
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000 455

Application-Layer Anycasting: A Server Selection

Architecture and Use in a Replicated Web Service
Ellen W. Zegura, Member, IEEE, Mostafa H. Ammar, Senior Member, IEEE, Zongming Fei, and Samrat Bhattacharjee

Abstract--Server replication improves the ability of a service
to handle a large number of clients. One of the important fac-

tors in the efficient utilization of replicated servers is the ability
to direct client requests to the "best" server, according to some

optimality criteria. In the anycasting communicat ion paradigm,
a sender communicates with a receiver chosen from an anycast
group of equivalent receivers. As such, anycasting is well suited to

the problem of directing clients to replicated servers.
This paper examines the definition and support of the anycasting

paradigm at the application layer, providing a service that uses an

anycast resolver to map an anycast domain name and a selection
criteria into an IP address. By realizing anycasting in the appli-

cation layer, we achieve flexibility in the optimization criteria and

ease the deployment of the service.
As a case study, we examine the performance of our system for

a key service: replicated web servers. To this end, we develop an
approach for estimating the response time that a client will experi-
ence when accessing given servers. Such information is maintained

in the anycast resolver that clients query to obtain the identity of

the server with the best estimated response time. Our performance
collection technique combines server push with resolver probes to

estimate the expected response time without undue overhead. Our
experiments show that selecting a server using our architecture
and estimation technique can improve the client response time by
a factor of two over nearest server selection and by a factor of four

over random server selection.

Index Terms--Anycasting, replication, server selection.

I. INTRODUCTION

U
" SERS increasingly view the Internet as providing more

than simple connectivity, but rather a range of sophisti-

cated and complex services. As this view becomes prevalent, it

becomes important to provide explicit support for the efficient

delivery of networked services. Such support must be scalable to

a large number of geographically widespread users, while main-

taining user-perceived quality of service (e.g., response time,

throughput, reliability).

Server replication [11] provides scalability by deploying

multiple copies of a server and sharing client load across

the copies. Server replication is appealing because it offers a

relatively straightforward method to potentially improve client

Manuscript received October 9, 1998; revised May 30, 1999; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. McCanne.

E. W. Zegura and M. H. Ammar are with the College of Computing,
Georgia Institute of Technology, Atlanta, GA 30332-0280 USA (e-mail:
ewz@cc.gatech.edu; ammar @ cc.gatech.edu).

Z. Fei was with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280 USA. He is now with the Department of Computer
Science, University of Kentucky, Lexington, KY 40506 USA.

S. Bhattacharjee is with the Department of Computer Science, University of
Ma.ryland, College Park, MD 20742 USA.

Publisher Item Identifier S 1063-6692(00)06790-X.

performance and reduce network load. A key issue in realizing

this potential is the method used for server selection. That is,

given a set of servers, how does a client select the "best" server?

A server selection system has the obvious design goal of

improving client performance. In addition, a server selection

system should satisfy the following goals. First, it should be

flexible in the specification of selection criteria. The "best"

server will vary depending on the service and (potentially)

on the preferences of the clients. A server selection system

should support a rich and flexible set of selection criteria.

Second, it should be suitable for wide-area server replication.

Although servers can be replicated locally in server farms, our

interest is in server selection with global replication across

geographically widespread locations. Local replication is both

easier and more limited in ability to handle request load from

widespread clients. Third, it should be deployable in the current

Internet without modifications to the network infrastructure.

Last, it should be scalable to a large number of services, clients,

and client requests.

A number of services are currently replicated, using both

local and global replication. The methods currently used for

server selection include:

1) Domain name system (DNS) modifications [18] to return

one IP address from a set of servers when the DNS server

is queried. The DNS server typically uses a round-robin

mechanism to allocate the servers to clients, thus this

technique is best suited to local replication of servers with

comparable capacity.

2) Network-layer anycasting [24], which associates a

common IP anycast address with the group of replicated

servers. The routing protocol routes datagrams to the

closest server, using the routing distance metric. Standard

intradomain unicast routing protocols can accomplish

this, assuming each server advertises the common IP

address. The limitations of network-layer anycasting

include lack of flexibility in the selection cr i te r ia- - the

routing protocol determines the (single) criteria, typi-

cally hop coun t - -and difficulty in extending to wide-area

selection.

3) Router-assisted server selection, as in Cisco 's Dis-

tributedDirector product [7], [12]. This product asso-

ciates a Cisco router with each replicated server to act

as the server 's agent. Client requests are directed to a

central loca t ion- - the DistributedDirector (DD) - -wh ich

queries the server agents to determine either hop count

or link latency between each server and the client. The

DD redirects the client to a server using the query results.

This solution is best suited to server selection within a

1063-6692/00510.00 © 2000 IEEE

456 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000

small to moderate-size domain, since it requires signif-

icant coordinated deployment of Cisco equipment and

relies on routing tables to determine hop counts from a

server to a client. For larger domains, scalability is likely

to be an issue.

4) Combined caching and server selection systems, such as

developed in several recent commercial systems (e.g.,

Akamai J, Sandpiper 2), which operate their own system

of caches containing content from a large number of

servers. Client requests are directed to a cache, based on

cache content and measurements of network and server

load. Relatively little information is available regarding

the operation and performance details of such systems.

The basic premise differs, however, from our focus on

"pure" server selection without deployment of caches.

None of the current solutions meet all of the design criteria out-

lined above.

Our proposed solution begins with network-layer anycasting.

We adopt a general view of anycasting as a communication par-

adigm that is analogous to the unicast, broadcast, and multi-

cast communication paradigms. In particular, we differentiate

between the anycasting service definition and the protocol layer

providing the anycasting service. The original anycasting pro-

posal [24] can, therefore, be viewed as providing an anycasting

service definition and examining the provision of this service

within the IP layer.

We move anycasting to the application layer, allowing us to

achieve flexibility in selection criteria, extension to the wide-

area, and ease of deployment. For scalability, we retain the best-

effort nature of the original network-layer anycasting service

definition. This paper describes our application-layer architec-

ture and develops a case study using the architecture for repli-

cated web servers. Our contributions are threefold:

1) We generalize the original definition of anycasting to de-

sign an anycasting service that offers considerable advan-

tages in flexibility over the traditional network-layer any-

casting service.

2) We develop an application-layer architecture to realize

our anycasting service. Our architecture provides for scal-

ability by using replicated resolvers to handle queries

from a set of clients and by organizing the resolvers into

a DNS-style hierarchy.

3) We examine the performance of our system for client

access to replicated web servers. We develop an ap-

proach for estimating the client response time that

combines server push with resolver probing. This metric

is challenging to estimate because the response time is a

function of both server load (relative to capacity) and of

path load between the server and client. Our experiments

show that selecting a server using our architecture and

estimation technique can improve the client response

time by a factor of two over nearest server selection and

by a factor of four over random server selection.

The paper is structured as follows. In Section II we define

anycasting as a paradigm and identify the components of our

1Available: http://www.akamai.com/

2Available: http://www.sandpiper.com/

application-layer architecture. Section III describes a key aspect

of the architecture, specifically maintenance of performance

metric information. Sections IV and V consider the use of the

system for replicated web access. Our technique for estimating

response time is developed in Section IV, while Section V

describes a set of performance evaluation experiments. We de-

scribe related work in Section VI and conclude in Section VII.

