
16

Application Level Framing and

Automated Implementation.

Christophe Diof, Isabelle Chrismenf, Antony Richardi

1 INRIA Sophia Antipolis, FRANCE

christophe.diot@ sophia. inriajr; isabelle.chrisment@ sophia. inria.fr

2UTS Sydney, AUSTRALIA

antony@ee.uts.edu.a

Abstract
New concepts such as the Application Level Framing (ALF) have been proposed to make

network protocol implementations more efficient and to give the application programmer

greater control over the data transmission. This paper describes early experiments with

automated design and implementation of application-specific communication protocols based

on the formal specification of the application using ESTEREL. A comparison is made between

a hand coded JPEG player and its automated equivalent. The results show that the automated

approach creates a better integrated implementation with the same level of performance.

Keywords

Efficient Communication Architectures, ALF, Integrated Implementation, Formal Specifica­

tions, User Level Protocols.

1.0 INTRODUCTION

The rapid evolution of networking and the multiplication of new applications re-emphasizes

the importance of the efficient (i.e. flexible and performant) communication supports. Imple­

mentations must be able to take maximal advantage of details of application-specific semantics

and of specific networking environments to be performant. In other words, the application

needs to have more control over data transmission, as proposed in the Application Level Fra­

ming concept. ALF [Clark90] is a design principle in which the communication subsystem is

able to process data in chunks of application-specific size. Such control can be obtained only

by tailoring the communication facilities (or protocols) to the application characteristics.

R. Puigjaner (ed.), High Performance Networking

© Springer Science+Business Media Dordrecht 1995

212 Part Six Formlll approaches for Protocol Design

Efficiency of the implementation can also be discussed independently of the protocol used. It is

well accepted today that, if a layered architecture is a good abstract frame for specification, it is

a penalty with respect to implementation performance [Crowcroft92]. A layered architecture

introduces undue redundancies in interfaces and data transfers. An efficient implementation

would "integrate" communication facilities in a more horizontal scheme. The realization of

ALF in such a non-layered architecture will produce an implementation with a high level of

integration, which will be difficult to implement manually. The traditional empirical methodo­

logy, which is mostly "intuition based on experience", will not be able to scale up effectively

and to produce highly integrated implementations for the new generation of applications.

To be able to design efficient implementations of communication support tailored to applica­

tion characteristics, it is claimed that the development process of communication support must

largely be automated (in a formal framework). A formal automated design process also allows

the correctness of the communication to be checked both in terms of reliability and security,

and even the efficiency can be determined given set of constraints (like QoS requirements).

The design of an integrated environment for automatic implementation of communication sup­

ports is necessarily based on a formalism to be introduced as early as the application definition

step. As a result it should yield an automatic (or mostly automatic) generation of the end-to­

end transmission control mechanisms integrated into the application specification before

implementation. The performance speed-up is expected from more integration (minimizing

interfaces), from the application of ALF, and also from the various optimizations made possi­

ble by the automated approach.

This paper describes early experiments with the automated design and implementation of

application-specific communication protocols based on the formal specification of the

application. A JPEG player [Wallace90] is used as example. Starting from its formal descrip­

tion, a "Protocol Compiler" automatically integrates communication facilities to the applica­

tion following the ALF concept. The second stage of the Protocol Compiler (which is today

partially automated) produces a high performance implementation of the application with its

communication facilities.

The rest of the paper is organized as follows. Section 2 presents the benefits of the formal

approach and introduces the ESTEREL language which is the formalism retained for the

realization of the Protocol Compiler. In section 3, the Protocol Compiler is reviewed. Its

principle is described as well as the way communication facilities are integrated into the

application formal specification. Section 4 describes the early experiments with the prototype

Protocol Compiler. A JPEG player was specified in ESTEREL. On one side, an hand-coded

ALF implementation was written in C; on the other, the ESTEREL specification was processed

through the Protocol Compiler to produce automatically another implementation. Performance

evaluation, and comparison is provided. The paper concludes on the analysis of this approach,

and on the possible extensions of the Protocol Compiler.

Note that this paper does not address Quality of Service problems. Tailoring is only done

considering the nature of the services required by the application. Quality of transmission will

be studied later, through the concept of Network Conscious Applications [Diot95].

