure interval ( I )  

4 s. Thus, a push occurred at most every 4 s and at least every 

20 s. The agent probed for the well-known file every fifty ac- 

cesses. 

This plot demonstrates that our method yields estimated re- 

sponse times that are relatively similar to the actual response 

times. That is, the estimate tends to increase when the actual 

t ime increases, and vice versa. However, the estimate is not al- 

ways accurate in the absolute sense, with the estimated time gen- 

erally higher than the actual time. 

C. Refinement 

A potential problem with an approach that identifies the best 

server to clients is that of  instability. As clients discover a newly 

designated best server, they all divert their workload to that 

server, thus off-loading one or more servers which now become 

the designated best servers, and so on. 

To address this issue we introduce the concept of  the set 

of  equivalent servers (ES) which is defined as the subset of  

the replicated servers whose measured performance is within 

a threshold of  best performance. This set of  equivalent servers 

is recomputed every time a new pushed value is ~eceived at the 

resolver. In answering an anycast query, the resolver picks at 

random from this set of  equivalent servers. The set ES is com- 

puted according to the following algorithm, executed whenever 

a new push or probe measurement is received: 

compute the new estimated response time for server 

sort servers according to estimated response time 

ES = ES U {Server with minimum response time estimate} 

Rmin = minimum response time estimate 

for each server j C ES 

if  (Rj  - R m i n  > Te) 

then ES := ES - { j  }; 

for each server j ~ ES  

if (R j  - / ~ m i n  ~_ Tj) 
then ES :=  ES U {j};  
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Fig. 4. Software components of the application-layer anycasting architecture. 

The leave and join thresholds re and Tj are such that Te _> ~-j. 

Together they allow a form of  hysteresis used to achieve stability 

in the constitution of  the set ES. 

As will be illustrated by the results of  the experiments in the 

next section, this algorithm successfully deals with the oscil- 

lation problem. When a server reports good performance, the 

resolver will direct more (but not all) clients to this server. The 

selection of  the thresholds and their effects are studied in Sec- 

tion V. 

W. EXPERIMENTAL EVALUATION 

In this section we describe a set of  experiments that we con- 

ducted over the Internet, using our proposed anycasting archi- 

tecture and the technique described in Section IV to monitor  

response time. We first describe the experimental setup, then 

discuss results from experiments to assess the overall system 

performance. 

A. Experimental Setup 

The experimental setup is designed to mimic as much as pos- 

sible the true operation of  a set of  Web clients and servers using 

the anycasting architecture, depicted in Fig. 4. 

1) Anycast-Aware Servers: We modified the Apache 

HTTP 3 daemon to act as a performance-monitoring server as 

described in Section IV. We wanted to distribute anycast-aware 

web servers, that serve realistic content, without distributing a 

large amount of  data. The modified web server emulates the 

real server in the number of  bytes sent for each request, without 

actually maintaining the files of  the real server. We achieve this 

by having our modified server maintain a small set of  dummy 

files and a table containing tuples of  the type ( f i l e n a m e ,  

s i z e ) .  The table is constructed using file sizes taken from 

an actual server. Whenever an access is made to our modified 

server, a table lookup is performed to determine the file size. 

Then the name of  the requested web page is mapped into the 

name of  the next largest file maintained on disk. This mapping 

is such that the same webpage name will always map to the 

same file. An amount of  data equal to the size of  the original 

file is then read and transmitted in response to the request. 

Four files of  each size are kept, to partially avoid false caching 

effects. This method of  server emulation comes close to the 

operation of  a real server, and allows any optimizations that the 

3Available: http://www.apache.org/disff. 
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server may perform (e.g., by caching data read from disk) to be 

reflected in our experimental results, albeit approximately. 

The modified server was also instrumented to monitor its 

performance by recording time values as described previously. 

These values are recorded in a performance measurement file 

that the server shares with the performance push daemon. The 

performance push daemon executes the update algorithm given 

in the Section IV. If  the variation in server performance or the 

expiration of an epoch warrants a performance push, the perfor- 

mance measure is pushed to the resolvers. 