II. APPLICATION-LAYER ANYCASTING: SYSTEM OVERVIEW

The anycast paradigm shares characteristics with both the

multicast and unicast paradigms. Similar to multicast, the any-

cast paradigm consists of groups of destinations, with the se-

mantics that each destination in a given anycast group is equiv-

alent in some sense. Similar to unicast, a sender that communi-

cates with an anycast group typically interacts with one destina-

tion, chosen from the anycast group. This section describes our

anycasting service and the architecture for providing the ser-

vice at the application-layer. We conclude the section with an

assessment of how well the architecture meets the design goals

outlined in the Introduction.

A. Architecture

In our architecture, we define an anycast group to be a (po-

tentially dynamic) set of unicast or multicast IP addresses. Such

a definition allows considerable flexibility in the types of ser-

vices that our selection method supports. We see two particu-

larly useful consequences of this definition. First, a set of servers

may be grouped together based on equivalence from a user's

perspective. That is, "exact" replication is not required for mem-

bership in the same group. A user might define an anycast group

to contain, for example, the web sites for CNN Interactive, Time

Magazine, and USA Today. Second, allowing multicast IP ad-

dresses means we can support services that require multiple

servers to provide a single instance of the service. For example,

a client may wish to merge or edit video clips that can be found

on different sets of replicated video servers. The desired service

is provided by a group of servers, one per video clip.

In our architecture, a client interacts with an anycast group

via a query-response protocol illustrated in Fig. 1. The anycast

query contains the anycast domain name (ADN), which identifies

the group, and the selection criteria to be used in choosing from

the group. The anycast response contains the IP address for the

selected server. As illustrated in Fig. 1, the architecture centers

around the use of a hierarchy ofanycast resolvers that perform the

ADN to IP address mapping. The resolver receives the anycast

query and applies afilter to control the selection. A filter operates

on a set of anycast group members and returns a (possibly empty)

subset. A second filter may be applied at the client. Filters may

be content-independent (e.g., select any member at random), or

based on performance metrics or policy information.

To do the mapping, the resolvers maintain two types of in-

formation: 1) the list of IP addresses that form particular any-

cast groups; and 2) a metric database of information associated

with each member of the anycast group. As described further

below, authoritative resolvers maintain the definitive list of IP

addresses for a group, whereas local resolvers cache this in-

formation. A membership protocol updates the anycast group

ZEGURA et al.: APPLICATION-LAYER ANYCASTING 457

CLIENT
anycast service

interface

anycast domain
° ° °

filter specification

IP address f l i t t e r r

anycast query

anycast resolver

anycast response

Fig. 1. Anycast name resolution query/response cycle.

information, and a service creation protocol defines new any-

cast groups. We do not discuss the details of such protocols

here; some effort in this area has been undertaken in the IETF

[31]. Many of the metrics are locally significant, thus they are

maintained independently at each anycast resolver that has the

ADN group membership information cached. The authoritative

resolver may provide its locally maintained metric information

as a "hint" whenever it receives a request from another resolver

for the anycast group member list for a given ADN.

The structure of ADNs influences the operation of the any-

casting system in general, and the anycast resolver architec-

ture in particular. We use a DNS-style naming and directory

service architecture for scalability and ease of integration into

the existing Internet infrastructure. While the anycast resolver

is logically distinct from other name servers like DNS [21],

the functions of an anycast resolver could be integrated with

the operation of DNS. In our scheme, an ADN is of the form

(S e r v i c e) % <DoraainName). Such a name will typically be used

as an argument to a library call that invokes the anycasting ser-

vice and results in the mapping of this ADN to an IP address.

The DomainName part of the system indicates the location of

the authoritative anycast resolver for this ADN. The S e r v i c e

part of the ADN identifies the service within the authoritative

resolver.

The architecture for handling anycast requests is shown in

Fig. 2. Each network location is preconfigured with the address

of its local anycast resolver in the same way local DNS servers

are configured. An anycast client makes its initial anycast query

to its local resolver. If the resolver is authoritative for the ADN

in the query or if it has cached information about the ADN, it

can process the query immediately and return the appropriate re-

sponse. Otherwise, the local resolver determines the address of

the authoritative resolver for the DomainName part of the ADN

and obtains the anycast group information from this resolver.

Determining the address of the authoritative anycast resolver

for a particular domain can be done using techniques similar

to DNS authoritative name determination [21].

Authoritative R e s o l v e r

for ADN X
Local Anycas t Reso lver

3: request for ADN X ADN X
2: determine authoritative resolver [members and metrics members I metrics

5: cache ADN X members, metrics; 1. IP addr 01 metrics 0
IP addr 1 metrics 1 initiate metric~ collection 4: list ofADN X e e e e e ,

1 : anycast request [members and metrics

for ADN X J] 6.' ~ycast response

C
Anycas t Client

Fig. 2. Anycast request-handling architecture.

B. Design Goals Revisited

With respect to the design goals presented in the Introduc-

tion, the proposed architecture clearly meets the first three goals.

The user specifies the selection criteria by way of the filters,

thus supporting flexibility in selection. The resolvers maintain

lists of servers and explicitly track metrics associated with each

server. These metrics may include both path and server-load

characteristics, as is necessary for wide-area server selection.

The architecture does not rely upon changes to the network in-

frastructure, thus it is deployable in the current Internet. As we

will see in the next section, modest changes to the servers can

facilitate metric collection.

Whether the architecture meets the scalability design goal is

less clear. The architecture attempts to achieve scalability in

three ways. First, the service is best-effort, thus explicitly al-

lowing techniques that improve scalability at some sacrifice in

optimal performance. For example, a given resolver might only

track the performance at a subset of servers that are deemed to

be most promising, based on some (longer time-scale) mech-

anism. We have not, however, fully explored the performance

trade-offs associated with such scalability techniques. Second,

we use DNS-style replication and hierarchy in the resolvers,

thus reducing the load on any one resolver. Third, we have devel-,

oped a relatively efficient mechanism to track server response

time, using a combination of light-weight server pushes and less

frequent, heavier-weight probes. Various methods for metric

maintenance are discussed next. The hybrid push-probe mech-

anism is discussed in detail in Section IV, and the performance

is evaluated in Section V.

III. MAINTENANCE OF METRIC INFORMATION IN RESOLVERS

The methods used by the resolver to maintain selection

metrics are key to the performance of the architecture. Metrics

fall into three general categories: those that depend only on

server characteristics, those that depend on characteristics of

the server-client path, and those that depend on both server and

path. A variety of techniques will be used to maintain metric

information, depending on factors such as the category, the

accuracy required, and the cost of burdening the network and/or

the server. Examples of maintenance techniques include:

R e m o t e S e r v e r P e r f o r m a n c e P r o b i n g :

In this technique, a probing agent makes periodic queries

to the servers to estimate the performance that a client

would experience. These queries appear to the server to

458 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000

be legitimate client requests, and thus they measure ex-

pected client performance. Probing agents would nor-

mally be co-located with resolvers but may also be run-

ning at other locations. Each probing agent acts as a

proxy for real clients within a certain region, thus the

farther away a client is (in Internet "distance") from a

probing agent, the less useful the probe measurements.