Application level framing and automated implementation 213

2.0 FORMAL APPROACH

2.1 Problems solved

The current approach to distributed applications is the Remote Procedure Call (RPC)

[Nelson81] concept. RPC is a very simple client/server model that proposes the same princi­

ples as local procedure call, but using a communication support. This communication support,

which is based on a synchronous request/response protocol is not efficient enough for multime­

dia and time constrained applications. The Protocol Compiler is a preliminary step in the

design of a new generation RPC model, where a distributed application can specify its own

communication requirements to be associated to a dedicated transmission control protocol.

The control and synchronization aspects of an application are formally specified using ESTE­

REL. This specification is then used by the protocol compiler to integrate transmission control

facilities to the application, and to generate the client and server stubs. The advantages of this

approach are the following:

• Like in the classical RPC, the transmission facilities remain transparent to the application

designer.

• The control of the transmission is given to the application. The communication facilities are

integrated to the application from which they have been tailored.

• The implementation is designed automatically, starting from the application formal specifi­

cation. It guarantees the implementation matches exactly with the original application

specification. It is also easier to prove that the communication system provides the

application minimal end-to-end transmission control facilities.

• The formal approach allows the systematic use of optimization techniques such as

optimizing the protocol control automaton, discovering the most frequently used path,

inlining code, etc. These optimizations might lead to better performance than with hand­

coded implementations.

• There is no interface between the application and the transmission control mechanisms,

which are implemented as part of the application. Consequences are increased performance

and improved flexibility.

The approach outlined in this paper is original as it starts from the application specification,

and as the end-to-end transmission control facilities (also called communication subsystem in

this paper) are integrated to the application specification before the automated implementation.

Flexibility is allowed by the integration of the transmission control mechanism within the

application,and by the implementation in the user space of the host computer.

2.2 ESTEREL and its development environment

ESTEREL is an imperative language belonging to the family of the Synchronous Reactive

Formalisms [Berry92]. ESTEREL is not the only candidate language for protocol engineering;

but it is a good compromise considering previous experiments we had with it in protocol

design [Castel94][Chrisment94a]. It contains particular features we are looking for, such as

reactivity or broadcast. A complete analysis of ESTEREL for communication protocol

development is given in [Diot94]. Some of the ESTEREL features discussed in [Diot94] are:

214 Part Six Formal approaches for Protocol Design

• Modular parallelism. A given protocol can be obtained as a collection of smaller modules

being selected (or not) and properly combined. The sequential implementation produced by

the ESTEREL compiler is determinist.

• Expression of Finite State Machines. ESTEREL is a control description language; that

means only the control automaton of the application and its communication support can be

described in ESTEREL. A data description language like XDR [Corbin91], ASNl

[IS087b], or C (as used in this paper) has to be associated with ESTEREL.

• Readability. The JPEG specification written in ESTEREL is only one page of code for the

client side, and another page for the server side. ESTEREL syntax, which is close from

Pascal and CSP [Hoare79] makes ESTEREL descriptions very easy to read.

• Time handling. There is no special type or signal to describe time in ESTEREL. Time is

considered as any other external event, and must be described by an external signal. Time in

ESTEREL is multiform: any signal may be processed as an independent "time unit", so that

the time manipulation primitives can be used uniformly for all signals.

In addition, the ESTEREL environment contains various tools (compiler, parallel debugger,

graphical simulator, proof systems, optimizers) [Berry92][Meije94]. All these tools concur to

provide a very powerful environment for the development of complex reactive systems like

communication protocols.

The Protocol Compiler is fully compatible with the ESTEREL compiler; which means the

information that has to be added to the ESTEREL specification for parsing purpose has an

ESTEREL syntax. The major advantage is the application specification can be compiled,

verified, and analyzed by using the ESTEREL environment tools. Further, after protocol

integration, the ESTEREL syntax is still respected. The application parser consequently

processes an ESTEREL specification of a distributed application and produces an other

ESTEREL description where the communications facilities have been integrated to the

original specification.

3.0 THE PROTOCOL COMPILER

The prototype of the Protocol Compiler is made of two distinct parts, i.e a parser and an

implementation generator (Figure 1).

