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1 Introduction 
Here we study the application of the local 
polynomial and non-polynomial interpolation 
splines of the third order of approximation for the 
construction the numerical scheme for the solution 
of the Volterra integral equation of the second kind. 
There are many numerical methods for solving 
Volterra integral equations of the second kind. The 
most common numerical methods are based on the 
use of quadrature formulas. 
     In connection with the emerging needs for 
constructing methods of high accuracy, many 
researchers, again, resort to modernizing the known 
methods for solving integral equations and 
construction the new ones. The authors of papers 
[1]-[10] devoted a lot of attention to the 
modification of the known numerical methods and 
the construction of new numerical methods for 
solving integral equations. In study [1] a numerical 
scheme for approximating the solutions of the 
nonlinear system of fractional-order Volterra-
Fredholm integral differential equations was 
proposed. The main characteristic of this approach 
is that it reduces such problems to a linear system of 
algebraic equations.  

In paper [2], a new and efficient method for solving 
the three-dimensional Volterra-Fredholm integral 
equations of the second kind, first kind and even 
singular type of these equations is presented. Here, 
the authors discuss three variable Bernstein 
polynomials and their properties. This method has 
several advantages in reducing the computational 
burden with a good degree of accuracy. 
Furthermore, the authors obtain an error bound for 
this method. A computational technique based on a 
special family of the Mёuntz-Legendre polynomials 
to solve a class of Volterra-Fredholm integral 
equations is presented in paper [3]. The proposed 
method reduces the integral equation into algebraic 
equations via the Chebyshev-Gauss-Lobatto points, 
so that the system matrix coefficients are obtained 
by the least squares approximation method. The 
useful properties of the Jacobi polynomials are 
exploited to analysis the approximation error.  
     Spline functions were used to propose a new 
scheme for solving the linear Volterra–Fredholm 
integral equations of the second kind in paper [4]. 
     Two types of non-polynomial spline functions 
(linear, and quadratic) were used in paper [5] to find 
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the approximate solution of Volterra integro–
differential equations. 
      A computational method for solving nonlinear 
Volterra-Fredholm Hammerstein integral equations 
is proposed in [6], by using compactly supported 
semiorthogonal cubic B-spline wavelets as basis 
functions. The non-polynomial spline basis and 
Quasi-linearization method to solve the nonlinear 
Volterra integral equation were used in [7]. A new 
collocation technique for the numerical solution of 
the Fredholm, Volterra and mixed Volterra-
Fredholm integral equations of the second kind is 
introduced in [8], and a numerical integration 
formula on the basis of the linear Legendre multi-
wavelets is also developed in [8]. 

Note that in papers [4]-[10] splines are used to 
construct new numerical methods. The construction 
of various splines and wavelet splines is considered 
in papers [11]-[16]. The approximations with 
splines on the irregular set of nodes are of particular 
interest [13].  
The application of the generalized Haar spaces is 
sometimes very useful [14]. Paper [15] deals with 
the use of the first two vanishing moments for 
constructing cubic spline-wavelets orthogonal to 
polynomials of the first degree. The method 
proposed in [16] can be used to calculate the real 
eigenvalues of an arbitrary matrix with real 
elements. This method uses splines of the 
Lagrangian type of the fifth order and/or polynomial 
integro-differential splines of the fifth order. 
In paper [17] the application of the finite-difference 
methods are investigated to compute the definite 
integrals. 
      At present, the theory of approximation by local 
interpolation splines continues to evolve. 
Approximation with local polynomial and local non-
polynomial splines of the Lagrange types can be 
used in many applications. Approximation with the 
use of these splines is constructed on each mesh 
interval separately as a linear combination of the 
products of the values of the function at the grid 
nodes and basic functions. The basis functions are 
defined as a solution of a system of linear algebraic 
equations (approximation relations). The 
approximation relations are formed from the 
conditions of accuracy of approximation on the 
functions forming the Chebyshev system. The 
constructed basic splines provide an approximation 
of the prescribed order which is equal to the number 
of equations in the system, or, in other words, it is 
equal to the number of grid intervals in the support 
of the basic splines. Using the basic splines, we can 
construct continuous types of approximation [10]-
[12], [16]. This paper continues the construction of 

numerical methods based on the use of spline 
approximations [10]. The proposed numerical 
methods extend the set of known numerical methods 
for solving integral equations [18].  
   The paper is organized as follows. Section 2 
discusses the theoretical aspects of the application 
of polynomial and non-polynomial splines of the 
second order of approximation. Section 3 considers 
the properties of polynomial and non-polynomial 
splines of the third order of approximation. A 
numerical method for solving the Volterra equation 
of the second kind is also proposed here. Section 4 
presents the results of the numerical solution of the 
Volterra equations of the second kind using the 
trapezoidal method, using polynomial and non-
polynomial splines of the second order of 
approximation, as well as using splines of the third 
order of approximation. 
 