This technique measures network path performance and

does not require server modification; on the other hand,

the load on the network and servers may be significant.

Server Push:

In the server push technique [16], [17], the server

monitors its performance and pushes this information

to the resolvers when interesting changes occur. For

additional scalability, the update information can be

network-layer multicast to all resolvers that maintain

information about the server. The anycast resolvers

can join well-known multicast groups for each server

that they are interested in, allowing the servers to

disseminate performance information without knowing

the identities of the resolvers.

The server can control the network traffic generated by

this mechanism b2¢ adjusting the monitoring and push

schedules. The primary advantages of this technique are

scalability and accurate server measurements; the dis-

advantages are that the servers must be modified and the

network path performance is not easily measured. Some

properties of the one-way path from the server to each

resolver could be measured as part of the multicast push.

For example, the hop count from the server to the re-

solver could be determined via use of the TTL.

Probing for Locally Maintained Server Performance:
A variation on the probing technique allows the probing

agent to obtain server load information. Specifically,

each server can maintain its own locally monitored

performance metrics in a globally readable file. Remote

probing locations can then read the information in the

file (as opposed to attempting to exercise the server)

to obtain the desired information. Since probes merely

read from a locally maintained file, they may represent

less of a burden on the server than the probes that mimic

client requests.

User Experience:

Users currently make server access decisions based in

part on past experience. Collecting information about

past experience offers a coarse method of maintaining

server performance. The primary advantage of this

method is that the information is collected for free; no

additional burden is placed on the server or the network.

The quantity and accuracy of the information can be

increased by sharing of experience among clients. For

example, a gateway into a campus might maintain server

performance information based on the experience of all

clients on the campus. An architecture for collection

and sharing of such information is being developed in

the SPANDS project [29].

Table I summarizes the four techniques based on performance

and cost dimensions. The first three columns are measures of

system overhead. The Net Load column represents the number

TABLE I

COMPARISON OF METRIC COLLECTION TECHNIQUES

Net Server Server Exercises Accuracy

Load Mod ' Load Net Path

Probing 2PTp No High Yes Moderate

Server Push T0 Yes Low No* High

Reading Server Log 2PT e Yes Moderate Yes High

User Experience None No None Yes Low/V~ies

(* Can measure one-way path information)

of messages generated per unit time to obtain the metric data

from one server, where P is the number of probing agents, Tp

is the period of probing, T8 is the period of server push. The

Server Push messages can be multicast rather than unicast, re-

ducing their burden. The Server Mod column indicates whether

the server must be modified to allow the metric to be collected.

The Server Load column expresses (relatively) how much ad-

ditional load is placed on the server by the collection of the

metric data. The last two columns are performance measures,

indicating whether the method exercises network path, and (rel-

atively) how accurately the method is able to maintain the met-

tics that it can evaluate.

The appropriate technique to use for maintaining perfor-

mance metric information is highly dependent on the service

details and context. In the next two sections we examine

in detail a technique that is well suited to selection among

replicated web servers.

IV. CASE STUDY: W E B SERVER RESPONSE TIME

We turn our focus to the issue of how our application-layer

architecture can be used for selection amongst replicated web

servers. In particular, we design and evaluate a performance

monitoring system for the estimation of service response time

experienced at a client and use the estimates to guide selection

of servers within our system.

The response time metric is important because it directly cor-

relates with a user's perception of the quality of service. In ad-

dition, it is a very difficult metric to monitor since it depends

on server capabilities (e.g., speed and number of processors at

the server), current server load (e.g., number of queries cur-

rently being served), network path characteristics (e.g., propa-

gation delay on the path), and current path load. Thus, the metric

collection technique must measure both server and path perfor-

mance.

The metric collection technique should meet two basic goals.

First, it should be scalable to a large number of servers, any-

cast groups, and clients. The load placed on any component of

the system--servers, network resources, resolvers, clients--hn

collecting metric data must be kept "reasonable". Second, the

metric collection should be relatively accurate. The service pro-

vided by anycasting can inherently deal with inaccuracy in the

absolute values of the metrics, since the service makes a relative

selection amongst servers. The service is also somewhat robust

against errors in the relative values of the metrics, due to the

best-effort nature of the service. The performance penalty as-

sociated with out-of-date or slightly inaccurate metric data will

ZEGURA et al.: APPLICATION-LAYER ANYCASTING 459

not typically be severe; rather than selecting the "best" server,

the service may identify a "nearly-best" server.

The two goals constrain the design of the metric collection

technique in the following ways. First, metric updates should

occur primarily in response to significant changes in metric

value, rather than on a periodic basis. This implies monitoring

of metric values to determine when updates are needed. Second,

servers should have some control over the load incurred due to

metric collection. A server should be able to decrease metric

collection load, if desired.

A: Overview: Metric Collection Technique

To build a metric collection technique meeting the goals

and constraints outlined above, we combine the probing and

server-push techniques described in Section III. Probing gives

the most accurate estimate of what the probing agent expects in

terms of server response time. Probes, however, can represent

a significant overhead if performed frequently. Server pushes,

while more lightweight, are less accurate predictors of response

time since they only propagate server performance information.

Our technique combines server push with less frequent periodic

probing.

1) Server-Push Algorithm: The server will measure its per-

formance and push performance information according to an

update algorithm. To define the way the server measures its per-

formance, consider the server response cycle

assign process to handle query

parse query

locate requested file

repeat until file is written:

read from file

write to socket

To assess its performance, the server measures the time from

just after assigning the process until just before doing the first

read. These measured values are averaged and smoothed before

being used in the update algorithm described below. (Note that

this is the cycle used by the Apache server. We expect that other

web servers will have a similar high-level processing structure.

If this is not the case, the server measurements will need to be

modified accordingly.)

We want the server to push performance information when-

ever its measured performance has changed sufficiently to be

"interesting," with some constraint on the maximum frequency

of updates so as to bound the overhead of the updating mecha-

nism. The task of updating link state in a distributed routing en-

vironment has precisely the same criteria, thus we have adopted

the link state update algorithm used in the ARPANET [25]. The

update algorithm is parameterized by a measurement interval

I , a maximum threshold T, and a reduction factor R. The al-

gorithm maintains a current threshold C, initialized to T. The

server measures its performance over each interval I . If the new

measured value changes from the previous measurement by at

least C, the new measurement is pushed, and C is reset to T. If

the state does not change by at least C, Cis reduced by _R. When

C becomes 0, the state will be pushed, and C will be reset to T.

The algorithm will send updates at least every T I / R time units

and at most every I time units.

2) Agent Probe Mechanism: The probe is made to a well-

known file that is maintained at anycast-aware servers specif-

ically to service probe requests. The file contains the most re-

cent measured performance value by the server and is padded

with dummy data. Each probe results in a response time mea-

surement, taken from just before sending the query to just after

receiving the complete response. This time' depends on server

and path characteristics and on the size of the file being probed.

3) Hybrid Push~Probe Technique: We combine the perfor-

mance value pushed by the server with the response time mea-

sured by the probes to keep an estimate of server response time.

The idea is to use the probes to get a measurement of the re-

sponse time that includes the network path. The measurement

is then used to calibrate the more frequently pushed server time

value to get an expected response time at a given resolver.