The application designer creates the application software and data structures using C, XDR or

ASN.l. The application specification is written in ESTEREL. This specification is then parsed

to produce the integrated specification. The parser introduces protocol functions using

templates that perform the protocol mechanisms. The protocol functions exist within an

ESTEREL library. The integrated specification is then compiled using the implementation

generator. The resulting C code is itself compiled and linked with the protocol function library

and with the application software in order to be integrated in its execution environment.

Application level framing and automated implementation

c
.g g Application

e oo Specification

:a_ · ~ in ESTEREL
~Cl

Integrated

Specification

in ESTEREL

Integrated

pecification

inC

Standard Protocol
Functions and Mechanisms

in ESTEREL

CCOMPILER

Executable code
(application+ transmission control)

Figure 1: the architecture of the Protocol Compiler

3.1 The parser

215

The application parser is the first stage of the protocol compiler. It integrates dedicated

communication facilities to the ESTEREL specification of a distributed application (Figure 2).

The module resulting from application parsing is also an ESTEREL module.

Synchronisation~.

Reliability ~ · ; :-·- ·
~-­

Level of service

Formal specification
of the application

inte&ration

opti~sation

integrated specification of

Communication modules

the application and its transmission control

Figure 2: structure of the parser

216 Part Six Formal approaches for Protocol Design

The formal application specification is made of two types of information:

• The ESTEREL description of the application behavior. The parser extracts from this

description information concerning the structure of the application, the possible

synchronization points and parallelism between the different modules that compose the

description. These synchronization points will be used at the implementation level, to

design the most efficient implementation.

• Additional information is introduced in the application to describe application

characteristiques that cannot be deduced from the formal specification, i.e. the level of

reliability required for the transmission of Application Data Units (or ADDs). An ADU is

defined as the smallest unit of data that the application can handle out of order. This

communication-related information is added in a syntax that does not modify the behavior

of the original application description, and that is easy to understand by any reader. As

previously stated, the additional information has an ESTEREL syntax. The type of service

required is described by a set of keywords expressed in ESTEREL by a list of local signals.

Keywords can be "selective_retransmission", "flow_control", "checksum", "encryption",

etc. This list of local signals encapsulates the modules to which it refers within a present

instruction.

Figure 3 illustrates an example of an application specification where retransmission is done on

timeout and where selective acknowledgment is used for error control. The left code gives the

specification that should be written by the application designer. Reliable and select_retrans are

two keywords. The encapsulation within the present instruction has no effect on the ESTEREL

compiler. The parser recognizes input signals that have to be processed through a transmission

control protocol by the Remote_ prefix added by the designer to concerned signals. The

ESTEREL code on the right side of the figure shows how the original specification has been

processed by the application parser to integrate the corresponding transmission control

facilities to the application specification. The present instruction has disappeared; the module

now waits simultaneously on two input events:

• Remote_ADU which now will be processed in parallel to the evaluation of the

acknowledgment to be sent.

• A timer on which timeout selective retransmission has to be done.

present [reliable and select_retrans] do

loop

await Remote_ADU;

call Process_ADU ()()

end loop

end present

application specification

Figure 3: additional information syntax

loop

await

case Remote_ADU do

call Process_ADU ()()

II
call Process_ack ()()

case Timeout do

call Process_selective_retrans ()()

end await

end loop

description after protocol integration

Application level framing and automated implementation 217

The parser is able to determine what type of protocol is required and where this protocol has to

be integrated into the application specification. The communication functions and mechanisms

to be integrated are found in a library and are written too in ESTEREL.

The application parser also defines the structure and contents of the protocol headers used

(based on the communication mechanisms added to the application specification).

The ESTEREL specification of the application is required (instead of a simpler formalism) to

define the transmission control functions and to integrate the protocol because the Finite State

Machine (FSM) of the application can be used for the control of the transmission on the

network. The use of a simpler formalism (for example a list of application requirement

parameters) would limit the efficiency of the application parser because:

• the transmission control automaton can be directly mapped into the application control

automaton for maximum integration (integration is not possible in case of a list of

parameters).

• Information on possible parallelism and module synchronization is revealed from the

application specification architecture.

