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Existing application-layer distributed denial of service (AL-DDoS) attack detection methods are mainly targeted at specifc attacks
and cannot efectively detect other types of AL-DDoS attacks. Tis study presents an application-layer protocol communication
model for AL-DDoS attack detection, based on the explicit duration recurrent network (EDRN). Te proposed method includes
model training and AL-DDoS attack detection. In the AL-DDoS attack detection phase, the output of each observation sequence is
updated in real time. Te observation sequences are based on application-layer protocol keywords and time intervals between
adjacent protocol keywords. Protocol keywords are extracted based on their identifcation using regular expressions. Experiments
are conducted using datasets collected from a real campus network and the CICDDoS2019 dataset. Te results of the experiments
show that EDRN is superior to several popular recurrent neural networks in accuracy, F1, recall, and loss values. Te proposed
model achieves an accuracy of 0.996, F1 of 0.992, recall of 0.993, and loss of 0.041 in detecting HTTP DDoS attacks on the
CICDDoS2019 dataset. Te results further show that our model can efectively detect multiple types of AL-DDoS attacks. In
a comparison test, the proposed method outperforms several state-of-the-art approaches.

1. Introduction

With the progress of increasingly advanced network in-
frastructure and network layer defense technologies, at-
tackers increasingly turn to Internet-based applications as
their attack targets, resulting in the continuous emergence of
application-layer attacks [1, 2]. Tese attacks are carried out
using legitimate user requests and protocols at the
application-layer. Terefore, the data fow of application-
layer attacks at the network and transport layers is not
signifcantly diferent from that generated by normal users.

Distributed denial of service (DDoS) attacks are one of
the most dangerous attacks [3–6], especially application-
layer DDoS (AL-DDoS) attacks, such as HTTP DDoS at-
tacks [7, 8] and SMTP food attacks [9]. Te HTTP DDoS
attacks are usually implemented by a large number of bots
sending a food of page requests to a web server at the same
time, thus consuming server resources, such as database

cycles, CPU cycles, or memory. In August 2022, Google
encountered the largest HTTP DDoS attack in history,
which tried to shut down Google’s Cloud Armor customer
service, with a peak of 46 million requests per second [10].
Te complexity of AL-DDoS attacks is also expected to
grow over time.

Existing AL-DDoS attack detection methods are mainly
targeted at specifc attacks but cannot efectively identify
other types of AL-DDoS attacks. Terefore, to compre-
hensively detect AL-DDoS attacks, multiple detection
methods need to be deployed in a network. However, the
principles and parameter settings of each detection method
are fundamentally diferent, which complicates network
management. Moreover, deploying multiple AL-DDoS at-
tack detection methods simultaneously will also lead to the
degradation of network performance. Hence, it is necessary
to design a detection method that can efectively detect
various AL-DDoS attacks.
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In this study, we reexamine the issue from the per-
spective of application-layer protocol communication. Te
key idea is to model the communication of the application-
layer protocol through an explicit duration recurrent net-
work (EDRN) to detect AL-DDoS attacks, taking observed
application-layer protocol keywords and time intervals
between adjacent protocol keywords as inputs. Application-
layer protocol keywords refer to custom request commands
and server response status codes, which can refect the
behavior of users when using the protocol.

Recurrent neural networks (RNNs) exploit cycles in
network nodes to capture the dynamics of sequences, and
they have been widely used in sequential data mining with
outstanding performance results [11]. However, traditional
RNNs have hidden states whose durations approximately
follows a geometric or exponential distribution [12, 13]. As
a result, it is difcult to use traditional RNNs to model the
variable durations of hidden states.

During the communication process of the application-
layer protocol, the behavior of users and time intervals
between adjacent protocol keywords are determined by
many factors, such as the request method, network trans-
mission delay, and response processing time of servers.
Tus, the duration of hidden states under a sequence of
application-layer protocol communication may follow
a relatively complex distribution, and not necessarily
a geometric or exponential distribution. Te EDRN is based
on an extended hidden semi-Markov model (HSMM) and
can describe hidden states of any duration distribution [14].
Tis study adopts EDRN tomodel application-layer protocol
communication for AL-DDoS attack detection. To evaluate
the model, experiments are conducted on the CICDDoS2019
dataset [15] and datasets collected in a real campus network.
Te experimental results show that the EDRN is superior to
several popular RNNs, and the EDRN-based model can
efectively detect multiple types of AL-DDoS attacks.

