
1

Application-Level Optimization of Big Data
Transfers Through Pipelining, Parallelism and

Concurrency
Esma Yildirim, Engin Arslan, Jangyoung Kim, and Tevfik Kosar, Member, IEEE

Abstract—In end-to-end data transfers, there are several factors affecting the data transfer throughput, such as the network
characteristics (e.g. network bandwidth, round-trip-time, background traffic); end-system characteristics (e.g. NIC capacity,
number of CPU cores and their clock rate, number of disk drives and their I/O rate); and the dataset characteristics (e.g.
average file size, dataset size, file size distribution). Optimization of big data transfers over inter-cloud and intra-cloud networks
is a challenging task that requires joint-consideration of all of these parameters. This optimization task becomes even more
challenging when transferring datasets comprised of heterogeneous file sizes (i.e. large files and small files mixed). Previous
work in this area only focuses on the end-system and network characteristics however does not provide models regarding the
dataset characteristics. In this study, we analyze the effects of the three most important transfer parameters that are used to
enhance data transfer throughput: pipelining, parallelism and concurrency. We provide models and guidelines to set the best
values for these parameters and present two different transfer optimization algorithms that use the models developed.The tests
conducted over high-speed networking and cloud testbeds show that our algorithms outperform the most popular data transfer
tools like Globus Online and UDT in majority of the cases.

Index Terms—Pipelining, parallelism, concurrency, TCP, GridFTP, data transfer optimization, high-bandwidth networks, cloud
networks

F

1 INTRODUCTION
Most scientific cloud applications require movement
of large datasets either inside a data center, or between
multiple data centers. Transferring large datasets es-
pecially with heterogeneous file sizes (i.e. many small
and large files together) causes inefficient utiliza-
tion of the available network bandwidth. Small file
transfers may cause the underlying transfer proto-
col not reaching the full network utilization due to
short-duration transfers and connection start up/tear
down overhead; and large file transfers may suf-
fer from protocol inefficiency and end-system limita-
tions. Application-level TCP tuning parameters such
as pipelining, parallelism and concurrency are very af-
fective in removing these bottlenecks, especially when
used together and in correct combinations. However,
predicting the best combination of these parameters
requires highly complicated modeling since incorrect
combinations can either lead to overloading of the
network, inefficient utilization of the resources, or
unacceptable prediction overheads.

Among application level transfer tuning param-
eters, pipelining specifically targets the problem of

• E. Yildirim is with the Department of Computer Engineering, Fatih
University, Istanbul, Turkey.
E-mail: esma.yildirim@fatih.edu.tr

• Engin Arslan and Tevfik Kosar are with University at Buffalo, New
York, USA

• Jangyoung Kim is with University of Suwon, Korea

transferring large numbers of small files [1]. It has two
major goals: first, to prevent the data channel idleness
and to eliminate the idle time due to control channel
conversations in between the consecutive transfers.
Secondly, pipelining prevents TCP window size from
shrinking to zero due to idle data channel time if it is
more than one Round Trip Time (RTT). In this sense,
the client can have many outstanding transfer com-
mands without waiting for the “226 Transfer Success-
ful” message. For example, if the pipelining level is set
to four in GridFTP [1], five outstanding commands are
issued and the transfers are lined up back-to-back in
the same data channel. Whenever a transfer finishes, a
new command is issued to keep the pipelining queue
full. In the latest version of GridFTP, this value is set
to 20 statically by default and does not allow the user
to change it. In Globus Online [2], this value is set
to 20 for more than 100 files of average 50MB size,
5 for files larger than 250MB and in all other cases it
is set to 10. Unfortunately, setting static parameters
based on the number of files and file sizes is not
affective in most cases, since the optimal pipelining
level also depends on the network characteristics such
as bandwidth, RTT, and background traffic.

Using parallel streams is a very popular method for
overcoming the inadequacies of TCP in terms of uti-
lizing the high-bandwidth networks and has proven
itself over socket buffer size tuning techniques [3], [4],
[5], [6], [7], [8]. With parallel streams, portions of a
file are sent through multiple TCP streams and it is

2

possible to achieve multiples of the throughput of a
single stream.

Setting the optimal parallelism level is a very chal-
lenging task and several models have been proposed
in the past [9], [10], [11], [12], [13], [14], [15], [16]. The
Mathis equation[17] states that the throughput of a
TCP stream(BW) depends on the Maximum Segment
Size(MSS), Round Trip Time(RTT), a constant(C) and
packet loss rate(p).

BW =
MSS ⇥ C

RTT ⇥pp (1)

As the packet loss rate increases, the throughput
of the stream decreases. The packet loss rate can be
random in under-utilised networks however when
there is congestion, it increases dramatically. In [9], a
parallel stream model based on the Mathis equation
is given.

BW

agg

 MSS ⇥ C

RTT

[
1
p
p1

...

1
p
p

n

] = n

MSS ⇥ C

RTT ⇥pp (2)

According to that, use of n parallel streams can
produce n times the throughput of a single stream.
However excessive use of parallel streams can in-
crease the packet loss rate dramatically, causing the
congestion avoidance algorithm of TCP to decrease
the sending rate based on the losses encountered.
Therefore, the packet loss happening in our case
occurs due to congestion. In our previous study[11],
we presented a model to find the optimal level of
parallelism based on the Mathis throughput equation.
However these models can be applied only for very
large files where TCP can reach to its maximum
sending rate (Maximum window size).

Most studies target the optimisation of large files
and do not discuss the effect of parallelism in trans-
ferring a set of small files which is harder to base on a
theoretical model. Therefore, in Globus Online[2], the
parallelism level is set to 2, 8 and 4 respectively for
the cases mentioned in the second paragraph above.

In the context of transfer optimization, concur-
rency refers to sending multiple files simultaneously
through the network channel. In [18], the effects of
concurrency and parallelism were compared for large
file transfers. Concurrency is especially good for small
file transfers, and overcoming end system bottlenecks
such as CPU utilisation, NIC bandwidth, parallel file
system characteristics[19](e.g. Lustre file system dis-
tributes files evenly and can provide more throughput
in multi-file transfers). The Stork data scheduler [20],
[21] has the ability to issue concurrent transfer jobs
and in most of the cases, concurrency has proven itself
over parallelism. Another study [22], adapts the con-
currency level based on the changes in the network
traffic, does not take into account the other bottlenecks
that can occur on the end systems. Globus Online
sets this parameter to 2 along with the other settings

Fig. 1. Visual presentation and comparison of pipelin-
ing, parallelism and concurrency to non-optimized
transfers.

for pipelining and parallelism. A full comparison of
pipelining, parallelism and concurrency is presented
in Figure 1, to indicate the differences of each method
from each other and from a non-optimized transfer.

In this study, we provide a step-by-step solution
to the problem of big data transfer bottleneck for
scientific cloud applications. First, we provide insight
into the working semantics of application-level trans-
fer tuning parameters such as pipelining, parallelism
and concurrency. We show how to best utilize these
parameters in combination to optimize the transfer
of a large dataset. In contrast to other approaches,
we present the solution to the optimal settings of
these parameters in a question-and-answer fashion by
using experiment results from actual and emulation
testbeds. As a result, the foundations of dynamic op-
timization models for these parameters are outlined,
and several rules of thumbs are identified. Next, two
heuristics algorithms are presented that apply these
models. The experiments and validation of the devel-
oped models are performed on high-speed network-
ing testbeds and cloud networks. The results are com-
pared to the most successful and highly adopted data
transfer tools such as Globus Online and UDT [23]. It
has been observed that our algorithms can outperform
them in majority of the cases.