3.2 The implementation generator

The second stage of the Protocol Compiler consists of the transformation of the integrated

application (which is an ESTEREL description) into an executable module (written inC code).

This automated implementation mostly relies on the ESTEREL compiler, which provides all

the facilities for such a transformation (Figure 4). The fact that a dedicated implementation

generator is not used only limits possible optimizations and code inlining ..

. strl

.h
auto:~~~~1

C ~ code generator
.oc --~--....::::==----==C----~ c __... .exe

optimizer .c

Figure 4: modular architecture of the ESTEREL compiler

The ESTEREL compiler processes the integrated application description in two steps:

• The integrated application FSM is first built, and then optimized. During this first step, the

original ESTEREL language is transformed in an intermediate format named oc.

• Oc code is then compiled, and linked with C libraries that contain the definition of the data

types and the data manipulation functions that were used in the ESTEREL description.

Note that various C modules can be used to optimize the implementation performance in

218 Part Six Formal approaches for Protocol Design

different host environments. These C libraries also contain modules that describe the

interface between the ESTEREL specification and the execution environment.

The code generator produces a sequential implementation of the ESTEREL module, even if

parallelism is used in the application description. The code generator is designed to optimize

the code produced, and to resolves all the problems that could occur because of shared resour­

ces.

4.0 IMPLEMENTATION OF A JPEG PLAYER

To illustrate the concepts presented in this paper, a client-server based JPEG [Wallace90]

image player have been implemented. The client is a menu based program that allows

interaction with a user. The user can request an image to be displayed, abort an image transfer,

or exit the program. The JPEG server transmits images using the JPEG File Interchange

Format (JFIF [Ham92]). JFIF requires that all table specifications used in the encoding and

decoding process (quantization and huffman tables) be available at both the client and server

prior to their use.

The application is designed using results from [Heybey92] which describes the suitability of

the ALF approach in video coding. Also parts of the XV program has been reused [Brad93].

The JPEG image is decomposed into a set of ADUs (Application Data Units) that can be

received and processed out of order. However, the quantization and huffman tables must be

transferred in order from the server to the client prior to the main image transfer. In other

words, the level of reliability required for the tables is different to the rest of the image.

The application transmission control is composed of the following (see figure 5):

• The server first loads all the images into memory so that the file 110 is not included in the

results of the experiments (1).

• The client asks for a specific image (2).

• The server sends all the JFIF table specifications (3) and then extracts ADUs from the

image, compress them and sends them through the network (4) (5). For the performance

evaluation, the extraction and compression (4) is done between (2) and (3) so that the

troughput of the AD Us is not affected.

• The client receives ADUs that are decompressed and then displayed on the screen

indepndently each from other (6) (7). For the performance evaluation, decompression (7) is

not performed.

Three versions of this application have been developed:

• A hand-coded version that does not use the ALF concept (called No ALF),

• A hand-coded version based on ALF (called ALF), and

• An automatically generated version based on ALF (called ESTEREL) using the Protocol

Compiler.

Application level framing and automated implementation 219

Two sets of experiments are described below. Firstly, the hand-coded implementations (ALF

versus No ALF) are compared in order to validate the concept of ALF. The second experiment

analyzes the efficiency of the automated approach. The throughputs represent the amount of

compressed image data divided by the time spent to transmit it. Experiments were carried out

on a lightly loaded live Ethernet (labelled Local Ethernet on next tables) and between France

(INRIA) and Australia (UTS) (labelled Internet on next tables). Experiments were performed

using SunlO workstations running SunOS (the average value of 100 measures is given).

Server (sender)

1 extract block from image 1 c 4) c:::t!~~~~~

1 compress block 1 r:-~"1 F::::::::~~~;;~

I send block I

Figure 5: The JPEG player architecture.

4.1 Validation of the ALF concept

NEW IMAGE

ABORT

QUIT

Client (receiver)

(6) I display block I
I decompress block I

I receive block I

The two hand-coded implementations have been designed to investigate the effect of ALF on

communication subsystems design and performance. The No ALF implementation runs over

an in-kernel TCP. The ALF implementation runs over its own protocol which takes advantages

of ALF. This protocol (called TPALF) is a user-level protocol that runs over UDPIIP. It was

modified from the 4.3BSD TCPIIP implementation. The only changes were to allow out-of­

order processing of incoming data and to handle ADUs as opposed to streams packets. Flow

and congestion control is done with a sliding-window scheme using the slow-start algorithm.