Te main contributions of this study can be summarized
as follows:

(i) We proposed an EDRN-based application-layer
protocol communication model. Te model uses
EDRN to describe the communication process of
the application-layer protocol and takes
application-layer protocol keywords and time in-
tervals between adjacent protocol keywords as in-
puts for the frst time.

(ii) Based on the application-layer protocol commu-
nication model, we proposed an attack detection
method that detects AL-DDoS attacks in real time
by monitoring the application-layer protocol key-
words that are used in the process of protocol
communication.

(iii) We compared several RNNs based on the CICD-
DoS2019 dataset and a real campus network dataset,
and the experimental results showed that the EDRN
has the best performance. We also compared our
proposed AL-DDoS attack detection method with
several existing methods, and the test results

confrmed the efectiveness and superiority of our
method.

Te remainder of this paper is organized as follows:
Section 2 reviews recent studies on AL-DDoS detection. In
Section 3, we describe the model for application-layer
protocol communication. Section 4 presents the proposed
AL-DDoS attack detection method.Te experimental results
are presented in Section 5 and discussed in Section 6. Section
7 concludes the paper.

2. Related Works

Te detection of AL-DDoS attacks has attracted the atten-
tion of researchers [16–21]. Existing methods are mainly
targeted at specifc AL-DDoS attacks. For example, Xie and
Yu [22] used HSMM, independent component analysis, and
principal component analysis to mine web server logs to
detect HTTP DDoS attacks. Wang et al. [23] used the
Hellinger distance and sketch data structure to detect HTTP
DDoS attacks. Zhou et al. [24] calculated the entropy of fash
crowds and attacks for HTTP DDoS attack detection. Singh
et al. [25] used four behavioral features and a support vector
machine (SVM) to detect HTTP DDoS attacks. Praseed and
Tilagam [26] used probabilistic timed automata (PTA)
models to describe the behavior of legitimate users for HTTP
DDoS attack detection. Lin et al. [27] used the rhythm
matrix statistical model to capture the characteristics of user
access trajectories to detect HTTP DDoS attacks. Zhao et al.
[28] used URL access entropy to identify HTTP DDoS at-
tacks. Praseed and Tilagam [29] used signatures based on
HTTP request patterns to detect HTTP DDoS attacks. Raja
Sree and Mary Saira Bhanu [30] used fuzzy bat clustering to
analyze web server logs for HTTP DDoS attack detection in
the cloud.

In terms of SMTP food attack detection, Tudosi et al.
[31] analyzed the trafc of SMTP food attacks and used
Snort (open source intrusion prevention system) to detect
SMTP food attacks. Schneider et al. [32] used the statistical
characteristics of attack fows to detect SMTP food attacks.
Aziz and Okamura [33] adopted deep learning algorithms to
detect SMTP food attacks on software-defned networking
(SDN) platforms. Gurusamy and Msk [34] detected SMTP
food attacks by monitoring all ports’ trafc statistics in the
SDN.

In addition, Kasim [35] used the convolutional neural
network (CNN) and long short-term memory (LSTM) to
detect DNS food attacks. Trejo et al. [36] used a visual
platform and K-nearest neighbor (KNN) classifcation al-
gorithm to detect DNS food attacks. Datta et al. [37] de-
tected DNS food attacks by monitoring the DNS query per
second in IoT networks. Bushart and Rossow [38] used an
anomaly-based low-pass flter to detect DNS food attacks.

Existing methods are mainly targeted at specifc AL-
DDoS attacks and do not consider the characteristics of
application-layer protocol communication. In this study, we
adopt EDRN to describe the communication process of the
application-layer protocol, which can capture the sudden-
ness, randomness, and volume of protocol communication,

2 International Journal of Intelligent Systems



and then present an EDRN-based application-layer protocol
communication model for AL-DDoS attack detection. Tis
model can efectively detect multiple types of AL-DDoS
attacks.