2 ANSWERS TO FORMIDABLE QUESTIONS

There are various factors affecting the performance
of pipelining, parallelism and concurrency; and we
list some questions to provide a guide for setting

3

 125000 250000
 500000

 1e+06

 2e+06

 2 4 6 8 10 12 14By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

seconds

a) 128 128KB files, RTT=100ms

pp=0
pp=1
pp=2
pp=4
pp=8

pp=16
pp=32
pp=64

 250000
 500000
 1e+06

 2e+06
 2.5e+06

 3e+06

 2 4 6 8 10 12 14 16By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

seconds

b) 128 1MB files, RTT=100ms

pp=0
pp=1
pp=2
pp=4
pp=8

 250000
 500000
 1e+06

 2e+06
 2.5e+06

 3e+06

 2 4 6 8 10 12 14 16 17By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

seconds

c) 128 2MB files, RTT=100ms

pp=0
pp=1
pp=2
pp=4

 250000 500000
 1e+06

 2e+06
 2.5e+06

 3e+06

 4 8 12 16 32By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

seconds

d) 128 8MB files, RTT=100ms

pp=0
pp=1
pp=2
pp=4

Fig. 2. Emulab [1 Gbps network interface, 100 msec RTT] – Effect of file size and pipelining level on Bytes
Sent/Recv in one RTT.(Question 2)

optimal numbers for these parameters. The answers
to these questions are given with experimental results
from high-speed networks with short and long RTTs
(LONI), an emulation testbed (Emulab [24]) that al-
lows the user to set the topology, bandwidth and RTT
and AWS EC2 instances with various performance
categories. The GridFTP version 5.2.X and UDT ver-
sion 4 are used in the experiments. The questions
posed are listed in Table 1. Throughout the paper,
pipelining parameter will be represented with pp, par-
allelism will be represented with p and concurrency
will be represented with cc. Also a Dataset will refer
to a set, consisting of large number of numerous-size-
files and a Chunk will refer to a portion of a dataset.

2.1 Is pipelining necessary for every transfer?
Obviously pipelining is useful when transferring large
numbers of small files, but there is a certain break-
point where the average file size becomes greater than
the bandwidth delay product (BDP). After that point,
there is no need to use a high level of pipelining.
So if we have a data set of files with varying sizes,
it is important to divide the dataset into two and
focus on the part (file size < BDP) where setting
different pipelining levels may affect the throughput.
BDP is calculated by taking bulk TCP disk-to-disk
throughput for a single TCP stream for bandwidth

TABLE 1
Questions Posed

1. Is pipelining necessary for every transfer?
2. How does file size affect the optimal pipelining level?
3. Does the number of files affect the optimal pipelining level?
4. What is the minimum amount of data in a chunk for setting
different pipelining levels to be effective?
5. Is there a difference in setting optimal pipelining level
between long-short RTTs?
6. Is there a difference between performances of data channel
caching and pipelining ?
7. Is it fine to set parallelism and concurrency levels after
optimizing pipelining?
8. When is parallelism advantageous?
9. How much parallelism is too much?

10. Is concurrency sufficient by itself without parallelism or
pipelining?
11. What advantages does concurrency have over parallelism?
12. How does network capacity affect the optimal
parallelism and concurrency levels?
13. When to use UDT over TCP?

and average RTT for the delay. In the following sub-
section, a model is presented for setting the optimal
pipelining level.

4

 50

 100

 150

 0 1 2 3 4 5 6

M
bp

s

pipelining level

a) 1MB files, RTT=100ms

64 files
128 files
256 files

 50

 100

 150

 0 1 2 3 4 5 6

M
bp

s

pipelining level

b) 2MB files, RTT=100ms

64 files
128 files
256 files

 50

 100

 150

 200

 0 1 2 3 4 5 6

M
bp

s

pipelining level

c) 4MB files, RTT=100ms

64 files
128 files
256 files

 50

 100

 150

 200

 0 1 2 3 4 5 6

M
bp

s

pipelining level

d) 8MB files, RTT=100ms

64 files
128 files
256 files

Fig. 3. Emulab [1 Gbps network interface, 100 msec
RTT] – Effect of number of files on optimal pipelining
level.(Question 3)

2.1.1 How does file size affect the optimal pipelining
level?
File size is the dominating factor in setting the optimal
pipelining level, especially for long RTT networks.
Figure 2 presents the results of disk-to-disk GridFTP
transfers of data sets with 128 different-size files in an
Emulab setting of 1 Gbps network bandwidth and 100
ms RTT. A network analyzer tool called tshark is used
to calculate the statistics about the number of bytes
sent/received in each RTT. Data channel conversation
is isolated from the control channel conversation and
the graphics only present the data channel traffic.
One important observation is that different pipelining
level transfers go through similar slow start phases
regardless of the file size. The crucial point is the
highest number of bytes reached by a specific file size.
In all of the cases, this is equal to:

B = FS ⇥ (pp+ 1) (3)

where B is the number of bytes sent/received in
one RTT, FS is the file size and pp is the pipelining
level. Of course this linear increase in the number
of bytes with the pipelining level only lasts when it
reaches BDP. After that, the increase becomes loga-
rithmic. Therefore the optimal pipelining level could
be calculated as:

pp

opt

' dBDP/FSe � 1 (4)

2.1.2 Does the number of files affect the optimal
pipelining level?
The number of files only affects the total throughput
but does not have an effect on the optimal pipelining
level. It is obvious from Figure 2, that the slow start
curves show the same characteristics for different
pipelining levels. Therefore, increasing the number

 100

 200

 300

 400

 0 1 2 4 8

M
bp

s

Pipelining Level

a) 128 128KB files, RTT=2ms

average
max

 100

 200

 300

 400

 0 1 2 4 8

M
bp

s

Pipelining Level

b) 128 512KB files, RTT=2ms

average
max

 100

 200

 300

 400

 0 1 2 4 8

M
bp

s

Pipelining Level

c) 128 1MB files, RTT=2ms

average
max

 100

 200

 300

 400

 0 1 2 4 8

M
bp

s

Pipelining Level

d) 128 2MB files, RTT=2ms

average
max

Fig. 4. Emulab [1 Gbps network interface, 2ms RTT] –
Effect of pipelining in short RTT networks.(Question 5)

of files only lengthens the proportion where data is
transferred at full capacity of the network. In Figure
3, a comparison of disk-to-disk transfers with different
number of files in the range [64-256] is presented for
different file sizes in the same testbed settings (1 Gbps
bandwidth, 100 ms RTT) as in the previous section. In
almost all of the cases the optimal pipelining level is
the same for different number of files. Also in all of
the cases, the increase in the number of files causes
an increase in the total throughput which proves
our hypothesis about the number of files. If it was
instant throughput at one time, the throughput results
would have been the same after the saturation point.
However since the average throughput is shown in
this case, although all the transfers might reach to the
same maximum transfer speed (in our case it is when
they send as much data as the BDP in one RTT), the
average throughput of a transfer will be less for small
number of files since the percentage of data transfer
in maximum capacity will be less comparing to the
whole data transfer . Similar results are obtained for
short RTT networks (LONI); however, they are not
presented here due to space considerations. At that
point, another important question is brought to clarify
whether or not we should apply different pipelining
levels on different file chunks.