Error control is achieved through both Cumulative and Selective Negative Acknowledgments.

An issue was to determine the size of the unit of transmission. As the JPEG server ADUs are

very short (about 60 bytes on average), several ADUs have been concatenated within one

transmission unit. But ALF means also the ADUs must be preserved through the whole

communication system and segmentation must be avoided. ALF is a strategy that organizes the

transmitted packets into data meaningful to the application. This allows the receiver to process

independently and immediately each packet received. When segmentation occurs within the

protocol, the received packets cannot be delivered to the application on arrival, and the benefits

of ALF would be lost. This is illustrated on table 1 (with a MTU size of 1460 bytes). Thus the

size of the transmission unit should not exceed the size of the minimum MTU (Maximum

Transmission Unit) of the network.

220 Part Six Formal approaches for Protocol Design

Table 1: Throughput with different packet sizes via Internet

ALF NoALF

512 bytes 14.7 Kbits/s 6.3 Kbits/s

1460bytes 35.0 Kbits/s 8.3 Kbits/s

2000bytes 7.2 Kbits/s 8.2 Kbits/s

The two hand-coded implementations have been also used to investigate whether applications

can benefits from out-of-order processing. The comparison between table 1 and table 2

demonstrates how the non-ordered delivering gives the possibility of exploiting the internal

parallelism of the application.

Table 2: Throuhput via Local Ethernet

ALF NoALF

1460bytes 7.35 Mbits/s 7.67Mbits/s

The experiments through local networks (table 2) show that the No ALF implementation

performs slightly better when the underlying network is reliable (almost no out-of-sequence

data transmission). Through Internet (table 1), where delays and loss can produce out-of-order

data delivery, ALF appears to be more efficient (300 % faster in the best case, where the

receiver can processes immediately the ADUs when they arrive, whatever the order is). It

shows that ALF improves the efficiency of the communication sub-system by handling the

ordering at the application level. Further details are given in [Chrisment 94b].

4.2 Evaluating the automated approach

4.2.1 JPEG player specification

The automated implementation was created by using ESTEREL. Figure 6 shows the main part

of the input application specification for the server process (only the declarations and

exception handling have been omitted). The server waits for a remote image request (label 2 on

figure 6). The first present statement specifies a reliable and ordered transmission of the table

specifications (labels 3 on figure 6). The server then loops until all the AD Us are sent (labels 4

and 5). The second present statement does not request ordering which implies that the

transmission (and reception) can be out of order within the block delimitated by the present

instruction. However, as just implied by the ESTEREL syntax, order is guaranteed between the

two present blocks. The specification of the client has a similar structure and length.

It can be seen that the specification uses ALF as firstly it has references to the user data

structures, which are then passed directly to the communication protocol. Secondly, through

the present construct, the protocol gives different reliability guarantees to different parts of the

data transfer, allowing, when it is possible, out-of-sequence processing of ADUs.

Application level framing and automated implementation

do

loop
var User_ Context: CON1EXT in

do

do
2 await Remote_lmagReq;

var Last: boolean, ADU_To_Send: ADU in

%watching User_ Quit

%normal image request

%watching Remote_Abort_Req

%watching Local_Abort

User_ Context:= User_OpenCtx(?Remote_lmagReq);

present [Reliable and Ordered] do

call get_ADU_from_image(ADU_To_Send, Last)(User_Context, SPECQUANT);

3 emit Remote_ADU(ADU_To_Send);

call get_ADU_from_image(ADU_To_Send, Last)(User_Context, SPECHUFF);

3 emit Remote_ADU(ADU_To_Send);

end;

present [Reliable and FlowControl] do

trap End_Of_Image in %transmission of image AD Us

4 call get_ADU_from_image (ADU_To_Send, Last)(User_Context, MCU);

5 emit Remote_ADU(ADU_To_Send);

if Last then

exit End_Of_Image

end

handle End_Of_Image do

nothing

end trap

end;

end var

% catch the exceptions %

end

221

Figure 6: the application specification for the JPEG Server in ESTEREL. The label numbers

correspond with those used figure 5.