3. Application-Layer Protocol
Communication Models

From the perspective of application-layer protocols, when
using an application-layer protocol, user behavior over
a period of time is refected in the application-layer protocol;
that is, the interaction between a series of application-layer
protocol keywords. Application-layer protocol keywords
refer to custom request commands and server response
status codes, which can refect the behavior of users when
using the application-layer protocol. For example, HTTP
protocol keywords include request commands “POST,”
“GET,” and “HEAD,” and server response status codes
“100,” “200,” “304,” and “404,” while SMTP protocol key-
words are composed of “MAIL FROM,” “HELO,” “RCPT
TO,” “VRFY,” “QUIT,” “REST,” “DATA,” “EXPN,”
“HELP,” and “NOOP” and server response codes, such as
“250” and “334.”

3.1. Application-Layer Protocol Communication Process.
When regular users are using an application-layer protocol,
the statistical characteristics of the protocol keywords and
the time intervals between adjacent protocol keywords are
quite diferent from those of AL-DDoS attacks. For example,
when regular users are using the HTTP protocol, their speed
of clicking pages, time taken to, and the process of browsing
pages have certain stability. However, in the application-
layer protocol keyword sequences generated by HTTPDDoS
attacks, the protocol keyword “GET” appears very fre-
quently, while other protocol keywords appear less fre-
quently, and the time intervals between adjacent protocol
keywords are small. Terefore, the application-layer pro-
tocol keywords and the time intervals between adjacent
protocol keywords can be used as observations to describe
the communication process of the application-layer protocol
and enable the detection of AL-DDoS attacks.

Figure 1 shows the communication process between
users and a web server represented by a sequence of HTTP
protocol keywords, wherein the HTTP protocol keyword
sequence representing users’ behavior is as follows: “GET,”
“POST,” “200,” “HEAD,” “304,” . . ., “200,” and “GET.”

3.2. Application-Layer Protocol Keyword Extraction. We frst
identify the application-layer protocol based on regular
expressions, and then extract the protocol keywords. In this
way, the number of protocol keywords to be matched each
subsequent time can be reduced, thereby improving the
speed of the protocol keyword extraction process. When
identifying a TCP-based application-layer protocol, the frst
few data packets of each TCP connection are cached, then
the application-layer data of the data packets are

reassembled, and fnally the protocol regular expression [39]
is matched against the reassembled application-layer data.
When identifying a UDP-based application-layer protocol,
we use regular expressions to match the payload of each data
packet. Te identifcation process of TCP-based application-
layer protocols is shown in Figure 2. Tis method can
identify application-layer protocols in real time.

3.3. Protocol Communication Modeling. At the gateway of
a network, we can obtain application-layer protocol key-
words and their arrival times using the protocol keyword
extraction method described in Section 3.2. Assuming that
the application-layer protocol hasW keywords, which can be
digitized as: 1, 2, ...,W. When users are using the application-
layer protocol, the communication process can be described
as a series of observations thus: It

1 � {I1, I2, . . ., It}, where It
(t≥ 2) is the observation at the tth time that the protocol
keyword arrives the gateway. Te value of It is based on the
protocol keyword and the time interval between adjacent
protocol keywords arriving at the gateway; that is, It � (i(1)

t ,
i
(2)
t ), where i

(1)
t is the digitized label of the tth protocol

keyword arriving at the gateway, and i
(2)
t is expressed by

equation (1). In equation (1), Rt denotes the time the tth

protocol keyword arrives the gateway, and Rt−1 denotes the
time the (t − 1)th protocol keyword arrives the gateway. In
this study, the unit of time measurement is chosen as sec-
onds; I1 is the observation generated by the frst protocol
keyword arriving at the gateway, where i

(1)
1 is the digitized

label of the frst protocol keyword arriving at the gateway,
and i

(2)
1 � 0.

i
(2)
t � −lg Rt − Rt−1( . (1)

When using the application-layer protocol, users’ be-
haviors may change. For example, users may use the HTTP
protocol for varied purposes, including browsing web pages,
watching movies online, and shoping online. Terefore, the
protocol keywords and time intervals between adjacent
protocol keywords arriving at the gateway will change over
time. Terefore, the durations of hidden states in the ob-
servation sequences of an application-layer protocol com-
munication process may follow a relatively complex
distribution.