2 Application of Splines of the 

Second Order of Approximation 
In paper [10] the numerical solution of Volterra-
Fredholm integral equations of the second kind was 
constructed with the use of local splines of the 
second order of approximation.  
     As it is shown in paper [11], if the functions 𝜑1, 𝜑2 form a Chebyshev system, then the basis 
functions 𝜔𝑘 , 𝑘 = 𝑗, 𝑗 + 1, can be determined by 
solving the system of equations 𝜑1(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑1(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑2(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑2(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
Suppose that the determinant of the system  
does not equal zero. Let us take 𝜑1(𝑥) =1, 𝜑2(𝑥) = 𝜑(𝑥). We constructed a non-
polynomial approximation of function 𝑢(𝑥), on each 
grid interval [𝑥𝑗, 𝑥𝑗+1] in the form: 𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),        (1) 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

where 

𝜔𝑗(𝑥) = 𝜑(𝑥) − 𝜑(𝑥𝑗+1)𝜑(𝑥𝑗) − 𝜑(𝑥𝑗+1), 
𝜔𝑗+1(𝑥) = 𝜑(𝑥) − 𝜑(𝑥𝑗)𝜑(𝑥𝑗+1) − 𝜑(𝑥𝑗) 
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Note that this formula for function interpolation can 
also be applied on a uniform grid of nodes. 

Depending on the choice of the function 𝜑(𝑥), we 
obtain slightly different estimates of the error (see 
papers [10]-[11]), but they all have an 
approximation error of the order of 𝑂(ℎ2). This 
approximation error can be obtained using Taylor's 
theorem. Let ordered distinct nodes {𝑥𝑗} be such that 𝑥𝑗+1 − 𝑥𝑗 = ℎ. But we can apply the method 
described in paper [11]. Let us denote ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1]= max[𝑥𝑗,𝑥𝑗+1] |𝑢′′(𝑥)|, 

 ℎ = ℎ𝑗 = 𝑥𝑗+1 − 𝑥𝑗. 

Theorem 1. Let function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶2[𝑎, 𝑏]. Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed when 𝑈(𝑥) =𝑢(𝑥), 𝑢(𝑥) = 1, 𝜑(𝑥), for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
 Then, for 𝜑(𝑥) = exp(𝑥) , exp(−𝑥) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] 
we have  |𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖,  

 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  𝐾2 > 0. 
Here 𝐿𝑢 = exp(−𝑥) (𝑢′′(𝑥) + 𝑢′(𝑥)) in the case of 𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(−𝑥) , 𝐿𝑢 = exp(𝑥) (𝑢′′(𝑥) − 𝑢′(𝑥)) in the case of 𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥) . 

Proof can be found in paper [10]. 

Theorem 2. Let 𝑢 ∈ С2[𝑎, 𝑏]. To approximate the 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], by spline (4), the 
following inequality is valid:      

    | 𝑢(𝑥) − 𝑈(𝑥)| ≤ 𝐾ℎ𝑗2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾 = 1/8. 
Proof can be found in paper [10]. 

Theorem 3. Let function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶2[𝑎, 𝑏]. Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed when 𝑈(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 
for 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 

 𝜑1(𝑥) = cos(𝑥) , 𝜑2(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  |𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 
Here 𝐿𝑢 = 𝑢′′(𝑥) + 𝑢(𝑥) . 
Proof can be found in paper [19]. 

The linear Volterra equation of the second kind 
has the form:  

 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏],      
 

where ƒ is a given function, 𝐾, 𝑓 are continuous 
functions and 𝑢(𝑥)  is an unknown function. 