2.1.3 What is the minimum amount of data in a chunk
for setting different pipelining levels to be effective?
Since different file sizes have the same slow start
phase characteristics, only differ in the highest num-
ber of bytes sent/received in one RTT for different
pipelining levels, there must be at least a sufficient
number of files in a chunk that will pass the transfer
through the slow start phase. Otherwise even if we
set the optimal pipelining level for the chunk of files,
too small chunk sizes with different file size averages
will not improve the throughput. To calculate the min-

5

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

RTTs

a) RTT = 0.25ms no optimisation

no optimisation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

RTTs

b) RTT = 0.25ms channel caching(-fast)

-fast

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200By
te

s
Se

nt
/R

ec
ei

ve
d

in
 o

ne
 R

TT

RTTs

c) RTT = 0.25ms pp=1

-ppq 1

Fig. 5. [1 Gbps network interface, 0.25 ms RTT] –
Pipelining vs Data Channel Caching (Question 6)

imum chunk size, a model from a previous study [25]
is used in the optimization algorithm presented in
Section 4. This model uses a mining and statistics
method to derive the smallest data size to transfer
to predict the transfer throughput accurately.

2.1.4 Is there a difference in setting optimal pipelining
level between long-short RTTs?
Section 2.1.1 mentions that file size, along with the
pipelining level, affects the maximum number of
bytes sent/received in one RTT especially if BDP is
much higher than file size. Therefore RTT has an
indirect effect since it is used in the calculation of
BDP. For short-RTT networks such as local-area or
metropolitan-area networks, pipelining loses its effect
considerably. The size of a file becomes larger than
the BDP value and pipelining is only used to close the
processing overhead and control channel conversation
gaps between the transfers. In this sense, we can
no longer talk about the linear increase in through-
put with increasing pipelining levels and setting a
pipelining level of 1-2 would be enough to reach the
maximum achievable throughput. Figure 4 presents
the throughput results of the disk-to-disk transfer of
128 files for different file sizes in an Emulab setting of
1 Gbps network interface and 2 ms RTT. The optimal
pipelining level does not depend on the file size and 1
or 2 pipelining level is enough to achieve the highest
throughput.

2.1.5 Is there a difference between performances of
data channel caching and pipelining?
When the average file size is greater than the BDP,
there is no need to use large pipelining numbers and

a pipelining level of 1 is sufficient to fully utilise
the BDP. With pipelining, the control messages and
data transfers overlap. The pipelined data transfer
of multiple small files can act like a large file data
transfer (Figure 2). One would argue that for files with
sizes larger than BDP, data channel caching(Using the
same channel for multiple file transfers) can achieve
the same effect. It is true but only to a certain extent.
Data channel caching does not let control channel
messages to overlap with data transfers. It still waits
for one transfer to finish to start the other. Figure 5
presents a comparison of pipelining and data channel
caching and a case with no optimisation. 128 1MB
files are transferred in a local area 1Gbps network
whose BDP is 25K approximately. In Figure 5.a ,
where no optimisation is applied, each 1MB file is
transferred back to back with a few RTTs in between
(processing overhead and control channel messages).
The effect of a growing window size can be seen for
every file in the figure. When data channel caching
is applied (Figure 5.b), the distance between consec-
utive transfers is still there, however the effect of a
growing window size can only be observed in the
first file transfer. The other file transfers start with
the largest possible window size which is BDP in this
case. Looking at pipelining level of 1(Figure 5.c), the
distance disappears due to data transfers overlapping
with processing overhead and control channel mes-
sages. The transfer continues at the highest possible
window size which is 25K. The same experiment with
larger files(128 8MB files) also presented the same
distance remain between consecutive transfers. The
results indicate that it is better to use pipelining rather
than data channel caching although the performance
differences might be very small. For large bandwidth,
long RTT networks the large window size provided by
data channel caching will do the trick for consecutive
transfers but this small distance will still be there.
However with pipelining even this small distance will
disappear.

2.1.6 Is it fine to set parallelism and concurrency
levels after optimizing pipelining?
An optimized transfer of a data set with pipelining
actually looks like the transfer of a big file transfer
without optimization (Figure 2). Therefore setting the
optimal pipelining level actually makes things easier
to find and set optimal parallelism and concurrency
levels.

2.2 When is parallelism advantageous?
Parallelism is advantageous when the system buffer
size is set smaller compared with the BDP. This occurs
mostly in large bandwidth-long RTT networks. It is
also advisable to use parallelism in large file transfers.
In the case of small files, parallelism may not give
a good performance by itself, however when used

6

-100

-50

 0

 50

 100

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

a) RTT = 100ms, 64 1MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

b) RTT = 100ms 64 2MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

 150

 200

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

c) RTT = 100ms 64 4MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

 150

 200

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

d) RTT = 100ms 64 8MB files

Below pp
Above pp

pp
pp p

Fig. 6. Emulab [1 Gbps network interface, 100 ms RTT]
– Effect of file size and parallelism on throughput (64
files transfer with pipelining and parallelism).(Question
8)

-100

-50

 0

 50

 100

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

a) RTT = 100ms, 64 1MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

b) RTT = 100ms 128 1MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

c) RTT = 100ms 256 1MB files

Below pp
Above pp

pp
pp p

Fig. 7. Emulab [1 Gbps network interface , 100ms
RTT] – Effect of number of files and parallelism on
throughput (1MB file transfer with pipelining and par-
allelism).(Question 8)

with pipelining its effects on the performance could
be significant as long as it does not cause pipelining to
lose its effect due to division of small files into chunks
by parallelism. This happens when the number of files
and average file size in a chunk are small. In Figure
6, for the same Emulab settings of 1 Gbps network
interface and 100ms RTT, parallelism has a negative
effect when added to pipelining for the smallest file
size case (Figure 6.a), however this effect is changed to
positive as the file size increases. Similar effects could
be seen with 128- and 256-file transfers. In Figure 7,
the effect of parallelism is measured when the number
of files is increased for 1MB files transferred with
pipelining. Again the negative effect of parallelism is
diminished and gradually turns to positive. However,

-100

-50

 0

 50

 100

 150

 200

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

a) RTT = 100ms, 64 8MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

 150

 200

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

b) RTT = 100ms 128 8MB files

Below pp
Above pp

pp
pp p

-100

-50

 0

 50

 100

 150

 200

0-1 1-2 2-3 3-4 4-5 5-6 6-7 6-8 6-16
6-32

6-64

Th
ro

ug
hp

ut
 D

iff
er

en
ce

 (%
)

pp-p level

c) RTT = 100ms 256 8MB files

Below pp
Above pp

pp
pp p

Fig. 8. Emulab [1 Gbps network interface, 100ms
RTT] – Effect of number of files and parallelism on
throughput (8 MB file transfer with pipelining and par-
allelism).(Question 8)

as the number of parallel streams increases further,
data size is divided into more streams and having
big data size again loses its positive effect. Therefore
the improvement is more significant for large file sizes
(Figure 8). Bigger file sizes and large number of files
are good for parallelism.

2.3 How much parallelism is too much?
This is a difficult question to answer. If it were possi-
ble to predict when the packet loss rate would start to
increase exponentially, it would also be possible how
much parallelism would be too much. There are two
cases to consider in terms of dataset characteristics.
First, when the transfer is of a large file, the point the
network or disk bandwidth capacity is reached and
the number of retransmissions start to increase is the
point where the parallelism level becomes too much.
In our previous work [11], we managed to predict
the optimal level by looking into throughput mea-
surements of three past transfers with exponentially
increasing parallelism levels. There is a knee point
in the throughput curve as we increase the parallel
stream number.