We used the EDRN to model the communication
process of the application-layer protocol. Te EDRN-based
application-layer protocol communication model is shown
in Figure 1, where xt is the next possible states’ predicted
probabilities at the (t+ 1)th time and yt is the all possible
states’ probabilities at the tth time. Te unfolded unit
structure of EDRN is presented in Figure 3, where tanh
denotes the hyperbolic tangent function and σ denotes the
sigmoid function. Zinput,Zforget,Zoutput, and Ztan h denote
input, forget, output, and tanh gates, respectively.

Assuming that the communication process of the
application-layer protocol has K macrostates, and each
macrostate has L substates. Zforget,Zinput,Ztan h, and Zoutput
are calculated using the following equations:
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Zforget � σ xt−1A
(1)

+ ItB
(1)

+ b
(1)

 , (2)

Zinput � σ xt−1A
(2)

+ ItB
(2)

+ b
(2)

 , (3)

Ztan h � tan h yt−1A
(∗)

+ yt−1(: L)A(3)
+ ItB

(3)
+ b

(3)
 ,

(4)

Zoutput � σ yt(: L)A(4)
+ ItB

(4)
+ b

(4)
 . (5)

In the above equations, A(1), A(2), A(3), and A(4) denote
probability matrixes of state transition; b(1), b(2), b(3), and b(4)
are bias parameters following a marginal distribution; B(1),
B(2), B(3), and B(4) denote probability matrixes of observa-
tions; A(∗) is the probability matrix of substate transition. In
equations (4) and (5), “:” symbolizes all the states.

Similar to LSTM, each unit fnally returns (xt and yt) to
the next unit. Te xt and yt are calculated using equations (6)
and (7), respectively, where “∗” represents the element-wise
production as follows:

xt � tan h yt( ∗Zoutput, (6)

yt � yt−1 ∗Zforget + Zinput ∗Ztan h. (7)
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4. AL-DDoS Attack Detection

Te AL-DDoS detection method proposed in this study
involves two phases. In the frst phase, we train the EDRN-
based protocol communication model. In the second phase,
every application-layer protocol communication process is
monitored in real time. Once a protocol keyword arrives at
the network gateway, the corresponding observation se-
quence It

1 will be updated, where t denotes the number of

observations.Ten, we calculate the output η using following
equation:

η � log
vτyt(v, τ) 

t
. (8)

In equation (8), yt (v, τ) denotes the probability of pt
under It

1 and pt � (v, τ) denotes that τ(1≤ τ ≤L) protocol
keywords will appear in state v(1≤ v≤K). Te yt (v, τ) is
defned and expressed as follows:

yt(v, τ) ≡ Pr pt � (v, τ) I
t
1

 , (9)

yt(v, τ) � ξv,τyt−1(v, τ)χ(2)
v,τ It(  + 

l<τ
yt−1(v, l)a(v,l),(v,τ) + 

k≠v
yt−1(v, L)a(k,L),(v,τ)

⎛⎝ ⎞⎠χ(1)
v,τ It( . (10)

In equation (10), a(k,l),(v,τ) denotes the interstate tran-
sition probability from pt � (k, l) to pt+1 � (v, τ) and is
defned by following equation:.

a(k,l),(v,τ) ≡ Pr pt � (k, l), pt+1 � (v, τ) . (11)

In equation (10), ξv,τ is the probability of pt � (v, τ) and
defned by following equation:

ξv,τ ≡ Pr pt � (v, τ) . (12)

In equation (10), χ(1)
v,τ (It) and χ(2)

v,τ (It) are defned by
equations (13) and (14), where Pr [It|I

t−1
1 ] is the scaling

factor as follows:

χ(1)
v,τ It(  ≡

Pr It pt

 � (v, τ), pt−1 ≠pt, I
t−1
1 

Pr It I
t−1
1

 
, (13)

χ(2)
v,τ It(  ≡

Pr It pt

 � (v, τ), pt−1 � pt, I
t−1
1 

Pr It I
t−1
1

 
. (14)

If η is larger than a predefned threshold, the network is
considered as normal. Otherwise, we consider that there is
an AL-DDoS attack related to this protocol in the network.
Te detection architecture of our method is shown in
Figure 4. Our method can detect AL-DDoS attacks in
real time.