Finally, the modified web server maintains a special file that 

is requested by probing agents. The probing file is the same size 

at all servers. We use the average size of files recorded in the log 

file as the size of  this special file. Note that the validity of the 

probing technique does not depend on the probe file size being 

"representative" of  the server files; the response time measured 

at probing can be used to compare the relative performance of  

servers as long as the sizes of probing files are the same at all 

servers. This is important, since web item size distributions have 

been observed to have infinite variance [1]. 

2) Clients: We modified the NCSA Mosaic 4 client to have 

the desired behavior. For our prototype we use a simple form 

of API that encodes the specification of the anycast group 

and selection criteria in a name used to reference the service. 

Specifically, we use a metric-qualified anycast domain name 

(MQ-ADN) of  the form (Filter) • (ADN) where Filter 

provides information about the filter to be used by the resolver. 

In the prototype, the resolver returns a host name, which we 

pass to DNS to determine the IP address. 

The prototype processing is shown in Fig. 5. We intercept 

calls to the g e t h o s  t b y n a m e (  ) library call and check if the ar- 

gument is an ADN, by checking for a . a n y  suffix. For ADN ar- 

guments, an anycast resolver query is formulated, and the reply 

is used as input to the original g e t h o s t b y n a m e (  ) procedure 

to return the desired IP address. If  the g e t h o  s t b y n a m e (  ) ar- 

gument is other than an ADN, then the usual procedure is called 

directly. This allows us to use traditional applications without 

modification and gives the option of  using them with or without 

the anycasting feature. 

The behavior at our clients consists of  two parts. First, a client 

must determine a set of requests to make to the replicated ser- 

vice over time. Second, for each request, a client must deter- 

mine which server to access. For the first part, we use the ac- 

cess logs from a moderately busy web server (approximately 

4000 accesses per hour) to generate client requests. The client 

reads the access log file to determine a filename to access and a 

time, relative to the start of the experiment, to issue the request. 

The clients schedule each subsequent access at this calculated 

relative access time. In this way, the clients replay the logged 

accesses. 

We want to compare the performance experienced by clients 

that are anycasting, as compared to clients that use other 

methods to select a server. We support three methods for 

determining which server to access for a request: 1) querying 

the anycast resolver to determine a best server; 2) choosing 

a server at random; and 3) choosing the server that is closest 

4Available: ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/source/Mosaic-src-2.6.tar.Z. 
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Fig. 5. Implementation using metric-qualified ADN's. 

to the client based on hop count. We control which method is 

used on a per-client basis. 

3) Anycast Resolver and Probing Agent: For the probing 

agent we used a modified NCSA Mosaic client that periodi- 

cally queries each server in the anycast group for the probing file 

(with the performance data), and communicates the end-to-end 

response time and performance data to the resolver. The anycast 

resolver can process two different types of performance updates, 

corresponding to server pushes and client probes. It maintains a 

database of  anycast group members and their current push and 

probe data. In response to query messages, the resolver returns 

one of  the best .servers as computed using the algorithm given 

in Section IV. 

4) Client and Server Internet Locations: In each of the ex- 

periments there were four anycast-aware servers, one running at 

the University of California, Los Angeles, one running at Wash- 

ington University, St. Louis, and two running at Georgia Tech. 

The anycast resolvers were run at the University of Maryland, 

College Park, and Georgia Tech. The anycast-aware clients were 

located at the University of  Maryland and Georgia Tech (see 

Fig. 6). 

B. Evaluation of Anycasting System 

In this section, we describe several experiments to evaluate 

the performance of  the system. The experiments answer five pri- 

mary questions: 1)When all clients use the same method to se- 

lect a server, how does the performance of  anycasting, random, 

and nearest server selection compare? 2) When some clients use 

anycasting and some use random access, how does the perfor- 

mance vary? 3) What is the effect of  variation in the push and 

probe frequencies? 4) What is the effect of  the join and leave 

thresholds? and 5) Does the equivalent server technique effec- 

tively reduce oscillations? 