Specifically, let R denote the most recent measurement of re-

sponse time when probing for the well-known file. As indicated

earlier, the server includes in the well-known file the most recent

performance value measured as described above. Let S denote

the server time value reported in the file during the most re-

cent probe. In between consecutive probes the server typically

pushes a sequence of server values. Let S(i) denote the ith value

pushed by the server. The resolver adjusts the server-reported

value S(i) by multiplying by an adjustment factor A = R/S .

Thus, the resolver estimates the current response time as R(i) =

A * S(i). Typically, the probes will occur less frequently than

the server pushes its measured time value, thus a given adjust-

ment factor will be used to adjust a sequence of pushed server

values, until the next probe occurs and updates A.

As will be shown by the results of the experiments, this tech-

nique works quite well for our purposes. To understand the in-

tuition behind it, we note that the value of S is the average time

until the server begins to serve a page and includes delays in-

curred because of the need to process other requests at the server.

In a sense S is the time required for the request to receive one

unit of service and A = R / S is an estimate of the number of

units of service required to service a page. While S is a function

of server load, the value of R, and consequently A, is strongly

dependent on the characteristics of the path from server to client.

B. Evaluation of Push-Probe Technique

In Section V, we examine the performance of the overall any-

casting system. Prior to combining all parts of the system, we

evaluate the accuracy of the metric collection technique in isola-

tion. To do this, we experimented with various locations and ca-

pabilities of servers and resolvers, variations in server load, and

alternative file sizes. Fig. 3 shows a typical result, plotting the

estimated and actual values of response time over 270 queries.

The x-axis indicates the index of each query.

In this particular experiment, the probing agent was at the

University of Maryland, College Park, and the server was lo-

cated 12 Internet hops away at Georgia Tech, Atlanta. The agent

made requests to the server according to an access log file from a

real server. That is, the access log file was used to determine the

time of the query (relative to the starting time of the experiment)

and the size of the particular file to request. Approximately 26

minutes elapsed from the first to the last access, thus the average.

interarrival time of accesses was 5.8 s. The server was loaded

4 6 0 IEEE/ACM T R A N S A C T I O N S ON N E T W O R K I N G , VOL. 8, NO. 4, A U G U S T 2 0 0 0

2

1,8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Client expected response time and actual response time

Client expected time
Client actual time -+--.

t , , ! !

¢ ' i,
!' !

i / Ill'

i i i i i

50 100 150 200 250
Access

Fig. 3. Response time estimation using proposed metric collection technique•

by other clients that also made log-driven requests. The server

pushed its load using the push algorithm with threshold value

(T) 0.01, reduction factor (R) 0.002 and measure interval (I)

4 s. Thus, a push occurred at most every 4 s and at least every

20 s. The agent probed for the well-known file every fifty ac-

cesses.

This plot demonstrates that our method yields estimated re-

sponse times that are relatively similar to the actual response

times. That is, the estimate tends to increase when the actual

t ime increases, and vice versa. However, the estimate is not al-

ways accurate in the absolute sense, with the estimated time gen-

erally higher than the actual time.

C. Refinement

A potential problem with an approach that identifies the best

server to clients is that of instability. As clients discover a newly

designated best server, they all divert their workload to that

server, thus off-loading one or more servers which now become

the designated best servers, and so on.

To address this issue we introduce the concept of the set

of equivalent servers (ES) which is defined as the subset of

the replicated servers whose measured performance is within

a threshold of best performance. This set of equivalent servers

is recomputed every time a new pushed value is ~eceived at the

resolver. In answering an anycast query, the resolver picks at

random from this set of equivalent servers. The set ES is com-

puted according to the following algorithm, executed whenever

a new push or probe measurement is received:

compute the new estimated response time for server

sort servers according to estimated response time

ES = ES U {Server with minimum response time estimate}

Rmin = minimum response time estimate

for each server j C ES

if (Rj - R m i n > Te)

then ES := ES - { j };

for each server j ~ ES

if (R j - / ~ m i n ~_ Tj)
then ES := ES U {j};

i
: ab ,~t ,,

. L a J a s < ,

1 A n y ~ t
Pe~ormnnoe '* Query!

: Rupon~

. ._~__ j

t Probe O l l e 0 d

. ~_~_i

Fig. 4. Software components of the application-layer anycasting architecture.

The leave and join thresholds re and Tj are such that Te _> ~-j.

Together they allow a form of hysteresis used to achieve stability

in the constitution of the set ES.

As will be illustrated by the results of the experiments in the

next section, this algorithm successfully deals with the oscil-

lation problem. When a server reports good performance, the

resolver will direct more (but not all) clients to this server. The

selection of the thresholds and their effects are studied in Sec-

tion V.

W. EXPERIMENTAL EVALUATION

In this section we describe a set of experiments that we con-

ducted over the Internet, using our proposed anycasting archi-

tecture and the technique described in Section IV to monitor

response time. We first describe the experimental setup, then

discuss results from experiments to assess the overall system

performance.

A. Experimental Setup

The experimental setup is designed to mimic as much as pos-

sible the true operation of a set of Web clients and servers using

the anycasting architecture, depicted in Fig. 4.

1) Anycast-Aware Servers: We modified the Apache

HTTP 3 daemon to act as a performance-monitoring server as

described in Section IV. We wanted to distribute anycast-aware

web servers, that serve realistic content, without distributing a

large amount of data. The modified web server emulates the

real server in the number of bytes sent for each request, without

actually maintaining the files of the real server. We achieve this

by having our modified server maintain a small set of dummy

files and a table containing tuples of the type (f i l e n a m e ,

s i z e) . The table is constructed using file sizes taken from

an actual server. Whenever an access is made to our modified

server, a table lookup is performed to determine the file size.

Then the name of the requested web page is mapped into the

name of the next largest file maintained on disk. This mapping

is such that the same webpage name will always map to the

same file. An amount of data equal to the size of the original

file is then read and transmitted in response to the request.

Four files of each size are kept, to partially avoid false caching

effects. This method of server emulation comes close to the

operation of a real server, and allows any optimizations that the

3Available: http://www.apache.org/disff.

ZEGURA et al.: APPLICATION-LAYER ANYCASTING 461

server may perform (e.g., by caching data read from disk) to be

reflected in our experimental results, albeit approximately.

The modified server was also instrumented to monitor its

performance by recording time values as described previously.

These values are recorded in a performance measurement file

that the server shares with the performance push daemon. The

performance push daemon executes the update algorithm given

in the Section IV. If the variation in server performance or the

expiration of an epoch warrants a performance push, the perfor-

mance measure is pushed to the resolvers.

Finally, the modified web server maintains a special file that

is requested by probing agents. The probing file is the same size

at all servers. We use the average size of files recorded in the log

file as the size of this special file. Note that the validity of the

probing technique does not depend on the probe file size being

"representative" of the server files; the response time measured

at probing can be used to compare the relative performance of

servers as long as the sizes of probing files are the same at all

servers. This is important, since web item size distributions have

been observed to have infinite variance [1].

2) Clients: We modified the NCSA Mosaic 4 client to have

the desired behavior. For our prototype we use a simple form

of API that encodes the specification of the anycast group

and selection criteria in a name used to reference the service.

Specifically, we use a metric-qualified anycast domain name

(MQ-ADN) of the form (Filter) • (ADN) where Filter

provides information about the filter to be used by the resolver.