5. Evaluation

In this section, we test our proposed AL-DDoS attack de-
tection method using multiple datasets to evaluate the de-
tection performance against HTTP DDoS and SMTP food
attacks.

5.1. Datasets

5.1.1. HTTP Datasets. At the gateway of the campus net-
work, we collected the data generated by a large number of

normal users when using the HTTP protocol. In addition,
we adopted the method described in [16] and DDoS gen-
erators to generate three diferent types of HTTP DDoS
attacks, namely, single-page, random-page, and top-fve--
page HTTPDDoS attacks. A single-page HTTPDDoS attack
targets a specifc page of a website, usually one that is fre-
quently visited by users, while a random-page HTTP DDoS
attack targets a random page from all potentially visited
pages of a website. A top-fve-page HTTP DDoS attack
targets the top fve most visited pages from a resource site.
Subsequently, we extracted observation sequences from the
collected data for training and testing. Te time length of
each observation sequence was 60 seconds. Te HTTP
datasets are summarized in Table 1.

5.1.2. SMTP Dataset. Similar to HTTP data collection, we
collected data generated by a large number of normal users
when using the SMTP protocol. We adopted the method
described in [18] to generate SMTP food attacks. After that,
we extracted observation sequences. Te time length of each
observation sequence was equally 60 seconds. Te SMTP
dataset is summarized in Table 2.

5.1.3. CICDDoS2019 Dataset. Te CICDDoS2019 dataset is
a public dataset developed by the Canadian Institute for
Network Security (CIC) in 2019 [15]. Tis dataset is one of
the popular datasets and is widely used in the feld of DDoS
detection. Te dataset contains 11 kinds of DDoS attacks,
among which the AL-DDoS attack is HTTP DDoS attack.
Te packet in the CICDDoS2019 dataset contains the
application-layer payload. We use this dataset to test the
performance of our method against HTTP DDoS attacks.

5.2. Estimation Criteria. In the recurrent neural network
training phase of our proposed AL-DDoS detection method,
we use accuracy and loss as evaluation metrics, while in the
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AL-DDoS attack detection phase, we use accuracy, F1, recall,
and loss as evaluation metrics. In the comparison experi-
ment with other methods, we use accuracy, F1 and recall as
evaluation metrics. Te loss is calculated using following
equation:

loss � − 
t

ϑt × ln λt(  + ϑt − 1(  × ln 1 − λt(  . (15)

In equation (15), ϑt is the label value of the sample and λt

is the predicted value of the recurrent neural network.

5.3. AL-DDoS Attack Detection Results. In this section, ex-
periments are carried out on a computer with 64 bit Ubuntu
OS (version: 20.04.1), TensorFlow (version: 1.14.0), Python
(version: 3.6.2), and Keras (version: 2.2.5). To prove that the
EDRN can better model application-layer protocol com-
munication, we compared it with other RNNs, including
LSTM [12], GRU [40], PLSTM [13], IndRNN [41], and
DSTP-RNN [42]. In the recurrent neural network training
phase of our AL-DDoS detection method, the maximum
value of the epoch was set to 100.

5.3.1. Detection Results on HTTP Datasets. Te training
results of diferent RNNs on D1, D2 and D3 datasets, as the
epoch changes, are shown in Figures 5(a) and 5(b), 6(a) and
6(b), 7(a) and 7(b), respectively. Te EDRN had a higher
training accuracy and lower training loss on the D1 dataset

than the other RNNs. When the epoch reached 100, the
training accuracy rates of LSTM, GRU, PLSTM, IndRNN,
DSTP-RNN, and the EDRN were 0.9921, 0.9929, 0.9914,
0.9923, 0.9926, and 0.9981, respectively, while their training
loss rates were 0.0274, 0.0211, 0.0247, 0.0230, 0.0206, and
0.0105, respectively.

On theD2 dataset, the EDRN had the lowest training loss
and highest training accuracy. At the end of training, the
training accuracy rates of LSTM, GRU, PLSTM, IndRNN,
DSTP-RNN, and the EDRN were 0.9929, 0.9939, 0.9933,
0.9936, 0.9941, and 0.9979, respectively, while their training
loss rates were 0.0207, 0.0174, 0.0202, 0.0188, 0.0156, and
0.0050, respectively.