In the second case, when the transfer is of a dataset
consisting of large number of small files, parallelism
has a negative effect, because the data size becomes
smaller as the file is divided into multiple streams
and the window sizes of each stream can not reach to
maximum because there is not enough data to send.
With the help of pipelining this bottleneck can be
overcome to an extent. In Figure 9, where multiple
parallel streams are used on pipelined transfers of 64
1MB files, the parallel streams spend most of their
time in the slow start phase. The more the parallelism,
the larger the overhead and maximum window size
can not be reached(Figure 10). Unfortunately, there is

7

Fig. 9. AWS- [m3.xlarge instances-100ms RTT] -
Parallelism effect on small datasets consisting of
small files (64 1 MB files(default pipelining level ap-
plied)).(Question 9)

Fig. 10. AWS- [m3.xlarge instances-100ms RTT] -
Pipelined transfer of a small dataset consisting of
small files (64 1 MB files(default pipelining level ap-
plied)).(Question 9)

no way to tell the breaking point where individual
parallel streams will spend their time in the slow-start
phase of TCP.

2.4 Is concurrency sufficient by itself without par-
allelism or pipelining?
In cases where the bandwidth is fully utilized with
small number of concurrent transfers and the number
of files is large enough, concurrency, used with data
channel caching can achieve similar performances
with parallelism + pipelining + concurrency. How-
ever, the optimal concurrency level could be much
higher when it is used alone. High number of concur-
rent transfers means many processes, which can de-
grade the performance. In this case, using concurrency
with pipelining and parallelism is a good choice.

2.4.1 What advantages does concurrency have over
parallelism?
In cases where parallelism deteriorates the perfor-
mance improvements of pipelining, it is better to use
concurrency. In Figure 11, concurrency with pipelin-
ing has better performance than using all three func-
tions together for the same settings of 1 Gbps network
interface and 2ms RTT in Emulab. This is due to the
negative effect of parallelism on pipelining. For bigger
file sizes, the negative effect of parallelism is degraded
and when all three functions are used together they
can perform as well as concurrency + pipelining case.
For small RTT networks(LONI - 10 Gbps network
interface - 2 ms RTT), where pipelining has little effect,
we achieve a quicker ascend to the peak through-
put and see better performance with parallelism +

 50
 100
 150
 200
 250
 300
 350
 400

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
6-8-8

6-16-16

6-32-32

6-64-64

M
bp

s

pp/cc/p

64 1MB files

-pp -cc
-pp -p

-pp -cc p

 50
 100
 150
 200
 250
 300
 350
 400

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
6-8-8

6-16-16

6-32-32

6-64-64

M
bp

s

pp/cc/p

128 1MB files

-pp -cc
-pp -p

-pp -cc p

 50
 100
 150
 200
 250
 300
 350
 400

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
6-8-8

6-16-16

6-32-32

6-64-64

M
bp

s

pp/cc/p

256 1MB files

-pp -cc
-pp -p

-pp -cc p

Fig. 11. Emulab [1 Gbps network interface, 100 ms
RTT] – Comparison of parallelism and concurrency (1
MB files).(Question 11)

concurrency + pipelining since parallelism does not
have a negative effect on pipelining(Figure 12). As
the file size and number of files increases, using extra
parallelism loses its effect, because concurrency can
also provide a quick ascend to the maximum average
throughput.

2.4.2 How does network capacity affect the optimal
parallelism and concurrency levels?
It is necessary to remove the bottlenecks related to
end-systems and dataset characteristics to measure
the effect of network capacity over parallelism and
concurrency. The most suitable testbed for this ex-
periment is a collection of instances of AWS with 4
different network performance categories: Low, mod-
erate, High and 10Gbps. 32 128MB files (8GB in
total) were transferred with a 100ms artificial RTT
in between the instances. The size of the files is
chosen to be large especially to remove the effects of
dataset characteristics. Figure 13 presents the effect of
network capacity on parallelism (a), concurrency(b)
and concurrency with data channel caching(c). The
performance benefits of parallelism and concurrency
is best observed in wide area data transfers. As
a result of exponentially increasing parallel stream
numbers and concurrency, the total throughput shows
a linear increase first. However as the number goes
high it comes closer to the network capacity and
the increase becomes exponential and then starts to
decrease or takes the form of a steady-state transfer.

8

 0
 200
 400
 600
 800

 1000
 1200
 1400

 1 2 4 8 16 32

M
bp

s

of streams

a) Effect on parallel streams

t1.micro(Low BW)
m3.medium(Moderate BW)

m3.xlarge(High BW)
c3.8xlarge.(10Gbps)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 1 2 4 8 16 32

M
bp

s

of concurrent transfers

b) Effect on concurrency

t1.micro(Low BW)
m3.medium(Moderate BW)

m3.xlarge(High BW)
c3.8xlarge.(10Gbps)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 1 2 4 8 16 32

M
bp

s

of concurrent transfers

c) Effect on cached concurrency

t1.micro(Low BW)
m3.medium(Moderate BW)

m3.xlarge(High BW)
c3.8xlarge.(10Gbps)

Fig. 13. Effect of Network Capacity on parallelism and concurrency- AWS instances(t1.micro, m3.medium,
m3.xlarge, c3.8xlarge) - RTT = 100ms(Question 12)

 0

 500

 1000

 1500

 2000

 2500

 3000

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
7-8-8

8-9-9
9-10-10

M
bp

s

pp/cc/p

128 1MB files

pp
cc
p

pp-cc
pp-p
cc-p

pp-cc-p

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
7-8-8

8-9-9
9-10-10

M
bp

s

pp/cc/p

256 1MB files

pp
cc
p

pp-cc
pp-p
cc-p

pp-cc-p

 0

 1000

 2000

 3000

 4000

 5000

0-1-1
1-2-2

2-3-3
3-4-4

4-5-5
5-6-6

6-7-7
7-8-8

8-9-9
9-10-10

M
bp

s

pp/cc/p

512 1MB files

pp
cc
p

pp-cc
pp-p
cc-p

pp-cc-p

Fig. 12. LONI [10 Gbps network interface, 2ms RTT] –
Comparison of pipelining, parallelism and concurrency
(1MB files).(Question 11)

The most apparent outcome that can be deduced
from these results is that the optimal parallelism and
concurrency levels increase as the network capacity in-
creases. With a few minor differences, the optimal par-
allel stream and concurrency number for t1.micro in-
stances is 2, for m3.medium instances 4, for m3.xlarge
instances 4-8 and for c3.8xlarge instances 8. These
numbers are close to each other because there is
not much of a difference in their optimal network
bandwidth(100Mbps, 500Mpbs, 650Mbps, 900Mpbs
respectively) and they are hardly multiples of each
other except for t1. micro instances. Therefore the dis-
tinct parallelism and concurrency numbers are harder
to see among m3.medium, m3.xlarge and c3.8xlarge
instances. There can also be the underlying restrictions

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 2 4 6 8 10

M
bp

s

Run #

a) 2 concurrent UDT streams-10GB data

Stream 1 - 5GB
Stream 2 - 5GB

Total throughput

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 2 4 6 8 10

M
bp

s

Run #

b) 4 concurrent UDT streams-10GB data

Stream 1 - 2.5GB
Stream 2 - 2.5GB
Stream 3 - 2.5GB
Stream 4 - 2.5GB
Total throughput

Fig. 14. Effect of Concurrency over UDT transfers,
LONI - 1Gbps-RTT=2ms (Question 13)

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10 12 14 16

M
bp

s

Run #

a)LONI- 10Gbps-RTT=2ms, memory transfers

UDT4
GridFTP-1stream

GridFTP-10streams
GridFTP-UDT-1stream

GridFTP-UDT-10streams

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 2 4 6 8 10 12 14 16

M
bp

s

Run #

b) XSEDE-10Gbps-RTT=29ms, memory transfers

UDT4
GridFTP-1stream

GridFTP-10streams
GridFTP-UDT-1stream

Fig. 15. UDT vs GridFTP, memory transfers (Question
13)

on the highest bandwidth usage for normal instances
set by AWS.