In the prototype, the resolver returns a host name, which we

pass to DNS to determine the IP address.

The prototype processing is shown in Fig. 5. We intercept

calls to the g e t h o s t b y n a m e () library call and check if the ar-

gument is an ADN, by checking for a . a n y suffix. For ADN ar-

guments, an anycast resolver query is formulated, and the reply

is used as input to the original g e t h o s t b y n a m e () procedure

to return the desired IP address. If the g e t h o s t b y n a m e () ar-

gument is other than an ADN, then the usual procedure is called

directly. This allows us to use traditional applications without

modification and gives the option of using them with or without

the anycasting feature.

The behavior at our clients consists of two parts. First, a client

must determine a set of requests to make to the replicated ser-

vice over time. Second, for each request, a client must deter-

mine which server to access. For the first part, we use the ac-

cess logs from a moderately busy web server (approximately

4000 accesses per hour) to generate client requests. The client

reads the access log file to determine a filename to access and a

time, relative to the start of the experiment, to issue the request.

The clients schedule each subsequent access at this calculated

relative access time. In this way, the clients replay the logged

accesses.

We want to compare the performance experienced by clients

that are anycasting, as compared to clients that use other

methods to select a server. We support three methods for

determining which server to access for a request: 1) querying

the anycast resolver to determine a best server; 2) choosing

a server at random; and 3) choosing the server that is closest

4Available: ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/source/Mosaic-src-2.6.tar.Z.

I gethostbyname] other
IP Address

~. DNS

~ o m a i n Names

Client Filter

Fig. 5. Implementation using metric-qualified ADN's.

to the client based on hop count. We control which method is

used on a per-client basis.

3) Anycast Resolver and Probing Agent: For the probing

agent we used a modified NCSA Mosaic client that periodi-

cally queries each server in the anycast group for the probing file

(with the performance data), and communicates the end-to-end

response time and performance data to the resolver. The anycast

resolver can process two different types of performance updates,

corresponding to server pushes and client probes. It maintains a

database of anycast group members and their current push and

probe data. In response to query messages, the resolver returns

one of the best .servers as computed using the algorithm given

in Section IV.

4) Client and Server Internet Locations: In each of the ex-

periments there were four anycast-aware servers, one running at

the University of California, Los Angeles, one running at Wash-

ington University, St. Louis, and two running at Georgia Tech.

The anycast resolvers were run at the University of Maryland,

College Park, and Georgia Tech. The anycast-aware clients were

located at the University of Maryland and Georgia Tech (see

Fig. 6).

B. Evaluation of Anycasting System

In this section, we describe several experiments to evaluate

the performance of the system. The experiments answer five pri-

mary questions: 1)When all clients use the same method to se-

lect a server, how does the performance of anycasting, random,

and nearest server selection compare? 2) When some clients use

anycasting and some use random access, how does the perfor-

mance vary? 3) What is the effect of variation in the push and

probe frequencies? 4) What is the effect of the join and leave

thresholds? and 5) Does the equivalent server technique effec-

tively reduce oscillations?

Our results are based on a set of experiments involving four

servers and 20 clients. They show that anycasting can offer a

considerable performance benefit over random or nearest-server

selection. Specifically, we observe a factor of four improvement

in response time for anycasting over random selection and a

factor of two improvement over nearest server selection. The

performance experienced by another set of clients and servers

will, of course, be dependent on the loading patterns for the sys-

tems and the server-client paths. The question of the expected

performance gain for a "typical" set of clients and servers re-

mains open.

We have 20 clients running, 16 at Georgia Tech and four at the

University of Maryland. The clients are organized in four groups

of five clients each. Each group generates requests equal to one

log file with each client within the group allocated one-fifth of

the requests in the log file. In order to put enough load on the

462 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000

WU ~ UMD

_ j 3 ho.s

UCLA GT

Fig. 6. Snapshot of experimental topology.

12

8

6

, i !
4

iil
2

o

Client response time using anycastJng arxd choosing a server at random

' []]
i TI!

t Ali
T i[ii

20 40 60 80 100
Offset (Requests)

Fig. 7. Comparison of performance of a client in all-anycasting and all-random

experiment.

servers, we also scale the log by a scaling factor k. For each

access read, the client requests the same document k successive

times. By changing the value k, we can generate different levels

of traffic on the servers and use the log of our moderately busy

server to get the effect of a busy server. In our experiments, we

set k to 3. Except in the last experiment testing the effects of

join and leave threshold on the performance, the resolvers set

the join threshold to 0.1 and leave threshold to 0.3.

In Fig. 7, we depict the performance experienced by a client

in two settings. In one setting, the clients all use random server

selection; in the other, the clients all use anycasting for server

selection. In the anycasting case, the probe agent accessed the

servers once every 4 minutes, however, the duration of the ex-

periment short enough (2 minutes) that only one probe was per-

formed at the beginning. The server performance monitor was

run once every 10 s. (Note that this is the interval at which the

server logs its own performance; depending upon the state of

the system, a push update may or may not be issued at every 10

s interval. However, regardless of activity at the servers, a push

update was issued at least once every 50 s.)

This plot shows the response time experienced at a single

client, in each of the two settings, over a sequence of 100 re-

TABLE II

PERFORMANCE OF SERVER LOCATION SCHEMES.

Server Location [Avg. Response Standard
Algorithm [Time (sec.) Deviation (sec.)

Anycasting] 0.49 0.69

Nearest Server I 1.12 2.47
Random 2.13 6.96

quests. The experiments for the two settings each took about

2 minutes each; the two experiments were run one right after

the other. The experimental setup keeps the total server load

constant from one experiment to the next, however, we could

not control variation in the load on network paths. Thus, the re-

sponse times for a given request cannot be directly compared.

Instead, the important feature of the plot is the relative values

over the complete set of accesses. The response time in the any-

casting case is always less than 4 s, and generally less than 2 s,

while the response time in random case can exceed 12 s.

Table II summarizes the comparison between the different

methods for identifying servers. Mean and standard deviation

of response time are reported, based on the values experienced

by all clients participating in the experiment. Each value in this

table results from an experiment that lasted about 30 minutes

with about 2000 accesses. The three separate experiments were

run back-to-back. In addition to the random and anycasting se-

lection methods, the table also includes the nearest hop count

method. We note that choosing the nearest server improves upon

random selection, however, another factor of two improvement

is possible with anycasting selection. The nearest server and

random selection methods also exhibit much higher standard

deviation than the anycasting selection, leading to a more un-

predictable service.

In the previous experiments, all of the clients used the same

server selection method. In Fig. 8, we vary the percentage of the

clients using the anycasting method as opposed to random se-

lection. The x-axis indicates the percentage of clients that are

anycasting, ranging from 0% (i.e., all clients use random selec-

tion) to 100% (i.e., all clients use anycasting). Three response

time curves are shown: average response time for clients who

anycast, average response time for clients who select randomly,

and overall average response time. For each x-axis value, we

run five separate 30-minute experiments. Each experiment pro-

duces an average response time for anycasting clients and an av-

erage response time for random selection clients. We average the

five values and take confidence intervals to produce the curves.