On the D3 dataset, the training accuracy of EDRN was
the highest. When the epoch was 100, the training accuracy
rates of LSTM, GRU, PLSTM, IndRNN, DSTP-RNN, and
the EDRN were 0.9928, 0.9940, 0.9933, 0.9938, 0.9943, and
0.9976, respectively. Conversely, the training loss of the
EDRN was the lowest. At the end of training, the training
loss rates of LSTM, GRU, PLSTM, IndRNN, DSTP-RNN,

Application-layer protocol
identifcation

Protocol keyword
extraction

EDRN-based protocol
communication model

. . .

...

Protocol keyword
extraction

EDRN-based protocol
communication model

Protocol keyword
extraction

EDRN-based protocol
communication model

...

. . .

AL-DDoS
attacks

Servers

Users

Figure 4: AL-DDoS attack detection architecture.

Table 1: HTTP datasets.

Dataset Data # training sequences # testing sequences

D1
Normal 3500 1723

Single-page HTTP DDoS attacks 3500 1648

D2
Normal 3500 1765

Random-page HTTP DDoS attacks 3500 1711

D3
Normal 3500 1836

Top-fve-page HTTP DDoS attacks 3500 1659

Table 2: SMTP dataset.

Dataset Data # training
sequences

# testing
sequences

D4
Normal 3500 1824

SMTP food attacks 3500 1737
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and the EDRN were 0.0225, 0.0184, 0.0209, 0.0197, 0.0168,
and 0.0065, respectively.

Te lower the training loss and the higher the training
accuracy, the better the performance of the recurrent neural
network is. Terefore, the EDRN performed best on D1, D2,
andD3 datasets in the training phase. On the HTTP datasets,
the average training accuracy and loss of the EDRN were
0.9978 and 0.0073.

After training, we used the corresponding testing sets to
evaluate the EDRN and other RNNs. Te test results are
listed in Table 3, and as shown, the EDRN had the highest
accuracy, F1, and recall, and the lowest loss on D1, D2, and
D3 datasets. Hence, the EDRN had the best performance in
the HTTP DDoS attack detection phase. On the HTTP
datasets, the average test accuracy, F1, recall and loss of the
EDRN were 0.995, 0.991, 0.992, and 0.042, respectively.

5.3.2. Detection Results on SMTP Dataset. Te training
results on the SMTP dataset are shown in Figures 8(a) and
8(b). At the end of training, the training accuracy rates of
LSTM, GRU, PLSTM, IndRNN, DSTP-RNN, and the EDRN
were 0.9926, 0.9937, 0.9931, 0.9936, 0.9941, and 0.9986,

respectively; the training loss rates of LSTM, GRU, PLSTM,
IndRNN, DSTP-RNN, and the EDRN were 0.0224, 0.0183,
0.0203, 0.0193, 0.0165, and 0.0062, respectively. In the
training phase, the EDRN attained lowest training loss and
the highest training accuracy. Tat is, EDRN achieved the
best performance in the training phase. A comparison of test
results is shown in Table 4. Compared with other RNNs,
EDRN had a better performance in detecting SMTP food
attacks.

5.3.3. Detection Results on CICDDoS2019 Dataset. We
compared the EDRN with other RNNs on the CICD-
DoS2019 dataset. A comparison of the test results is shown
in Table 5 and show that the EDRN achieved the best
performance in detecting HTTP DDoS attacks on the
CICDDoS2019 dataset.

5.3.4. Comparison with Existing Approaches. In this section,
we compare our proposed AL-DDoS attack detection
method with several existing state-of-the-art approaches.
Accuracy, F1 and recall are adopted as evaluation metrics.

0 50 100
0.7

0.76

0.82

0.88

0.94

1

 epoch 

LSTM
GRU
PLSTM

IndRNN
DSTP-RNN
EDRN

(a)

0 50 100
0

0.14

0.28

0.42

0.56

0.7

 epoch 

LSTM
GRU
PLSTM

IndRNN
DSTP-RNN
EDRN

(b)

Figure 5: Training results on D1 dataset. (a) Training accuracy. (b) Training loss.
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Te comparison results based on HTTP, SMTP, and
CICDDoS datasets are presented in Tables 6–8, respectively.