The implementation is generated in two steps. Firstly the application specification of the JPEG

server (figure 6) is translated into its integrated specification using the parser described in

section 3.2. In the integrated specification, a dedicated user level transmission control protocol

has been added to the application specification. The keywords within the present statements of

the application specification are translated into ESTEREL templates and into standard protocol

function calls. For example FlowControl is translated into a function call to FlowControl

within the ESTEREL template used for Reliable transmission. This template introduces timers

and specifies responses to timeout signals. The size of the server's specification changed from

74 to 248 lines after parsing, while the client's specification changed from 94 to 240 lines of

ESTEREL code. On the automaton aspect, a 2 states automaton is produced for the server

specification, and 5 states for the client specification. After protocol integration, both server

and client are made of 5 states.

The second step in the compilation is that the intermediate ESTEREL specification is

processed by the ESTEREL compiler to produce C code. This C code accesses C modules that

describe the application and its data structures. These modules were written by the application

programmer. The protocol function calls inserted by the parser are accessed from a protocol

222 Part Sa Formal approaches for Protocol Design

library that is currently being developed. Finally the executable for the JPEG server was

created by using a C compiler to compile and link all the modules together. The ESTEREL

version of the JPEG player runs directly over UDPIIP.

4.2.2 Discussion

Three issues concerning the automated JPEG player implementation can be analyzed:

The design issue
The automated approach improves the flexibility and modularity of ALF based programs. This

is best illustrated by an example. In the hand-coded implementation, the TPALF protocol is

used during all the life of the application. The TP ALF protocol allows out of order delivery of

data. This is beneficial during the actual image transfer but goes contrary to design modularity,

as the application must understand the protocol and explicitely reorder the JFIF table

specifications. The protocol specified by ESTEREL changes during the life of the application,

providing ordered delivery for the table specifications, and allowing out of order delivery of the

image ADUs. Thus the application software was not required to implement any communication

protocol functionality resulting in an improved software structure. The generalization of this

result is that if a protocol is not able to re-configure its functionality during the life of a

connection (using ESTEREL or by any other means) then it should be designed to provide a

level of functionality somewhere between the highest and lowest levels required during the life

of a connection. If the protocol always provides the highest level of functionality, then the

benefits of removing protocol functions cannot be exploited when the extra functionality is not

required (for example forcing data to be ordered when the application no longer requires it).

Always providing a lower level of functionality implies that the application is responsible for

the additional protocol functions when required (for example the application must re-order

some of the data). This results in poorly structured software.

The performance issue
We compared the C code generated by the ESTEREL compiler with the ALF hand-coded

implementation. The protocol specified in ESTEREL did not implement the slow-start

algorithm but used a simpler flow control: the acknowledgement packets are generated after

each 4th ADU and the window size has been fixed to 8. In order to obtain a fair performance

comparison, we modified the initial TPALF protocol (see section 4.1) so that the both

implementations use the same flow control parameters.

The results of this comparison are given in the table 3 and show that the choice of a formal and

automated approach does not imply bad performances. Even, we observe that the ESTEREL

automated implementation has a higher performance (20 %) than the hand-coded

implementation over a unreliable network like Internet. The better reactivity of the automated

code, due to the optimized automaton produced by the ESTEREL compiler, permits to improve

the out-of-order processing and to better benefit of the ALF concept.

Over a more reliable network (like Ethernet), the ESTEREL automated implementation remains

still better. The ESTEREL specification allows a better integration of the transmission control

into the application. In the resulting automated code all protocol interfaces are suppressed

except the user-kernel interface.

Application level framing and automated implementation 223

We also note that, over Ethernet, the network is the performance bottleneck. Further

experiments over large bandwith networks (FDDIIATM/Ethernet 100 base T) are forseen to

analyze the performances when the bottleneck is due to the protocol processing.

The code issue

ESTEREL produces a code which is equivalent to the code written in C language. The

executable code of the receiver side is even smaller (4% on 200.000 bytes). This can be

explained because, in the ALF hand-coded version, the TP ALF protocol is implemented as a

user-levellibrary contaning all functions even those never used either by the client or the server

side. The automated approach allows to keep a certain level of modularity while producing a

protocol more adapted and integrated to the application.