We note that average response time over all clients decreases

from 2.1 to 0.5 s when the percentage of anycasting clients in-

creases from 0% to 100%. The average response time for the

clients selecting at random also improves as more clients use

anycasting, due to the better load balancing achieved on the

servers. The average response time for anycasting clients in-

creases from 0.3 to 0.5 s when the percentage of anycasting

clients changes from 20% to 100%. The anycasting mechanism

performs relatively better when server load is unbalanced, since

more lightly loaded servers can be identified and used. How-

ever, even when all clients are anycasting, the performance is

quite good.

Z E G U R A et at.: A P P L I C A T I O N - L A Y E R A N Y C A S T I N G 4 6 3

2.5
Average response time varying with percentage of clients doing anycasting

8

2
g

1.5

0.5

Average overall
Average over anycasting clients -

Average over random clients

. -'- .

0 i

o 2'0 ,o 6'0 8'0
Percentage of anycasting clients(%)

100

Fig. 8. Response time varying with percentage of clients using anycasting.

g

g

2

1.8

1.6

1.4

1,2

1

0.8

0.6

0,4

0.2

0

Average response time varying with probe end push frequency

Probe frequency (times per minute) = 0.50
Probe frequency times per minute = 0.25 ~-.-~- --
Probe frequency Itimee per minute I = 0.17
Probe frequency (times per minute) = 0.13 -~
Probe frequency (times per minute) = 0.10 ~ . -

\ \

"~::::=:::= 2-'--.~ 2::::::

i i i i i
2 4 6 8 10 12

Push frequency (times per minute)

Fig. 9. Response time varying with push and probe frequency.

Also included in Fig. 8 is the confidence interval for each

point with 90% confidence level. The confidence intervals of

response time for anycasting clients are rather small, while the

confidence intervals of response time of random clients are

much larger. This is not surprising if we consider the variation

observed earlier for random accesses. We can conclude from

the data that the anycasting clients perform a good deal better,

on average, than the random clients across the full range of the

experiment.

In Fig. 9, we analyze the performance of the anycasting

system for varying values of probe and push frequencies.

The value of push frequency is the maximum value; pushes

will occur less often if the conditions warrant. All clients

are using the anycasting mechanism. For each data point,

the average response time is recorded over a period of 30

minutes. In this experiment, we notice rather sharp regions

in the probe-frequency/push-frequency space, beyond which

increases in frequency do not result in appreciable improve-

ments in performance. Most notably, more than two pushes

per minute yields little performance gain unless the probing

frequency is very low. Further, a tradeoff between push and

probe frequencies is evident. For high push frequencies,

m

g
ea

2.5

1.5

0.5

Average response time varying with join a n d leave thresholds

join thrashold=0,05 -e - -
l.'°in threshold-0-. 10 *~---
join thrashold=0.20 -B--
join threshold=0.30 -M--
join threshold=0.40 -.=~;~*

.... ~;;!!"

-.-S;~:

, ' , x t - . - -

o12 oi, o10 o10 ; ti2 tl,
Leave threshold

1.6

Fig. 10. Response time varying with join and leave thresholds.

e.g., 12 pushes per minute, the average response time when

probing every 10 minutes (probe frequency = 0.10 probes

per minute) is comparable to response times achieved by one

probe every 2 minutes (probe frequency = 0.50 probes per

minute) with 1 push per minute. This ability to trade-off probes

for server pushes leads in general to a more scalable system:

server pushes can be connectionless and multicast, with push

frequency controlled by some server-specific process (e.g.,

taking current server load and policies into account), while

probes will be connection-oriented unicast transactions.

In our last experiment, we explore the effects of the join and

leave thresholds in the resolver algorithm. Recall that these de-

termine when a server is added or removed from the set of equiv-

alent servers. When the thresholds are low, the algorithm is con-

servative in adding servers to the set, and aggressive in removing

servers from the set. Thus, the set tends to be small. When the

thresholds are high, the addition process is aggressive, while the

removal process is conservative. Thus, the set tends to be large.

Fig. 10 shows the results of our evaluation. Each data point is

the result of an experiment that lasts about 30 minutes. For a

join threshold less than 0.3, we observe an initial performance

improvement as the leave threshold is increased, followed by

performance degradation as the leave threshold continues to in-

crease. For join thresholds at least 0.3, the performance degrades

with an increase in the leave threshold. When the leave threshold

increases to 1.60, the response time is almost the same as in the

random selection case. This is because a server will rarely leave

the equivalent group after joining it. The resolvers essentially

perform a random selection among the servers.

The relatively poor performance for low values of both join

and leave threshold is caused by oscillation in server load. Since

the thresholds are low, the equivalent server set at a resolver will

usually contain only one server. Since all the clients are using

anycasting, all requests to the same resolver will be directed to

this single server. After a while, the performance of the server

degrades and another server will be favored by the resolver. All

the clients will then be shifted to that server. The oscillation phe-

nomenon can be clearly seen in Fig. 11. It shows the number

of requests per second on one particular server in the experi-

ment with the join and leave thresholds both equal to 0.05. We

464 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000

5O

45

4O

35

'5 25

15

10

5

0

Fig. 11.

Load Pattem (Join Threshold = 0.05, Leave Threshold = 0.05)

i

100 200 300 400 500 600 700 800 900
Time (Seconds)

Server load with join threshold = 0.05 and leave threshold = 0.05.

$

E

Fig. 12.

Load Pattern (Join 'Threshold = 0.10, Leave Threst~old = 0.40)

300 400 500 600 700 800 900
Time (Seconds)

Server load with join threshold = 0.10 and leave threshold = 0.40.

note that this oscillation effect may be exaggerated by our ex-

perimental setup; a larger number of resolvers and less frequent

client accesses will tend to reduce oscillations.

When join and leave thresholds become a little bit larger,

the equivalent server set is l ikely to contain more than one

server. This helps avoid the oscillation observed earlier. In our

experiment, the best performance was achieved when the join

threshold is 0.1 or 0.2 and leave threshold is 0.3 or 0.4. This

is the area where oscillation is reduced and the anycasting

mechanism does play a ro l e . Fig. 12 shows the number of

requests on a server using join threshold 0.1 and leave threshold

0.4. We note that the load on the server in this case does not

exhibit the rapid changes observed earlier. We are reassured

by this experiment that the oscillation problem can be solved

by introducing join and leave threshold to the resolvers and

selecting appropriate values for them.

C. Costs of Anycasting

Four new costs are incurred by the servers and the network

due to our anycasting architecture. The costs are due to the

server monitoring and push, the agent probe, and the client

query resolution. The client anycast query resolution has cost

equivalent to the usual domain name resolution. The anycast

resolver architecture is such that anycast resolution can be

combined with DNS lookup, making this cost negligible.

The server push daemon periodically computes a smoothed

average of the measured server performance data. The cost of

this computation is linear in the number of server performance

measurements. Push messages will typically be small, making

bandwidth consumption negligible compared to the actual

server accesses. Also, the push updates can be multicast to

multiple resolvers to save on bandwidth.

The cost of each probe to the network and to the server being

probed is exactly the cost of an additional access to that server.

With probes done infrequent ly--Fig . 10 suggests perhaps once

every 6-8 minutes - - th i s will not represent a significant burden

on servers.