2.5 When to use UDT over TCP?
There are many studies that compare UDT and
TCP(GridFTP) in the literature ([26], [27], [28], [29]).
However all the results belong to under 1Gbps net-
works and usually wide area transfers. According to
their observations, parallel TCP performs better than
UDT, however UDT is much better than single stream
TCP. The definite outcome is that UDT performs better
at long RTTs. None of these results have a 10Gbps
network example.

In this section, performance comparison of UDT
vs GridFTP is presented in long-short RTT 10Gbps
production networks(LONI, XSEDE). It is harder to
reach the network’s full capacity in 10Gbps networks
and even if the network is idle and the protocol
inefficiencies are overcome, there may be other types

9

 0
 50

 100
 150
 200
 250
 300
 350

 1 2 3

M
bp

s

run #

a)XSEDE testbed-RTT=40ms-1000 1MB files

GridFTP
UDT

 0
 50

 100
 150
 200
 250
 300
 350

 1 2 3

M
bp

s

run #

b)XSEDE testbed-RTT=0.3ms-1000 1MB files

GridFTP
UDT

Fig. 16. UDT vs GridFTP, Transfer of large number of
small files (Question 13)

of bottlenecks (e.g. CPU capacity, NIC capacity, Disk
bandwidth). We first measured the effect of concur-
rency on UDT flows in a 10Gbps networks with an
RTT of 2ms(Figure 14). UDT’s single stream through-
put performance was around 3Gbps. When we in-
creased the concurrency level to 2 and 4 later, we
have seen that there was not a single change in the
level of total throughput. The streams simply shared
3Gbps bandwidth among themselves. In the next
experiment(Figure 15), we used GridFTP with both
TCP and UDT options. In the LONI network with 2ms
RTT, single stream GridFTP and UDT4 showed sim-
ilar performances. There was an additional overhead
when we used GridFTP with UDT option. However
parallel TCP of 10 streams outperformed all others
and was able to reach 6 Gbps throughput. In XSEDE
tests where RTT is around 30ms, the results changed
and UDT4 outperformed all others reaching 4Gbps
throughput followed by GridFTP-10streams. In Figure
16, the results of transfer of 1000 1MB files on XSEDE
network with long and short RTTs are presented.
According to the results, UDT performed poorly in
short RTTs, however it can outperform single stream
TCP in long RTTs.

These results confirmed that it is better to use UDT
in long RTT networks without additional parallelism
but it performs worse in metropolitan or state-wide
networks such as LONI. Parallel TCP can compete
with UDT in both cases however it is important to set
the correct parallelism level without overwhelming
the network.

3 RULES OF THUMB
This section presents some rules that should be ap-
plied when modelling algorithms for transfer of large
datasets with GridFTP pipelining, parallelism and
concurrency:

• Always use pipelining, even if it has very little
effect on throughput. it allows the usage of a
single data channel for sending multiple files, re-
sulting a continuous increase in number of bytes
sent/received in one RTT. It also overlaps control
channel messages and processing overhead with
data channel transfers resulting in removal of idle
time between consecutive transfers.

• Set different pipelining levels by dividing the
data set into chunks where mean file size is less
than BDP. The number of bytes sent/received
in one RTT cannot pass the average file size
multiplied by the pipelining level. Pipelining can
have a huge effect as long as this value is less
than BDP.

• Keep the chunks as big as possible. It is important
to have enough data in a chunk for pipelining
to be effective because different pipelining level
transfers go through the same slow-start phase.

• Use only concurrency with pipelining for small
file sizes and small number of files. Dividing a
small file further with parallelism affects through-
put adversely.

• Add parallelism to concurrency and pipelining
for bigger file sizes where parallelism does not
affect pipelining.

• Use parallelism when the number of files is in-
sufficient to apply concurrency.

• Use UDT for wide area transfers only, preferably
with only a single stream. In cases where you
are allowed parallel stream transfers, TCP with
optimal stream number can compete with UDT
and sometimes outperform it.

4 ALGORITHMS
Considering the rules described above, two comple-
mentary algorithms are presented to set optimal val-
ues for pipelining, parallelism and concurrency.

The first algorithm uses an adaptive approach and
tries to reach the maximum network bandwidth grad-
ually. The second algorithm follows a more aggressive
approach in using concurrency. The details of the
algorithms are presented in the following sections.

4.1 Adaptive PCP Algorithm
This algorithm sorts the dataset based on the file size
and divides it into 2 sets; the first set (Set1) containing
files with sizes less than BDP and the second set (Set2)
containing files with sizes greater than BDP. Since
setting different pipelining level is effective for file
sizes less than BDP (Rule 2), we apply a recursive
chunk division algorithm to the first set which is
outlined in the following subsection. For the second
set we set a static pipelining level of 2.

4.1.1 Recursive Chunk Division for Optimal Pipelin-
ing
This algorithm is mean-based to construct clusters
of files, with each cluster (chunk) having a different
optimal pipelining value. The optimal pipelining level
is calculated by dividing BDP to the mean file size
and the data set is recursively divided by the mean
file size index while several conditions are met. The
first condition is that a chunk can only be divided
further if its optimal pipelining is not the same as its

10

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000

op
t p

p

Filesize in KB

uniform distribution two means=(64files)1.5M,(192files)7.5M BDP=8096KB

"rtwomeans.dat"

 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.5
 6

Fig. 17. Example behavior of Recursive Chunk Size
Division Algorithm.

parent chunk. Secondly, a chunk cannot be less than
a preset minimum chunk size and the last rule is that
the optimal pipelining level set for a chunk cannot
be greater than the preset maximum pipelining level.
The outline is presented in Algorithm 1.

Algorithm 1 Recursive Chunk Division(RCD)
Require: list of files _ start index _ end index _

total number of files _ min chunk size _
parent pp _max pp

Calculate mean file size

Calculate current opt pp

Calculate mean file size index

if current opt pp! = 1&
current opt pp 6= parent pp &
current opt pp <= max pp &
start index < end index&
mean file size index > start index&
mean file size index < end index&
current chunk size > 2 ⇤min chunk size then

call RCD dividing the chunk by mean index

(start index� > mean index)
call RCD dividing the chunk by mean index

(mean index+ 1� > start index)
else

opt pp = parent pp

end if

Figure 17 shows an example case of clustering of
dataset into chunks of different optimal pipelining
levels. In this example, the dataset consists of files
which are randomly generated with two different
mean values of 1.5MB and 7.5MB. The y axis shows
the optimal pipelining level assigned to each file while
the x axis shows the file size in KB. The algorithm
constructs 3 clusters to set different pipelining levels
for a BDP of 8MB.

4.1.2 Adaptive Parallelism and Concurrency Levels
The PCP algorithm only uses pipelining with con-
currency for files in Set1(files smaller than BDP) and
includes additional parallelism for files in Set2(files
larger than BDP) by considering rules 3 & 4 men-
tioned previously. File list, number of files, minimum
chunk size, BDP and minimum number of chunks

are given as input parameters. For Set1, the divided
chunks by the recursive chunk division algorithm go
through a revision phase in which smaller chunks are
combined and larger chunks are further divided so
that we could apply an adaptive concurrency setting
to the chunk transfers. Starting with 1 concurrency
level, each chunk is transferred with exponentially
increasing levels until throughput drops down and
the optimal level is found. The rest of the chunks are
transferred with the optimal level. However before
that, if chunks with same pp values exist, they are
combined so that chunk transfers with same pp and
cc values will not be conducted separately.