Now transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗  
using formula (1), we can obtain 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗 = 𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).𝑥𝑗+1𝑥𝑗  

To construct a numerical method, we discard the 
error and denote 𝑢 ̃(𝑥𝑗) ≈ 𝑢(𝑥𝑗). Let us introduce 
the notation 

𝑊𝑗(𝑥) = 𝑢 ̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

𝑢 ̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠.𝑥𝑗+1𝑥𝑗  

Setting 𝑥 = 𝑥𝑘,  we obtain the numerical method 

𝑢 ̃(𝑥𝑘) + ∑ 𝑊𝑠(𝑥𝑘)𝑘−1
𝑠=0 = 𝑓(𝑥𝑘), 
𝑘 = 0, … , 𝑛. 
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In a more detailed notation, the system of equations 
has the form 𝑢 ̃(𝑥0) = 𝑓(𝑥0), 

𝑢 ̃(𝑥1) + 𝑢 ̃(𝑥0) ∫ 𝐾(𝑥1, 𝑠)𝜔0(𝑠)𝑑𝑠 +𝑥1𝑥0  

𝑢 ̃(𝑥1) ∫ 𝐾(𝑥1, 𝑠)𝜔1(𝑠)𝑑𝑠 = 𝑓(𝑥1),𝑥1𝑥0  

………………… 

𝑢 ̃(𝑥𝑛) + ∑ 𝑊𝑠(𝑥𝑛)𝑛−2
𝑠=0  

+𝑢 ̃(𝑥𝑛−1) ∫ 𝐾(𝑥𝑛, 𝑠)𝜔𝑛−1(𝑠)𝑑𝑠𝑥𝑛𝑥𝑛−1  

+𝑢 ̃(𝑥𝑛) ∫ 𝐾(𝑥𝑛, 𝑠)𝜔𝑛(𝑠)𝑑𝑠 = 𝑓(𝑥𝑛).𝑥𝑛𝑥𝑛−1  

We determine the unknowns 𝑢 ̃(𝑥𝑘), 𝑘 = 2, … , 𝑛,  
sequentially, starting from the first equation. 

We find the approximate values of the solution of 
the Volterra integral equation at the grid nodes by 
solving each equation sequentially. It is assumed 
that the integrals can be calculated exactly, or can be 
applied to a quadrature formula with an error not 
less than 𝑂(ℎ3). 
 

3 Application of Splines of the 

Third Order of Approximation 
Suppose 𝐾(𝑥,∙), 𝑢 ∈ С3[𝑎, 𝑏]. Let us consider the 
numerical solution of the Volterra equation of the 
second kind with the same assumptions  𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)𝑥𝑎                  (2) 

using splines of the third order of approximation. 
On a finite interval [𝑎, 𝑏], it is necessary to apply 
left and right spline approximations. First, we recall 
the features of the approximation of functions by 
splines near the right end of the interval [𝑎, 𝑏]. 
Continuous polynomial approximation near the right 
end of the interval [𝑎, 𝑏] uses the basic spline 𝜔𝑗𝐿(𝑥) of the form: 

𝜔𝑗𝐿(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2) , 𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2], 

𝜔𝑗𝐿(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
𝜔𝑗𝐿(𝑥) = (𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗−2) , 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

 𝜔𝑗𝐿(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+2]. 
The support of the basic spline occupies three 
adjacent grid intervals, supp 𝜔𝑗𝐿 = [𝑥𝑗−1, 𝑥𝑗+2].The 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], can be approximated 
by the polynomial spline (see [11]) using the form: 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗𝐿(𝑥) +𝑢(𝑥𝑗+1)𝜔𝑗+1𝐿 (𝑥),         (3) 

where 𝜔𝑗−1𝐿 (𝑥) = (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 𝜔𝑗𝐿(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
𝜔𝑗+1𝐿 (𝑥) = (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

Now let us recall how the approximation is 
constructed near the left end of the interval [𝑎, 𝑏]. 
The continuous polynomial approximation near the 
left end of the interval [𝑎, 𝑏] uses the basic spline 𝜔𝑗𝑅(𝑥) of the form: 

𝜔𝑗𝑅(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 𝜔𝑗𝑅(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1) , 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 𝜔𝑗𝑅(𝑥) = (𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗−2) , 𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1], 𝜔𝑗𝑅(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−2, 𝑥𝑗+1]. 
The support of the basic spline occupies three 
adjacent grid intervals, supp 𝜔𝑗𝑅 = [𝑥𝑗−2, 𝑥𝑗+1]. 