Several techniques can be used to increase the scalabili ty of

the anycasting service. Naturally, each of these techniques will

have an effect on the performance. First, the server can con-

trol the overhead for monitoring and pushes by adjusting the

appropriate performance monitoring parameters. Likewise, the

probing agent can control the overhead for probing via the fre-

quency parameter. On a more coarse grain, the overall system

can limit the number of anycast groups that are tracked. These

groups might be restricted to those that are popular and can ben-

efit substantially from an application-layer server selection tech-

nique. In a similar vein, a given resolver can track a subset of the

"most promising" servers in a given group, using longer time-

scale information to identify which servers are most promising.

VI. RELATED WORK

The server or resource-finding problem has been the subject

of much investigation for over a decade. Initially, with low to

moderate server loads, the problem was finding the desired net-

work resource knowing only its name or property. Many tech-

niques were investigated, including: 1) the use of multicast or

broadcast communication to "touch" all the locations where the

resource may reside in an attempt to find it (e.g., [2], [23]); 2) the

use of various name server architectures to lookup the location

of the resource (e.g., [21], [14], [3]); and 3) the use of caching

a resource 's location (not content) at sites where the resource is

frequently accessed [30]. This early work typically dealt with a

single instance of the resource. The case of a mobile resource

was addressed through interesting techniques such as the use of

forwarding addresses [13].

Beginning with initial services like ftp, archie, and

g o p h e r , and culminating more recently with the World-Wide

Web, the Internet has experienced a dramatic growth in the

use and provision of information services. This has resulted

in heavy demands placed on servers and thus the desire to

replicate (or mirror) servers. This adds a new dimension to the

server-finding problem: it is now important to find the "best"

server from among many content-equivalent servers. Studies in

this area include:

1) The original work by Partridge et al. [24], proposing the

idea of anycasting and discussing its network-layer sup-

port.

ZEGURA et al.: APPLICATION-LAYER ANYCASTING 465

2) A study by Guyton and Schwartz [15] which addresses

the problem of locating the nearest server. The latter work

also presents a classification of "best" server location

schemes. The work is related to earlier work on the Har-

vest system [4] which provides a set of tools for gathering

information from various servers and efficiently indexing

and searching through this information. Tools for caching

and replication of indices are also used in the Harvest

system in order to improve the scalability of the service.

3) The SONAR network proximity service [22] in which the

authors define a service that can return the server that is

the closest (in hops) from among a list presented to it.

4) Work by Carter and Corvella [10], [6] addressing the issue

of server selection. Their selection, however, has been pri-

marily based on the characteristics of the path leading

to the server. While they acknowledge the desirability of

using server load information as a guide to server selec-

tion, their work does not address this issue (except for a

limited experiment reported in [5]).

5) The work by Colajanni and Yu [81, [9] considering how

client requests may be scheduled among a set of repli-

cated web servers.

6) Cisco's DistributedDirector product which supports

server selection based on hop count proximity and link

latency. The system relies upon a distributed set of agents

(i.e., routers with appropriate software) that can supply

hop count information (from their own routing tables)

and probe servers for path latency.

The Service Location Working Group of the 1ETF has been

developing protocols to facilitate the discovery and selection of

network services [31]. Thus, the high-level objectives of their

work and ours are quite similar. However, their focus has been

on selecting network services within an enterprise network, not

the global Internet. The Service Location Group has begun to

consider the modifications necessary to support location in a

global internet [27], [26], while maintaining backward compat-

ibility with the solutions developed for an enterprise network.

The concept of probing the network and the servers to deter-

mine performance measures is related to various tools and sys-

tems that are used for network management purposes. An exten-

sive set of tools and systems are available; the CAIDA project

maintains a living list s . Examples of tools to monitor charac-

teristics of paths and links include ping, traceroute, 6 and

p a t h c h a r . 7 Examples of systems to monitor web service in-

clude commercial products such as Keynote 8 and NetScore, 9

and public domain software such as Timeit.l° These monitoring

systems are not integrated with server selection.

Protocol approaches designed to estimate various network

conditions are also related to our probing concept. The

packet-pair technique [19] is one such technique designed to

estimate the bottleneck rate on a path. Remote measurement

5Available: http://www.caida.org/Tools/taxonomy.html

6Available: ftp://ftp.ee.lbl.gov/traceroute.tar.Z

7Available: ftp://ftp.ee.lbl.gov/pathchar/

8Available: http://www.keynote.com

9Available: http://penta.ufrgs.br/gereint/anacapa

1°Available: ftp://ftp.va.pubnix/com/pub/uunet/timeit-2.1.tar.gz

and monitoring of system performance has also been explored

as part of the extensive work on distributed system monitoring

[281, [201.

VII. CONCLUDING REMARKS

As the Internet continues to grow, server replication will be

increasingly important as a technique to scale services. The ef-

fective utilization of a set of replicated servers hinges upon the

ability to appropriately allocate servers to clients. Simple tech-

niques such as round-robin or nearest selection cannot accomo-

date the diversity of selection criteria that developing services

will demand.

To address this, we have developed an application-layer

architecture for the anycasting paradigm. Our architecture

enables server selection based on a wide variety of criteria,

including both performance and policy concerns. Our architec-

ture achieves scalability by using, replicated resolvers to handle

queries from a set of clients and by organizing the resolvers

into a DNS-style hierarchy.

We examined the performance of our architecture in some

detail for an important server-selection criteria, namely client

response time. Our approach estimates the client's expected

response time at each server using a combination of a rela-

tively light-weight server push approach with a client-probe

approach. Measured path-independent server performance (the

pushed data) is calibrated using path-dependent response time

measurements obtained via relatively infrequent probes. While

we focused on HTTP servers operating within our architecture,

the estimation technique has wider applicability to other types

of servers and within other contexts.

We developed an experimental setup that allows us to

distribute servers around the Internet without actually requiring

them to maintain real data. Experiments that we conducted

using our setup show that significant response time improve-

ment that can be achieved with this technique over the use of

performance-independent allocation mechanisms, including

random and nearest selection.

Avenues for future work include scalable techniques to se-

lect different types of servers, the use of network-layer support

to collect path performance metrics, and variations on the spec-

trum between multicasting and anycasting. We are currently in-

vestigating the potential for active networking to provide path

performance metrics and to provide native support for network-

layer anycasting.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and

Editor S. McCanne for their constructive comments.

REFERENCES

[1] M. Arlitt and C. Williamson, "Web server workload characterization:
The search for invariants," in Proc. ACM SIGMETRICS'96 Conf.: ACM
Press.

[2] J. Bemabeu, M. Ammar, and M. Ahamad, "Optimizing a generalized
polling protocol for resource finding over a multiple access channel,"
Computer Networks and ISDN Sysr, vol. 27, pp. 1429-1445, 1995.

[3] A. Birrel, R. Levin, and M. Schroeder, "Grapevine: An exercise in dis-
tributed computing," Commun. ACM, vol. 25, no. 4, pp. 260274, Apr.
1982.

466 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000

[4] C.M. Bowman, R Danzig, D. Hardy, U. Manber, and M. Schwartz, "The

harvest information discovery and access system," Computer Networks

and ISDN Syst., vol. 28, pp. 119-125, 1995.