Selection of an exponentially increasing parallelism
level strategy is a good choice [11]. First of all, the be-
haviour of the throughput curve is logarithmic as we
increase the parallelism level through parallel streams
or concurrency. The throughput changes are much
more significant when the number is small and less
significant as it gets high. Exponential increase help
provide a quicker ascend to the maximum through-
put. Linearly increasing this number would cause
further division of the data set and result in bring-
ing extra overhead. The algorithm aims to quickly
find that breaking point when the throughput drops
down. We implemented more than 5% drop down in
throughput to stop increasing the parallelism level to
avoid for slight fluctuations in the network and end-
system load and greedily reach for the maximum level
of throughput.

For Set2, previously set static pipelining level of
2, the optimal parallelism level is found before the
optimal concurrency level. Chunks of files are con-
structed considering the following conditions: First,
a chunk should be greater than the minimum chunk
size multiplied by the concurrency level and second,
the number of files in a chunk should be greater than
the concurrency level. Starting with single parallelism
level, with each chunk transfer, the parallelism level is
increased exponentially until throughput drops down.
After setting the optimal parallelism level, the con-
currency level is increased in the subsequent chunk
transfers the same way. When the optimal levels are
found for pipelining-parallelism-concurrency, the rest
of the dataset is transferred in one big chunk with the
optimal values.

4.2 Multi-Chunk (MC) Algorithm
The Multi-Chunk (MC) [30] algorithm basically tries
to improve transfer throughput of mixed datasets
which consist of both small and large files (small and
large sizes are defined based on network BDP). It
divides the dataset into chunks based on file sizes
(Small, Middle, Large and, Huge) and find optimal
parameter configuration (pipelining, parallelism and
concurrency) for each chunk separately. Then, it trans-
fers multiple chunks simultaneously with their opti-
mal parameters.

11

Algorithm 2 Optimal Parallelism-Concurrency-
Pipelining(PCP)
Require: list of files _ total number of files _

min chunk size _BDP _min no of chunks

Sort the files
Divide the files into Set1 and Set2
FOR SET1
Create chunks by applying RCD algorithm
while Number of chunks is less than
min chunk no do

Divide largest chunk
end while

curr cc 1
prev thr 0
perform transfer for the first chunk
while current throughtput > 0.95⇥ previous
throughput do

perform transfer for the consequent chunk
curr cc = curr cc ⇤ 2

end while

opt cc = prev cc
Combine chunks with same pp values
Perform transfer for the rest of the chunks with
optimal pp and cc

FOR SET2
Set optimal pp as 2
curr p 1
prev thr 0
Create a chunk with the minimum chunk size
perform transfer for the consequent chunk
while Current throughtput > 0.95⇥ Previous
throughput do

perform transfer for the consequent chunk
curr p = curr p ⇤ 2

end while

opt p = prev p
Repeat the same steps for finding Optimal CC
Transfer the rest of the data with Optimal PP, P and
CC values

In the Multi-Chunk (MC) algorithm, the focus is
mainly on minimizing the effect of low transfer
throughput of small files in mixed datasets. This is be-
cause the throughput obtained during the transfer of
the small file chunks (even after choosing the best pa-
rameter combination) is significantly worse compared
to large chunks due to the high overhead of reading
too many files from disk and underutilization of the
network pipe. Depending on the weight of small files’
size over the total dataset size, overall throughput can
be much less than the throughput of large file chunk
transfers. Thus, MC transfers small chunks along with
large chunks in order to minimize time period in
which only small chunks are transferred.

In terms of finding optimal parameter combination,

TABLE 2
BASELINE AVERAGE DISK WRITE THROUGHPUT

RESULTS

Machine Site NIC Mbps

eric LONI 10G 1538.4
eric (2 proc.) LONI 10G 2263.6
eric (4 proc.) LONI 10G 2675.0

oliver LONI 10G 1397.1
Hotel FutureGrid 1G 7824
Sierra FutureGrid 1G 315.8

Gordon Xsede/SDSC 10G 3260.8
Stampede Xsede/TACC 10G 3980.8

nodeX Emulab 1G 575.2
c3.8xlarge node AWS 10G 927.84

as opposed to PCP, the MC algorithm calculates value
of pipelining and parallelism for a chunk at the
beginning of the transfer. For the concurrency level
of chunks, it treats all chunks equally and evenly
distributes available channels to chunks. As concur-
rency means opening multiple channels (c=4 stands
for 4 active TCP channels), the MC distributes data
channels among chunks using round-robin on set of
{Huge,Small,Large,Middle}. The ordering of chunks
provides better chunk distribution if the number of
channels is less than the number of chunks. Finally,
the MC algorithm does not decide the value of con-
currency but determines how available channels will
be assigned to chunks.

After channel distribution is completed, the MC
schedules chunks concurrently using the calculated
concurrency level for each chunk. When the transfer
of all files in a chunk is completed, the channels of
the chunk are scheduled for other chunks based on
their estimated completion time.

Differences between Adaptive PCP and MC Algo-
rithms:

• MC Algorithm sets a static concurrency level for
the whole dataset transfer and a static parallel
stream number per chunk. These numbers never
change during the transfer. PCP Algorithm starts
with a minimum parallel stream and concurrency
level and these numbers dynamically go up until
they reach the optimum.

• MC Algorithm can do multiple chunk transfers
at the same time, while PCP Algorithm transfers
chunks one by one.

• MC Algorithm starts with an aggressive prede-
fined concurrency and parallelism value, while
PCP adaptively converges to the optimum.

5 EXPERIMENTAL RESULTS

The algorithms were tested on real high-speed net-
working testbeds FutureGrid and Xsede and also
cloud networks by using Amazon Web Services

12

EC2 instances. Three different datasets were used
in the tests classified as small(between 512KB-8MB),
medium(25MB-100MB) and large(512MB-2GB) file
sizes. Total dataset size was around 10GB-20GB. The
baseline disk write throughput results measured with
Bonnie++ and dd for every testbed used in the ex-
periments are presented in Table 2 for comparison
purposes.

FutureGrid is a wide area cloud computing testbed
with a 10 Gbps network backbone. However it sup-
ports only 1 Gbps network interfaces on end-systems
so the throughput is bounded by the network inter-
face. Xsede previously known as TeraGrid is also a
10Gbps wide area testbed which is bounded by disk
and CPU performance of data transfer nodes. Amazon
Web Services (AWS) is a commercial cloud computing
services platform that provides a variety of machine
instances with different interconnects. On Futuregrid,
two clusters Sierra and Hotel which are connected
with 76ms RTT were used. On Xsede, Stampede and
Gordon were used which are connected with a 50ms
RTT. For AWS two compute optimised Linux Ubuntu
instances with 10G interconnects were used in the
experiments.

5.1 Real Testbed Results
Figure 18.a,b,c shows the results of the algorithms
running on FutureGrid testbed. For the small dataset
(Figure 18.a), Globus Online(GO) and UDT perform
very poorly. This shows that these tools are not de-
signed for datasets consisting of many small files.
PCP algorithm throughput divides the dataset in to
5 chunks and then sets different pipelining levels for
each and gradually increases the concurrency level.
The final chunk size which is about 8GB results in
the highest transfer speed. On the other hand the
MC algorithm which is more aggressive in setting
concurrency levels outperforms the others in terms
of the average throughput.

For the medium dataset (Figure 18.b), GO keeps up
to the MC algorithm throughput by setting static pp,
p and cc values. The average throughput of the PCP
algorithm follows them and UDT performs the worst.
The final chunk of the PCP algorithm which is around
10GB is transferred at the same speed as the MC and
GO speeds. The PCP algorithm gradually increases
the parallelism level until it no longer increases the
throughput. Then it starts increasing the concurrency
level with each chunk transfer.