Table 3: Throughput between handcoded and ESTEREL versions

local
Internet

Ethernet

ALF 7.39 Mbits/s 51.3 Kbits/s

ESTEREL 7.42Mbits/s 62.1 Kbit/s

5.0 RELATED WORKS

Other research groups are currently working on the automated design and implementation of

communication subsystems tailored to application requirements [Oeschlin94] [Plagemann92]

[Schmidt93] [Richards94] [Diaz94] [Omalley 94]. The proposed solutions include developing

general purpose protocols that allow flexibility. However these solutions are not operating

system independent because the implementations are either part of the kernel, or a server

within a micro-kernel based operating system.

Da CaPo [Plagemann92] is a more advanced tool for dynamic configuration of end-to-end

transmission control protocols tailored to the application characteristics. A complex heuristic

is used to design an independent control automaton for the end-to-end transmission control

protocol (called CoRA). There is no integration, and the 3layer architecture is respected. ALF

is not retained as a design principle, which makes more complex the design of the commu­

nication support (itself implemented in the kernel space of the host computer). Da CaPo proves

that tailoring protocol to the application characteristics is efficient in case of multimedia

applications. It also proves that automated design in a formal framework is feasible with high

performance.

[Diaz 94] also proposes a layered system where classic protocols are used to transmit

appliction data, and where the application automaton is used to synchronize the data reveived

(or transmitted) on the various protocols. The concept of "partial order connections" which is

used to optimize the transmission, is very close from ALF. [Diaz 94] uses classic transport

protocol; in the case of the JPEG player, it could have used TCP to transmit the control tables,

224 Part Six Formal approaches for Protocol Design

and UDP for the MCU packets. The application automaton is described using Timed Petri

Nets. Protocols used, as well as the application automaton, are implemented in the kernel space

of the host computer. A common experiment is being carried out to compare the two different

approaches.

6.0 CONCLUSION AND FUTURE WORKS

It has been demonstrated that the automated integration of transmission control functions in an

application formal specification is possible both in theory and in practice. Performance results

confirm that, in term of code organization, size, and efficiency, the automated approach is

almost as performant as the hand-coded approach. Using this approach, a completely

automated implementation of distributed applications is credible.

The present parser design at present is limited to the integration of the control description of

the transmission control to the application specification. It is being extended with:

• A richer heuristic to identify the most efficient transmission control facilities to be

integrated. This is linked to the definition of a new QoS model adapted to the formal and

automated approach.

• Dedicated verification tools. In a client/server model, some verifications have to be done on

the coherency between the pair entities. This is made easier by the use of the formal

framework since the begining of the design.

• An optimized implementation generator. The ILP criteria (Integrating Layer Processing

[Clark90]) of optimization (instead of the one used in the current ESTEREL code

generator) will be designed. ILP results in more performant implementation of the data

manipulation functions, minimizing read/write operation which are known to be very

costly.

The targeted system will be a new generation RPC-like generator, dedicated to multimedia

applications. This RPC-like generator will, starting from the ESTEREL specification of a

distributed application, integrate automatically the communication support required for

optimal operation, and then generate the client and the server stubs. Such a tool will be useful

to investigate new communication architecture (prototyping various multimedia applications

with different QoS requirements); but also to design tailored communication facilities for

multimedia applications where the complexity of flow synchronization does not allow an

efficient hand-coded design.

7.0 ACKNOWLEDGMENT

Antony Richards gratefully acknowledges the support from Telecom Australia.

Application level framing and automated implementation 225

8.0 REFERENCES

[Berry92] G. Berry and G. Gonthier. "The Esterel Synchronous Programming Language:

Design, Semantics, Implementation". Journal of Science Of Computer Programming. Vol. 19,
Num. 2, pp. 87-152. 1992.

[Bradley93] J. Bradley. "XV Interactive Image Display for the :XWindow System Version
3.00". Apri11993.

[Castel94] C. Castelluccia and W. Dabbous. "Modular Communication Subsystem
Implementation using a Synchronous Approach". Usenix Symposium on High Speed
Networking. Oakland, August 1994.