[5] R. Carter and M. Crovella, "Dynamic Server Selection Using Band-

width Probing in Wide-Area Networks," Computer Science Dept.,

Boston Univ., Boston, MA, Tech. Rep. BU-CS-96-007, 1996.

[6] - - , "Server selection using dynamic path characterization in

wide-area networks," in Proc. INFOCOM'97.

[7] Cisco DistributedDirector. [Online]. Available: http://www.cisco.com/

[8] M. Colajanni and P. Yu, "Adaptive TTL schemes for load balancing of

distributed web servers," Performance Evaluation Rev.~ACM S1GMET-

R1CS, vol. 25, no. 2, pp. 36-42, Sept. 1997.

[9] M. Colajanni, R S. Yu, and D. M. Dias, "Scheduling algorithms for dis-

tributed web servers," in Proc. 17th Int. Conf Distributed Computing

Systems (ICDCS'97), May 1997.

[10] M. Crovella and R. Carter, "Dynamic server selection in the Internet,"

in Proc. 3rd IEEE Workshop Architecture and Implementation of High

Performance Communication Subsystems (HPCS'95), Aug. 1995.

[11] P. Danzig, D. Delucia, and K. Obraczka, "Massively Replicating Ser-

vices in Wide-Area Internetworks," Univ. Southern California, Los An-

geles, CA, Tech. Rep. No. 93-541, 1994.

[12] K. Delgadillo. (2000, June) Cisco DistributedDirector. Cisco Systems,

Inc. [Online]. Available: http://www.cisco.corn/watp/public/cc/cisco/
mkt/scale/distr/tech/dd_wp.htm

[13] R. Fowler, "Decentralized object finding using forwarding addresses,"

Ph.D. dissertation, Univ. Washington, Seattle, WA, 1985.

[14] I. Gopal and A. Segall, "Directories for networks with casually con-

nected users," in Proc. 1NFOCOM'88, pp. 1060-1064.

[15] J. Guyton and M. Schwartz, "Locating nearby copies of replicated in-
ternet servers," in Proc. SIGCOMM'95, pp. 288-298.

[16] J. Gwertzman and M. Seltzer, "The case for geographical push-caching,"

in Proc. 1995 Workshop Hot Topics in Operating Systems.

[17] M. Humes. Netscape's Server Push, Client Pull and CGI Animation.
[Online]. Available: http://www.emf.net/mal/animate.html

[18] E.D. Katz, M. Butler, and R. McGrath, "A scalable HTTP server: The

NCSA prototype," Computer Networks and ISDN Syst., vol. 27, pp.

155-164, 1994.

[19] S. Keshav, "A control-theoretic approach to flow control," in Proc. SIG-
COMM'91.

[20] F. Lange, R. Kroeger, and M. Gergeleit, "Jewel: Design and implementa-

tion of a distributed measurement system," IEEE Trans. Parallel Distrib.
Syst., vol. 3, pp. 657-671, Nov. 1992.

[21] P. Mockapetris and K. Dunlap, '.'Development of the domain name
system," in Proc. SlGCOMM'88, pp. 123-133.

[22] K. Moore, J. Cox, and S. Green, SONAR--A Network Proximity Ser-

vice, Feb. 1996. lnternet Draft (work in progress) draft-moore-sonar-
01. txt.

[23] D. Oppen and Y. Dalal, "The clearinghouse: A decentralized agent for

locating named objects in a distributed environment,"ACM Trans. Office

Inform. Syst., vol. 3, no. 1, pp. 230-253, July 1983.

[24] C. Partridge, T. Mendez, and W. Milliken, "Host Anycasting Service,"
RFC 1546, Nov. 1993.

[25] E.C. Rosen, "The updating protocol of ARPANET's new routing algo-

rithm," ComputerNetw., no. 4, pp. 11-19, 1980.

[26] J. Rosenberg, E. Guttman, R. Moats, and H. Schulzrinne, WASRV Arl

chitectural Principles, Feb. 1998. lnternet Draft (work in progress) draft-

ietf-rosenberg-wasrv-arch-OO.txt.

[27] J. Rosenberg, B. Suter, and H. Schulzrinne, Wide Area Network Service

Location, July 1997. lnternet Draft (work in progress) draft-ietff-svrloc-
wasrv-O0, txt.

[28] B. Schroeder, "On-line monitoring: A tutorial," lEEE Computer, vol. 28,
no. 6, pp. 72-78, June 1995.

[29] S. Seshan, M. Stemm, and R. Katz, "SPAND: Shared passive network

performance discovery," presented at the 1st Usenix Symp. Internet
Technologies and Systems (USITS'97).

[30] D. Terry, "Caching hints in distributed systems," IEEE Trans. Software
Eng., vol. 13, no. 1, pp. 48-54, Jan. 1987.

[31] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan, "Service Location
Protocol," RFC 2165, June 1997.

?

..... ~ ! "~
....... p

Ellen W. Zegura (S'91-M'93) received the B.S. de-

gree in computer science and electrical engineering in

1987, the M.S. degree in computer science in 1990,

and the D.Sc. degree in computer science in 1993, all

from Washington University, St. Louis, MO.

She is currently an Associate Professor in the
College of Computing, Georgia Institute of Tech-

nology, Atlanta. Her research interests include active

networking, server selection, anycast and multicast

routing, and modeling large-scale internetworks.

Dr. Zegura is currently an editor for IEEE/ACM

TRANSACTIONS ON NETWORKING. She is a member of the Association for Com-
puting Machinery.

Mostafa H. Ammar (S '83-M'85-SM'95) received

the S.B. and S.M. degrees from the Massachusetts In-

stitute of Technology, Cambridge, in 1978 and 1980,

respectively, and the Ph.D. degree in electrical en-

gineering from the University of Waterloo, Ontario,

Canada, in 1985.

He is a Professor with the College of Computing

at the Georgia Institute of Technology, Atlanta

(Georgia Tech). For the years 1980 to 1982 he

worked at Bell-Northern Research (BNR), first as a

Member of Technical Staff and then as Manager of

Data Network Planning. In 1999, he was on a sabbatical leave with BellSouth
Telecommunications' Science and Technology organization and returned to

Georgia Tech in January 2000. He is the co-author of the textbook Funda-

mentals of Telecommunication Networks, New York, NY: Wiley. His research

interests are in the areas of computer network architectures and protocols,

distributed computing systems, and performance evaluation.

He currently serves as the Editor-in-Chief of the IEEE/ACM TRANSACTIONS

ON NETWORKING. He was the co-guest editor of the April 1997 issue of the IEEE

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS on "Network Support for

Multipoint Communication." He also served as the Technical Program Co-Chair

for the 1997 IEEE International Conference on Network Protocols.

Zongming Fei received the Ph.D. degree in com-

puter science from Georgia Institute of Technology,
Atlanta, in 2000.

He is currently an Assistant Professor at the Uni-
versity of Kentucky, Lexington. His research inter-

ests include server selection, anycast and multicast

routing, video on demand, and content delivery over

the Internet.

Samrat Bhattacharjee received the Ph.D. in computer science from Georgia
Institute of Technology, Atlanta, in 1999.

Since 1999, he has been an Assistant Professor in the Computer Science De-

partment, University of Maryland, College Park. His research interests are in

the design and implementation of scalable and configurable networking infra-
structure.

He is a member of the Association for Computing Machinery.