For the large dataset (Figure 18.c), GO and MC
average throughput saturates the network bandwidth
and UDT performs better. PCPs last two chunks
(12GB)reaches the network bandwidth limit. The
maximum throughput that can be achieved is bound
by the network interface rather than the disk through-
put(Table 2). These results show that our algorithms
can reach maximum limit regardless of the dataset

characteristics while GO and UDT are only good for
relatively large files.

Figure 18.d,e,f presents the experimental results of
the algorithms on Xsede network. The same dataset
characteristics are used for the tests which are run be-
tween SDSC’s Gordon and TACC’s Stampede clusters.
For the small data set (Figure 18.d) of which file size
range is between 512KB and 8MB, MC and PCP al-
gorithms perform the best. The worst results are seen
with GO while UDT overperforms it. The last chunk
transferred with PCP can adaptively reach 3500Mbps
throughput. For the middle dataset the dataset (Figure
18.e) is divided into two. The first set increases the
concurrency level while the second set adds paral-
lelism. Again MC algorithm which uses concurrency
aggressively performs the best while PCP adaptively
learns which concurrency level is best. UDT and GO
performs worse. The last chunk transferred with PCP
can go beyond 4000Mbps throughput. For the large
dataset (Figure 18.f), PCP sets the pipelining level to 2
and applies an adaptive parallelism and concurrency.
The last chunk throughput can reach 4500 Mbps.
Again MC and PCP algorithms are the best and can
reach maximum disk throughput of Stampede. GO
outperforms UDT in this case.

5.2 Cloud Testbed Results
The cloud experiments were conducted using Ama-
zon’s EC2 service. Two cpu-optimized c3.8xlarge type
nodes with 10G interconnects were launched with
an artificial delay of 100ms. Although the intercon-
nects provide 10G bandwidth, the SSD disk volumes
bind the maximum achievable throughput to around
1Gbps (Table 2). For the small dataset transfers (Figure
18.g), UDT performs the worst. GO follows UDT with
390Mbps throughput. MC algorithm with a concur-
rency level of 32 outperforms all others. PCP adap-
tively reaches 850Mbps throughput with a data chunk
transfer of 7GB but the average throughput of all
chunks is around 500Mbps.

In the medium dataset(Figure 18.h) GO performs
better than PCP average throughput. MC average
throughput outperforms all others again. PCP chunk
throughput gradually surpasses the others. UDT
again performs the worst. For the large dataset(Figure
18.i) GO performance is worse than PCP and MC. It
is interesting to see that but since we do not have any
control over GO parameters, we do not know why
the medium dataset GO results were better. It can be
due to different set of pp,p,cc values used for different
dataset sizes.

Overall the algorithms that apply our models per-
form better than GO and UDT in majority of the cases.
While PCP algorithm adaptively tries to reach the
end-to-end bandwidth, MC algorithms behaves more
aggressively based on the initially set concurrency
level and both are able to reach maximum achievable
throughput.

13

 0

 200

 400

 600

 800

 1000

 1200

 1400

14-0-1
9-0-2

6-0-4
4-0-8

3-0-16

M
bp

s

pp-p-cc

a)FGrid,Filesize range:512K-8M Totaldatasize:10737615872bytes~10GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

2-1-1
2-2-1

2-4-1
2-8-1

2-8-2
2-8-4

2-8-8
2-8-16

2-8-16

M
bp

s

pp-p-cc

b)FGrid,Filesize range:25M-100M Totaldatasize:19350421504bytes~18GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

2-1-1
2-2-1

2-4-1
2-8-1

2-16-1
2-16-2

2-16-4
2-16-4

M
bp

s

pp-p-cc

c)FGrid, Filesize range:512M-2G Totaldatasize:19177406464bytes~18GB

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

16-0-1
16-0-2

15-0-4
11-0-8

M
bp

s

pp-p-cc

d)XSEDE,Filesize range:512K-8M Totaldatasize:~20GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

3-0-1
3-0-2

3-0-4
3-0-8

2-1-8
2-2-8

2-4-8
2-2-16

2-2-16

M
bp

s

pp-p-cc

e)XSEDE,Filesize range:25M-100M Totaldatasize:~20GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2-1-1
2-2-1

2-4-1
2-8-1

2-4-2
2-4-4

2-4-4

M
bp

s

pp-p-cc

f)XSEDE,Filesize range:512M-2G Totaldatasize:~20GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 200

 400

 600

 800

 1000

 1200

20-0-1
16-0-2

11-0-4
8-0-8

6-0-16

M
bp

s

pp-p-cc

g)AWS,Filesize range:512K-8M Totaldatasize:10GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 200

 400

 600

 800

 1000

 1200

2-1-1
2-2-1

2-4-1
2-8-1

2-8-2
2-8-4

2-8-8
2-8-16

2-8-32
2-8-32

M
bp

s

pp-p-cc

h)AWS,Filesize range:25M-100M Totaldatasize:~20GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

 0

 200

 400

 600

 800

 1000

 1200

2-1-1
2-2-1

2-4-1
2-8-1

2-16-1
2-32-1

2-64-1
2-32-2

2-32-4
2-32-4

M
bp

s

pp-p-cc

i)AWS,Filesize range:512M-2G Totaldatasize:~20GB)

PCP-chunk-Throughput
MC-avg-Throughput

UDT-avg-Throughput
GO-avg-Throughput

PCP-avg-Throughput

Fig. 18. Experimental Results of Algorithms on FutureGrid, XSEDE and AWS.

6 CONCLUSIONS AND FUTURE WORK

Application-level transfer tuning parameters such as
pipelining, parallelism and concurrency are very pow-
erful mechanisms for overcoming data transfer bottle-
necks for scientific cloud applications, however their
optimal values depend on the environment in which
the transfers are conducted (e.g.available bandwidth,
RTT, CPU and disk speed) as well as the trans-
fer characteristics (e.g. number of files and file size
distribution). With proper models and algorithms,
these parameters can be optimized automatically to
gain maximum transfer speed. This study analyzes
in detail the effects of these parameters on through-
put of large dataset transfers with heterogenous file
sizes and provides several models and guidelines.
The optimization algorithms using these rules and
models can provide a gradual increase to the highest
throughput on inter-cloud and intra-cloud transfers.
In future work, we intend to write an overhead-free
implementation of a GridFTP client to reduce the
overhead regarding connection start up/tear down
processes for different chunk transfers.

ACKNOWLEDGMENT

This project is partially supported by NSF un-
der award numbers CNS-1131889 (CAREER), OCI-
0926701 (STCI-Stork), and CCF-1115805 (CiC-Stork).

REFERENCES

[1] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster,
“Gridftp pipelining,” in TeraGrid 2007, 2007.

[2] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett,
and S. Tuecke, “Software as a service for data scientists,”
Communications of the ACM, vol. 55:2, pp. 81–88, 2012.

[3] R. S. Prasad, M. Jain, and C. Davrolis, “Socket buffer auto-
sizing for high-performance data transfers,” Journal of Grid
Computing, vol. 1(4), pp. 361–376, Aug. 2004.

[4] G. Hasegawa, T. Terai, T. Okamoto, and M. M, “Scalable
socket buffer tuning for high-performance web servers,” in
International Conference on Network Protocols(ICNP01), 2001, p.
281.

[5] A. Morajko, “Dynamic tuning of parallel/distributed applica-
tions,” Ph.D. dissertation, Universitat Autonoma de Barcelona,
2004.