[Chrisment94a] I. Chrisment and C. Huitema. "Remote Operation System Tailored to
Application Requirements". IFIP International Conference ULPAA '94. Barcelone. June 1994.

[Chrisment94b] I. Chrisment. "Impact of ALF on Communication Subsystems Design and

Performance". Proceedings of the First International Workshop on High Performance Protocol
Architectures 94. December 1994. Sophia Antipolis.

[Crowcroft92] J. Crowcroft, I. Wakeman and Z. Wang. Layering Considered Harmful. IEEE
Network, Vol6, N.1, January 92

[Clark90] D. D. Clark, D. L. Tennehouse. Architectural Considerations for a New Generation
of Protocols. Proceedings of ACM SIGCOMM. 1990.

[Corbin91] J. R. Corbin. "The Art of Distributed Applications". SUN technical Reference
Library. Springer-Verlag Editor. 1991.

[Diaz94] M. Diaz, C. Chassot, and A. Lozes. "From the Partial Order Connection Concept to
Partial Order Multimedia Connections". First HIPPARCH workshop. INRIA Sophia Antipolis.
December 15-16, 1994.

[Diot94] C. Diot, "Communication Protocol Development using ESTEREL". First
International HIPPARCH workshop. INRIA Sophia Antipolis. December 15-16, 1994.

[Diot95] C.Diot, C. Huitema, and T. Turletti. "Network Conscious Applications". IEEE
Workshop on High Performace Communication Systems. Mystic. August 23-25, 1995 ..

[Ham92] E. Hamilton. "JPEG File Interchange Format Version 1.02". C-Cube Microsystems.
September 1992

[Heybey92] A. T. Heybey. "Video Coding and the Application Level Framing Protocol
Architecture". MIT report MIT/LCSffR-542. June 1992.

[Hoare79] C. A. R. Hoare, "Communicating Sequential Process", Communication of the
ACM, April 1979.

226 Part Six Formal approaches for Protocol Design

[Hoglander94] A. Hoglander. "Experimental Evaluation of TCP in User Space". INRIA

Internal Report. September 1994.

[Meije94] "Tk Meije environment MAN pages". WWW server http://zenon.inria.fr:8003/

meije/meijetools.html. Sophia Antipolis. 1994.

[Huffman62] D.A. Huffman. "A method for the construction of minimum redundancy codes".

Proceedings IRE. Vol 40. pp. 1098-1101. 1962.

[IS087b] ISO/OSI "Specification of Abstract Syntax Notation One (ASN 1)", Geneva, July

1987.

[Nelson81] B. J. Nelson. "Remote Procedure Calls". ACM Transactions on Computer

Systems. May 1981. (Also PhD thesis, CMU-CS-81-119).

[Oeschlin94] P. Oeschlin and S. Leue. "Enhancing ILP using Common Case Anticipation and

Data Dependence Analysis. First HIPPARCH workshop. INRIA Sophia Antipolis. December

15-16, 1994.

[Omalley94] S. W. O'Malley, T. Proebsting, and A. B. Montz. "USC : A Universal Stub

Compiler. Proceedings of ACM '94. Vol. 24, N. 4. October 1994.

[Plagemann92] T. Plagemann, B. Plattner, M. Vogt, T. Walter. "A Model for Dynamic

Configuration of Light-Weight Protocols" Proceedings of the third workshop on FTDCS.

Tapei. Taiwan. pp. 100-110. Aprill992.

[Richards94]A. Richards, A. Seneviratne, M. Fry and V. Witana. "Tailoring the Transport

Protocol for Giga Bit Networks". In the Australian Telecommunication Networks and

Applications Conference. 5-7 December 1994. ftp://ftp.ee.uts.edu.aulpub/prose/

richards.atnac94.ps.gz

[Schmidt93] D. Schmidt, B. Stiller, T. Suda, A.N. Tantawy, and M. Zitterbart."Language

Support for Flexible, Application-Tailored Protocol Configuration". Proceedings of 18th

conference on Local Computer Network. 1993.

[Wallace90] G. Wallace. "Overview of the JPEG (ISO/CCITT) still image compression

standard. Image Processing Algorithms and Techniques". In Proceedings of SPIE. Vol. 1244.

pp. 220-233. February 1990.