Our results are based on a set of  experiments involving four 

servers and 20 clients. They show that anycasting can offer a 

considerable performance benefit over random or nearest-server 

selection. Specifically, we observe a factor of  four improvement 

in response time for anycasting over random selection and a 

factor of  two improvement over nearest server selection. The 

performance experienced by another set of  clients and servers 

will, of course, be dependent on the loading patterns for the sys- 

tems and the server-client paths. The question of the expected 

performance gain for a "typical" set of  clients and servers re- 

mains open. 

We have 20 clients running, 16 at Georgia Tech and four at the 

University of  Maryland. The clients are organized in four groups 

of  five clients each. Each group generates requests equal to one 

log file with each client within the group allocated one-fifth of 

the requests in the log file. In order to put enough load on the 
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Fig. 7. Comparison of performance of a client in all-anycasting and all-random 

experiment. 

servers, we also scale the log by a scaling factor k. For each 

access read, the client requests the same document k successive 

times. By changing the value k, we can generate different levels 

of  traffic on the servers and use the log of  our moderately busy 

server to get the effect of  a busy server. In our experiments, we 

set k to 3. Except in the last experiment testing the effects of  

join and leave threshold on the performance, the resolvers set 

the join threshold to 0.1 and leave threshold to 0.3. 

In Fig. 7, we depict the performance experienced by a client 

in two settings. In one setting, the clients all use random server 

selection; in the other, the clients all use anycasting for server 

selection. In the anycasting case, the probe agent accessed the 

servers once every 4 minutes, however, the duration of  the ex- 

periment short enough (2 minutes) that only one probe was per- 

formed at the beginning. The server performance monitor was 

run once every 10 s. (Note that this is the interval at which the 

server logs its own performance; depending upon the state of 

the system, a push update may or may not be issued at every 10 

s interval. However, regardless of activity at the servers, a push 

update was issued at least once every 50 s.) 

This plot shows the response time experienced at a single 

client, in each of the two settings, over a sequence of 100 re- 

TABLE II 

PERFORMANCE OF SERVER LOCATION SCHEMES. 

Server Location [ Avg. Response Standard 
Algorithm [ Time (sec.) Deviation (sec.) 

Anycasting ] 0.49 0.69 

Nearest Server I 1.12 2.47 
Random 2.13 6.96 

quests. The experiments for the two settings each took about 

2 minutes each; the two experiments were run one right after 

the other. The experimental setup keeps the total server load 

constant from one experiment to the next, however, we could 

not control variation in the load on network paths. Thus, the re- 

sponse times for a given request cannot be directly compared. 

Instead, the important feature of  the plot is the relative values 

over the complete set of  accesses. The response time in the any- 

casting case is always less than 4 s, and generally less than 2 s, 

while the response time in random case can exceed 12 s. 

Table II summarizes the comparison between the different 

methods for identifying servers. Mean and standard deviation 

of response time are reported, based on the values experienced 

by all clients participating in the experiment. Each value in this 

table results from an experiment that lasted about 30 minutes 

with about 2000 accesses. The three separate experiments were 

run back-to-back. In addition to the random and anycasting se- 

lection methods, the table also includes the nearest hop count 

method. We note that choosing the nearest server improves upon 

random selection, however, another factor of  two improvement 

is possible with anycasting selection. The nearest server and 

random selection methods also exhibit much higher standard 

deviation than the anycasting selection, leading to a more un- 

predictable service. 

In the previous experiments, all of  the clients used the same 

server selection method. In Fig. 8, we vary the percentage of  the 

clients using the anycasting method as opposed to random se- 

lection. The x-axis indicates the percentage of  clients that are 

anycasting, ranging from 0% (i.e., all clients use random selec- 

tion) to 100% (i.e., all clients use anycasting). Three response 

time curves are shown: average response time for clients who 

anycast, average response time for clients who select randomly, 

and overall average response time. For each x-axis value, we 

run five separate 30-minute experiments. Each experiment pro- 

duces an average response time for anycasting clients and an av- 

erage response time for random selection clients. We average the 

five values and take confidence intervals to produce the curves. 