[6] T. Ito, H. Ohsaki, and M. Imase, “On parameter tuning of data
transfer protocol gridftp for wide-area networks,” International
Journal of Computer Science and Engineering, vol. 2(4), pp. 177–
183, Sep. 2008.

[7] K. M. Choi, E. Huh, and H. Choo, “Efficient resource manage-
ment scheme of tcp buffer tuned parallel stream to optimize
system performance,” in Proc. Embedded and ubiquitous comput-
ing, Nagasaki, Japan, Dec. 2005.

14

[8] E. Yildirim, M. Balman, and T. Kosar, Data-intensive Distributed
Computing: Challenges and Solutions for Large-scale Information
Management. IGI-Global, 2012, ch. Data-aware Distributed
Computing.

[9] T. J. Hacker, B. D. Noble, and B. D. Atley, “The end-to-end
performance effects of parallel tcp sockets on a lossy wide area
network,” in Proc. IEEE International Symposium on Parallel and
Distributed Processing(IPDPS’02), 2002, pp. 434–443.

[10] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante, “Model-
ing and taming parallel tcp on the wide area network,” in
Proc. IEEE International Symposium on Parallel and Distributed
Processing (IPDPS’05), Apr. 2005, p. 68b.

[11] E. Yildirim, D. Yin, and T. Kosar, “Prediction of optimal
parallelism level in wide area data transfers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 22(12), 2011.

[12] D. Yin, E. Yildirim, and T. Kosar, “A data thoughput predic-
tion and optimization service for widely distributed many-
task computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22(6), 2011.

[13] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic, “Parallel tcp
sockets: Simple model, throughput and validation,” in Proc.
IEEE Conference on Computer Communications (INFOCOM’06),
Apr. 2006, pp. 1–12.

[14] J. Crowcroft and P. Oechslin, “Differentiated end-to-end inter-
net services using a weighted proportional fair sharing tcp,”
ACM SIGCOMM Computer Communication Review, vol. 28(3),
pp. 53–69, Jul. 1998.

[15] L. Eggert, J. Heideman, and J. Touch, “Effects of ensemble
tcp,” ACM Computer Communication Review, vol. 30(1), pp. 15–
29, 2000.

[16] H. Sivakumar, S. Bailey, and R. L. Grossman, “Psockets: The
case for application-level network striping for data intensive
applications using high speed wide area networks,” in Proc.
IEEE Super Computing Conference (SC00), Texas, USA, Nov.
2000, pp. 63–63.

[17] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” ACM
SIGCOMM Computer Communication Review, vol. 27, no. 3, pp.
67–82, 1997.

[18] T. Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross,
“Stork data scheduler: Mitigating the data bottleneck in e-
science,” The Philosophical Transactions of the Royal Society A,
vol. 369(3254-3267), 2011.

[19] E. Yildirim and T. Kosar, “End-to-end data-flow parallelism
for throughput optimization in high-speed networks,” Journal
of Grid Computing, vol. 10, no. 3, pp. 395–418, 2012.

[20] T. Kosar and M. Livny, “Stork: Making data placement a first
class citizen in the grid,” in Proceedings of ICDCS’04, March
2004, pp. 342–349.

[21] T. Kosar and M. Balman, “A new paradigm: Data-aware
scheduling in grid computing,” Future Generation Computing
Systems, vol. 25, no. 4, pp. 406–413, 2009.

[22] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data
transfer framework for large-scale science experiments,” in
Proc. 3rd International Workshop on Data Intensive Distributed
Computing (DIDC ’10) in conjunction with 19th International
Symposium on High Performance Distributed Computing (HPDC
’10), Jun. 2010.

[23] (2015) Udt, udp-based data transfer. [Online]. Available:
http://udt.sourceforge.net/

[24] (2015) Emulab-network emulation testbed. [Online]. Available:
http://www.emulab.net/

[25] E. Yildirim, J. Kim, and T. Kosar, “Modeling throughput sam-
pling size for a cloud-hosted data scheduling and optimization
service,” Future Generation Computer Systems, vol. 29, no. 7, pp.
1795–1807, 2013.

[26] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster, “Udt as
an alternative transport protocol for gridftp,” in International
Workshop on Protocols for Future, Large-Scale and Diverse Network
Transports (PFLDNeT). Citeseer, 2009, pp. 21–22.

[27] E. Kissel, M. Swany, and A. Brown, “Improving gridftp perfor-
mance using the phoebus session layer,” in Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 2009, p. 34.

[28] R. Guillier, S. Soudan, P. Primet et al., “Udt and tcp without
congestion control for profile pursuit,” Laboratoire de Infor-
matique du Parallelisme, Tech. Rep. inria-00367160, 2009.

[29] (2015) Bio-mirror: Biosequence and bioinformatics data.
[Online]. Available: http://bio-mirror.jp.apan.net

[30] E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning
algorithms for high performance data transfers,” in Proceedings
of the 19th International Conference on Parallel Processing, ser.
Euro-Par’13, 2013, pp. 725–736.

Esma Yildirim received her B.S. degree
from Fatih University and M.S. degree from
Marmara University Computer Engineering
Departments in Istanbul, Turkey. She worked
for one year in Avrupa Software Company
for the Development of ERP Software. She
also worked as a Lecturer in Fatih University
Vocational School until 2006. She received
her Ph.D. from the Louisiana State Univer-
sity Computer Science Department in 2010.
She has worked at the University at Buffalo

(SUNY) as a researcher. She is currently an Assistant Professor at
Fatih University, Istanbul, Turkey. Her research interests are data-
intensive distributed computing, high performance computing, and
cloud computing. Engin Arslan received his BS degree of

Computer Engineering from Bogazici Uni-
versity and MS degree from University at
Nevada, Reno. Currently, he is pursuing his
PhD of Computer Science at University at
Buffalo, SUNY. He is also working as a re-
search assistant at UB, SUNY. His research
interests include data intensive distributed
computing, cloud computing, and high per-
formance networks.
Jangyoung Kim received his B.S. degree in
Computer Science from Yonsei university in
Seoul, Korea and M.S. degree in Computer
Science and Engineering from Pennsylva-
nia State university in University Park. He
worked as a Teaching Assistant in Pennsyl-
vania State university. Earlier, he also par-
ticipated in the Programming Internship in
Samsung. He received his Ph.D. in Computer
Science and Engineering from the University
at Buffalo (SUNY). He is currently an Assis-

tant Professor of Computer Science in University of Suwon. His
research interests are data-intensive distributed computing, cloud
computing, and throughput optimization in high-speed networks.

Tevfik Kosar is an Associate Professor in the
Department of Computer Science and Engi-
neering, University at Buffalo. Prior to joining
UB, Kosar was with the Center for Compu-
tation and Technology (CCT) and the De-
partment of Computer Science at Louisiana
State University. He holds a B.S. degree in
Computer Engineering from Bogazici Univer-
sity, Istanbul, Turkey and an M.S. degree
in Computer Science from Rensselaer Poly-
technic Institute, Troy, NY. Dr. Kosar has

received his Ph.D. in Computer Science from the University of
Wisconsin-Madison. Dr. Kosar’s main research interests lie in the
cross-section of petascale distributed systems, eScience, Grids,
Clouds, and collaborative computing with a focus on large-scale
data-intensive distributed applications. He is the primary designer
and developer of the Stork distributed data scheduling system, and
the lead investigator of the state-wide PetaShare distributed storage
network in Louisiana. Some of the awards received by Dr. Kosar
include NSF CAREER Award, LSU Rainmaker Award, LSU Flagship
Faculty Award, Baton Rouge Business Report’s Top 40 Under 40
Award, and 1012 Corridor’s Young Scientist Award.