Existing approaches use traditional statistical analysis or
machine learning algorithms to detect HTTP DDoS attacks,
while this study uses EDRN to construct an application-layer
protocol communication model to detect HTTP DDoS at-
tacks. Te EDRN is a novel recurrent neural network that
has better performance than traditional statistical analysis
and machine learning algorithms in sequence data mining.
Terefore, our method outperforms existing approaches in
detecting HTTP DDoS attacks.

Existing approaches do not consider the characteristics
of application-layer protocol communication when detect-
ing SMTP food or HTTP DDoS attacks. However, the
communication process of the application-layer protocol
can better refect the users’ behavior. Tis study uses EDRN
to describe the communication process of the application-
layer protocol, which can capture the suddenness, ran-
domness, and volume of protocol communication. Tere-
fore, our method has better performance than existing
approaches in detecting SMTP food attacks.

6. Discussion

Te accuracy of the application-layer protocol identifcation
method has a great infuence on the performance of the
proposed AL-DDoS attack detection method.We conducted
an online test on the application-layer protocol identifca-
tion method at the gateway of a real campus network, shown
in Figure 9. Te duration of the test experiment was fve
hours, and accuracy and recall were selected as evaluation
indicators. Table 9 presents the identifcation results of some
common application-layer protocols. Te test results show
that for common application-layer protocols, the accuracy
and recall of the method were both above 0.998. Terefore,
the application-layer protocol identifcation method can
meet the needs of AL-DDoS attack detection.

To improve the accuracy of the EDRN-based protocol
communication model, we update the model parameters
online. Specifcally, we collect training observation se-
quences of normal and AL-DDoS attacks online, and then
train the model parameters at regular intervals, as shown in
Figure 10.
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Figure 6: Training results on D2 dataset. (a) Training accuracy. (b) Training loss.
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Figure 7: Training results on D3 dataset. (a) Training accuracy. (b) Training loss.

Table 3: Test results on D1, D2, and D3 datasets.

Dataset Model Accuracy F1 Recall Loss

D1

LSTM 0.979 0.968 0.973 0.093
GRU 0.986 0.981 0.982 0.064

PLSTM 0.982 0.977 0.976 0.073
IndRNN 0.989 0.983 0.984 0.051

DSTP-RNN 0.994 0.986 0.987 0.045
EDRN 0.997 0.992 0.994 0.037

D2

LSTM 0.967 0.960 0.962 0.114
GRU 0.978 0.971 0.969 0.081

PLSTM 0.975 0.968 0.964 0.092
IndRNN 0.980 0.974 0.972 0.073

DSTP-RNN 0.987 0.978 0.980 0.059
EDRN 0.993 0.990 0.991 0.048

D3

LSTM 0.972 0.964 0.967 0.108
GRU 0.981 0.974 0.972 0.072

PLSTM 0.979 0.971 0.969 0.083
IndRNN 0.983 0.978 0.975 0.066

DSTP-RNN 0.990 0.982 0.983 0.054
EDRN 0.995 0.991 0.992 0.042

Te bold values indicate the maximum values.

International Journal of Intelligent Systems 9



0 50 100
0.8

0.84

0.88

0.92

0.96

1

 epoch 

LSTM
GRU
PLSTM

IndRNN
DSTP-RNN
EDRN

(a)

0 50 100
0

0.08

0.16

0.24

0.32

0.4

 epoch 

LSTM
GRU
PLSTM

IndRNN
DSTP-RNN
EDRN

(b)

Figure 8: Training results on D4 dataset. (a) Training accuracy. (b) Training loss.

Table 4: Test results on SMTP dataset.

Dataset Model Accuracy F1 Recall Loss

D4

LSTM 0.970 0.962 0.965 0.111
GRU 0.981 0.973 0.972 0.078
PLSTM 0.977 0.969 0.968 0.089
IndRNN 0.982 0.975 0.974 0.071

DSTP-RNN 0.989 0.979 0.983 0.056
EDRN 0.994 0.991 0.990 0.045

Te bold values indicate the maximum values.

Table 5: Test results on CICDDoS2019 dataset.