We note that average response time over all clients decreases 

from 2.1 to 0.5 s when the percentage of  anycasting clients in- 

creases from 0% to 100%. The average response time for the 

clients selecting at random also improves as more clients use 

anycasting, due to the better load balancing achieved on the 

servers. The average response time for anycasting clients in- 

creases from 0.3 to 0.5 s when the percentage of  anycasting 

clients changes from 20% to 100%. The anycasting mechanism 

performs relatively better when server load is unbalanced, since 

more lightly loaded servers can be identified and used. How- 

ever, even when all clients are anycasting, the performance is 

quite good. 
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Also included in Fig. 8 is the confidence interval for each 

point with 90% confidence level. The confidence intervals of 

response time for anycasting clients are rather small, while the 

confidence intervals of  response time of random clients are 

much larger. This is not surprising if we consider the variation 

observed earlier for random accesses. We can conclude from 

the data that the anycasting clients perform a good deal better, 

on average, than the random clients across the full range of  the 

experiment. 

In Fig. 9, we analyze the performance of the anycasting 

system for varying values of probe and push frequencies. 

The value of  push frequency is the maximum value; pushes 

will occur less often if the conditions warrant. All clients 

are using the anycasting mechanism. For each data point, 

the average response time is recorded over a period of  30 

minutes. In this experiment, we notice rather sharp regions 

in the probe-frequency/push-frequency space, beyond which 

increases in frequency do not result in appreciable improve- 

ments in performance. Most notably, more than two pushes 

per minute yields little performance gain unless the probing 

frequency is very low. Further, a tradeoff between push and 

probe frequencies is evident. For high push frequencies, 
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Fig. 10. Response time varying with join and leave thresholds. 

e.g., 12 pushes per minute, the average response time when 

probing every 10 minutes (probe frequency = 0.10 probes 

per minute) is comparable to response times achieved by one 

probe every 2 minutes (probe frequency = 0.50 probes per 

minute) with 1 push per minute. This ability to trade-off probes 

for server pushes leads in general to a more scalable system: 

server pushes can be connectionless and multicast, with push 

frequency controlled by some server-specific process (e.g., 

taking current server load and policies into account), while 

probes will be connection-oriented unicast transactions. 

In our last experiment, we explore the effects of the join and 

leave thresholds in the resolver algorithm. Recall that these de- 

termine when a server is added or removed from the set of  equiv- 

alent servers. When the thresholds are low, the algorithm is con- 

servative in adding servers to the set, and aggressive in removing 

servers from the set. Thus, the set tends to be small. When the 

thresholds are high, the addition process is aggressive, while the 

removal process is conservative. Thus, the set tends to be large. 

Fig. 10 shows the results of  our evaluation. Each data point is 

the result of  an experiment that lasts about 30 minutes. For a 

join threshold less than 0.3, we observe an initial performance 

improvement as the leave threshold is increased, followed by 

performance degradation as the leave threshold continues to in- 

crease. For join thresholds at least 0.3, the performance degrades 

with an increase in the leave threshold. When the leave threshold 

increases to 1.60, the response time is almost the same as in the 

random selection case. This is because a server will rarely leave 

the equivalent group after joining it. The resolvers essentially 

perform a random selection among the servers. 

The relatively poor performance for low values of  both join 

and leave threshold is caused by oscillation in server load. Since 

the thresholds are low, the equivalent server set at a resolver will 

usually contain only one server. Since all the clients are using 

anycasting, all requests to the same resolver will be directed to 

this single server. After a while, the performance of  the server 

degrades and another server will be favored by the resolver. All 

the clients will then be shifted to that server. The oscillation phe- 

nomenon can be clearly seen in Fig. 11. It shows the number 

of  requests per second on one particular server in the experi- 

ment with the join and leave thresholds both equal to 0.05. We 
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note that this oscillation effect may be exaggerated by our ex- 

perimental setup; a larger number of  resolvers and less frequent 

client accesses will tend to reduce oscillations. 