Dataset Model Accuracy F1 Recall Loss

CICDDoS2019

LSTM 0.971 0.963 0.966 0.109
GRU 0.983 0.976 0.972 0.078

PLSTM 0.979 0.973 0.968 0.086
IndRNN 0.985 0.979 0.976 0.067

DSTP-RNN 0.991 0.982 0.983 0.055
EDRN 0.996 0.992 0.993 0.041

Te bold values indicate the maximum values.
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Table 6: Comparison of results on HTTP datasets.

Dataset Method Accuracy F1 Recall Year

D1

Wang et al. [23] 0.989 0.982 0.985 2018
Singh et al. [25] 0.967 0.959 0.963 2018
Zhao et al. [28] 0.954 0.943 0.947 2018
Lin et al. [27] 0.986 0.978 0.982 2019

Praseed and Tilagam [26] 0.991 0.984 0.988 2021
Proposed method 0.997 0.992 0.994 Present

D2

Wang et al. [23] 0.983 0.974 0.978 2018
Singh et al. [25] 0.958 0.950 0.955 2018
Zhao et al. [28] 0.945 0.936 0.939 2018
Lin et al. [27] 0.976 0.965 0.971 2019

Praseed and Tilagam [26] 0.984 0.977 0.979 2021
Proposed method 0.993 0.990 0.991 Present

D3

Wang et al. [23] 0.986 0.978 0.981 2018
Singh et al. [25] 0.962 0.954 0.959 2018
Zhao et al. [28] 0.949 0.938 0.944 2018
Lin et al. [27] 0.982 0.973 0.977 2019

Praseed and Tilagam [26] 0.988 0.980 0.983 2021
Proposed method 0.995 0.991 0.992 Present

Te bold values indicate the maximum values.

Table 8: Comparison of results on CICDDoS dataset.

Dataset Method Accuracy F1 Recall Year

CICDDoS2019

Wang et al. [23] 0.988 0.979 0.982 2018
Singh et al. [25] 0.965 0.957 0.961 2018
Zhao et al. [28] 0.952 0.941 0.946 2018
Lin et al. [27] 0.985 0.976 0.979 2019

Praseed and Tilagam [26] 0.990 0.983 0.986 2021
Proposed method 0.996 0.992 0.993 Present

...

Users

Gateway
Internet

Figure 9: Experimental topology of a real campus network.

Table 7: Comparison of results on SMTP dataset.

Dataset Method Accuracy F1 Recall Year

D4

Aziz and Okamura [33] 0.872 0.865 0.869 2017
Gurusamyand Msk [34] 0.916 0.911 0.908 2019

Feng et al. [18] 0.955 0.947 0.949 2020
Schneider et al. [32] 0.937 0.932 0.926 2020
Proposed method 0.994 0.991 0.990 Present

Te bold values indicate the maximum values.
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7. Conclusion

Tis study investigated the issue of AL-DDoS attack de-
tection. An application-layer protocol communication
model is proposed based on the EDRN. Te model takes as
input application-layer protocol keywords and time intervals
between adjacent protocol keywords. Based on the
application-layer protocol communication model, a new
method is proposed for AL-DDoS attacks detection. We
evaluated the EDRN-based model and compared it with
other RNNs. Te experimental results show that the EDRN
outperforms traditional RNNs, and our model can efec-
tively detect multiple types of AL-DDoS attacks. For the
datasets collected from a real campus network, our model
achieves an overall accuracy of 0.995, F1 of 0.991, recall of
0.992, and loss of 0.043. For the CICDDoS2019 dataset, our
model can efectively detect HTTP DDoS attacks, with an
accuracy of 0.996, F1 of 0.992, recall of 0.993, and loss of
0.041. Our model can be used to detect AL-DDoS attacks in
multiple networks, including the Internet of Vehicles, the
Internet of Tings, and software-defned networks.

However, it is difcult to defne the protocol keywords of
emerging application-layer protocols. Terefore, our model
cannot efectively detect AL-DDoS attacks based on
emerging application-layer protocols. In future work, we
aim to automatically analyze emerging application-layer
protocols and defne their protocol keywords.

Data Availability

Te CICDDoS2019 dataset used to support the fndings of
this study is a public dataset developed by the Canadian

Institute for Network Security (CIC) in 2019. Te CICD-
DoS2019 data can be downloaded from https://www.unb.ca/
cic/datasets/ddos-2019.html.
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