When join and leave thresholds become a little bit larger, 

the equivalent server set is l ikely to contain more than one 

server. This helps avoid the oscillation observed earlier. In our 

experiment, the best performance was achieved when the join 

threshold is 0.1 or 0.2 and leave threshold is 0.3 or 0.4. This 

is the area where oscillation is reduced and the anycasting 

mechanism does play a ro l e .  Fig. 12 shows the number of  

requests on a server using join threshold 0.1 and leave threshold 

0.4. We note that the load on the server in this case does not 

exhibit the rapid changes observed earlier. We are reassured 

by this experiment that the oscillation problem can be solved 

by introducing join and leave threshold to the resolvers and 

selecting appropriate values for them. 

C. Costs of  Anycasting 

Four new costs are incurred by the servers and the network 

due to our anycasting architecture. The costs are due to the 

server monitoring and push, the agent probe, and the client 

query resolution. The client anycast query resolution has cost 

equivalent to the usual domain name resolution. The anycast 

resolver architecture is such that anycast resolution can be 

combined with DNS lookup, making this cost negligible. 

The server push daemon periodically computes a smoothed 

average of  the measured server performance data. The cost of 

this computation is linear in the number of  server performance 

measurements. Push messages will typically be small, making 

bandwidth consumption negligible compared to the actual 

server accesses. Also, the push updates can be multicast to 

multiple resolvers to save on bandwidth. 

The cost of each probe to the network and to the server being 

probed is exactly the cost of  an additional access to that server. 

With probes done infrequent ly--Fig .  10 suggests perhaps once 

every 6-8 minutes - - th i s  will not represent a significant burden 

on servers. 

Several techniques can be used to increase the scalabili ty of  

the anycasting service. Naturally, each of  these techniques will 

have an effect on the performance. First, the server can con- 

trol the overhead for monitoring and pushes by adjusting the 

appropriate performance monitoring parameters. Likewise, the 

probing agent can control the overhead for probing via the fre- 

quency parameter. On a more coarse grain, the overall system 

can limit the number of  anycast groups that are tracked. These 

groups might be restricted to those that are popular and can ben- 

efit substantially from an application-layer server selection tech- 

nique. In a similar vein, a given resolver can track a subset of  the 

"most promising" servers in a given group, using longer time- 

scale information to identify which servers are most promising. 

VI. RELATED WORK 

The server or resource-finding problem has been the subject 

of  much investigation for over a decade. Initially, with low to 

moderate server loads, the problem was finding the desired net- 

work resource knowing only its name or property. Many tech- 

niques were investigated, including: 1) the use of  multicast or 

broadcast communication to "touch" all the locations where the 

resource may reside in an attempt to find it (e.g., [2], [23]); 2) the 

use of  various name server architectures to lookup the location 

of  the resource (e.g., [21], [14], [3]); and 3) the use of  caching 

a resource 's  location (not content) at sites where the resource is 

frequently accessed [30]. This early work typically dealt with a 

single instance of  the resource. The case of  a mobile resource 

was addressed through interesting techniques such as the use of  

forwarding addresses [13]. 

Beginning with initial services like ftp, archie, and 

g o p h e r ,  and culminating more recently with the World-Wide 

Web, the Internet has experienced a dramatic growth in the  

use and provision of  information services. This has resulted 

in heavy demands placed on servers and thus the desire to 

replicate (or mirror) servers. This adds a new dimension to the 

server-finding problem: it is now important to find the "best" 

server from among many content-equivalent servers. Studies in 

this area include: 

1) The original work by Partridge et al. [24], proposing the 

idea of  anycasting and discussing its network-layer sup- 

port. 
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2) A study by Guyton and Schwartz [15] which addresses 

the problem of locating the nearest server. The latter work 

also presents a classification of  "best" server location 

schemes. The work is related to earlier work on the Har- 

vest system [4] which provides a set of tools for gathering 

information from various servers and efficiently indexing 

and searching through this information. Tools for caching 

and replication of indices are also used in the Harvest 

system in order to improve the scalability of  the service. 

3) The SONAR network proximity service [22] in which the 

authors define a service that can return the server that is 

the closest (in hops) from among a list presented to it. 

4) Work by Carter and Corvella [ 10], [6] addressing the issue 

of server selection. Their selection, however, has been pri- 

marily based on the characteristics of the path leading 

to the server. While they acknowledge the desirability of 

using server load information as a guide to server selec- 

tion, their work does not address this issue (except for a 

limited experiment reported in [5]). 

5) The work by Colajanni and Yu [81, [9] considering how 

client requests may be scheduled among a set of repli- 

cated web servers. 

6) Cisco's DistributedDirector product which supports 

server selection based on hop count proximity and link 

latency. The system relies upon a distributed set of  agents 

(i.e., routers with appropriate software) that can supply 

hop count information (from their own routing tables) 

and probe servers for path latency. 

The Service Location Working Group of the 1ETF has been 

developing protocols to facilitate the discovery and selection of  

network services [31]. Thus, the high-level objectives of  their 

work and ours are quite similar. However, their focus has been 

on selecting network services within an enterprise network, not 

the global Internet. The Service Location Group has begun to 

consider the modifications necessary to support location in a 

global internet [27], [26], while maintaining backward compat- 

ibility with the solutions developed for an enterprise network. 

The concept of  probing the network and the servers to deter- 

mine performance measures is related to various tools and sys- 

tems that are used for network management purposes. An exten- 

sive set of  tools and systems are available; the CAIDA project 

maintains a living list s . Examples of  tools to monitor charac- 

teristics of paths and links include ping, traceroute, 6 and 

p a t h c h a r .  7 Examples of  systems to monitor web service in- 

clude commercial products such as Keynote 8 and NetScore, 9 

and public domain software such as Timeit.l° These monitoring 

systems are not integrated with server selection. 

Protocol approaches designed to estimate various network 

conditions are also related to our probing concept. The 

packet-pair technique [19] is one such technique designed to 

estimate the bottleneck rate on a path. Remote measurement 

5Available: http://www.caida.org/Tools/taxonomy.html 

6Available: ftp://ftp.ee.lbl.gov/traceroute.tar.Z 

7Available: ftp://ftp.ee.lbl.gov/pathchar/ 

8Available: http://www.keynote.com 

9Available: http://penta.ufrgs.br/gereint/anacapa 

1°Available: ftp://ftp.va.pubnix/com/pub/uunet/timeit-2.1.tar.gz 

and monitoring of  system performance has also been explored 

as part of  the extensive work on distributed system monitoring 

[281, [201. 

VII. CONCLUDING REMARKS 

As the Internet continues to grow, server replication will be 

increasingly important as a technique to scale services. The ef- 

fective utilization of a set of  replicated servers hinges upon the 

ability to appropriately allocate servers to clients. Simple tech- 

niques such as round-robin or nearest selection cannot accomo- 

date the diversity of selection criteria that developing services 

will demand. 

To address this, we have developed an application-layer 

architecture for the anycasting paradigm. Our architecture 

enables server selection based on a wide variety of  criteria, 

including both performance and policy concerns. Our architec- 

ture achieves scalability by using, replicated resolvers to handle 

queries from a set of  clients and by organizing the resolvers 

into a DNS-style hierarchy. 

We examined the performance of our architecture in some 

detail for an important server-selection criteria, namely client 

response time. Our approach estimates the client's expected 

response time at each server using a combination of  a rela- 

tively light-weight server push approach with a client-probe 

approach. Measured path-independent server performance (the 

pushed data) is calibrated using path-dependent response time 

measurements obtained via relatively infrequent probes. While 

we focused on HTTP servers operating within our architecture, 

the estimation technique has wider applicability to other types 

of  servers and within other contexts. 

We developed an experimental setup that allows us to 

distribute servers around the Internet without actually requiring 

them to maintain real data. Experiments that we conducted 

using our setup show that significant response time improve- 

ment that can be achieved with this technique over the use of  

performance-independent allocation mechanisms, including 

random and nearest selection. 

Avenues for future work include scalable techniques to se- 

lect different types of servers, the use of  network-layer support 

to collect path performance metrics, and variations on the spec- 

trum between multicasting and anycasting. We are currently in- 

vestigating the potential for active networking to provide path 

performance metrics and to provide native support for network- 

layer anycasting. 
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