The function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 
approximated by the polynomial spline (see [11]) 
using the form: 𝑈𝑗𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1𝑅 (𝑥) +  𝑢(𝑥𝑗+2)𝜔𝑗+2𝑅 (𝑥),                         (4) 
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where 𝜔𝑗𝑅(𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2) , 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
𝜔𝑗+1𝑅 (𝑥) = (𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 𝜔𝑗+2𝑅 (𝑥) = (𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The approximation properties of these basic splines 
are well studied. Let us denote ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+1]=max[𝑎,𝑏] |𝑢′′′(𝑥)|. The following theorem was proved in 
[11]. 

Theorem 4. Let 𝑢 ∈ С3[𝑎, 𝑏].To approximate the 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], by spline (3), (4), 
the following inequality is valid: |𝑢(𝑥) − 𝑈𝑗𝐿(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1]. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
by spline (2), the following inequality is valid: |𝑢(𝑥) − 𝑈𝑗𝑅(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+2]. 
Proof. It is easy to notice that 𝑈𝑗𝑅 is an interpolation 
polynomial of the first degree, and 𝑥𝑗, 𝑥𝑗+1 are the 
interpolation nodes, 𝑈𝑗𝑅(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈𝑗𝑅(𝑥𝑗+1) =𝑢(𝑥𝑗+1), 𝑈𝑗𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2). Using the remainder 
term we get 𝑢(𝑥) − 𝑈𝑗𝑅(𝑥) = 𝑢′′′(𝜏)3! (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 −𝑥𝑗+2).  
It follows that max𝑥∈[𝑥𝑗,𝑥𝑗+2] |𝑢(𝑥) − 𝑈𝑗𝑅(𝑥)| ≤0.0625ℎ3 max[𝑥𝑗,𝑥𝑗+2] |𝑢′′′|. 
Thus, 𝐾 = 0.0625. 
We can also apply a non-polynomial approximation. 
As is known, in a number of cases the use of non-
polynomial splines provides a better approximation, 
although the order of approximation remains the 
same. 

Let us recall the features of constructing an 
approximation using non-polynomial splines. 

First, consider the construction of basic splines near 
the left end of the interval [𝑎, 𝑏].As shown in paper 
[10], if the functions 𝜑1, 𝜑2, 𝜑3 form a Chebyshev 
system, then the basis functions 𝜔𝑘𝑅(𝑥), 𝑘 = 𝑗, 𝑗 +1,j+2 can be determined by solving the system of 
equations 𝜑1(𝑥𝑗)𝜔𝑗𝑅(𝑥) + 𝜑1(𝑥𝑗+1) 𝜔𝑗+1𝑅 (𝑥) +𝜑1(𝑥𝑗+2) 𝜔𝑗+2𝑅 (𝑥) = 𝜑1(𝑥), 𝜑2(𝑥𝑗)𝜔𝑗𝑅(𝑥) + 𝜑2(𝑥𝑗+1) 𝜔𝑗+1𝑅 (𝑥)+ 𝜑2(𝑥𝑗+2) 𝜔𝑗+2𝑅 (𝑥) = 𝜑2(𝑥), 𝜑3(𝑥𝑗)𝜔𝑗𝑅(𝑥) + 𝜑3(𝑥𝑗+1) 𝜔𝑗+1𝑅 (𝑥) +𝜑3(𝑥𝑗+2) 𝜔𝑗+2𝑅 (𝑥) = 𝜑3(𝑥),      𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
Suppose that the determinant of the system does not 
equal zero. We find the basic splines near the right 
end of the interval [𝑎, 𝑏] in a similar way. Basic 
splines are determined by solving a system of 
equations: 𝜑1(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝜑1(𝑥𝑗) 𝜔𝑗𝐿(𝑥)+ 𝜑1(𝑥𝑗+1) 𝜔𝑗+1𝐿 (𝑥) = 𝜑1(𝑥), 𝜑2(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝜑2(𝑥𝑗) 𝜔𝑗𝐿(𝑥)+ 𝜑2(𝑥𝑗+1) 𝜔𝑗+1𝐿 (𝑥) = 𝜑2(𝑥), 𝜑3(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝜑3(𝑥𝑗) 𝜔𝑗𝐿(𝑥) +𝜑3(𝑥𝑗+1) 𝜔𝑗+1𝐿 (𝑥) = 𝜑3(𝑥),     𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
Suppose that the determinant of the system  does not 
equal zero. 

 
Theorem 5. Let function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶3[𝑎, 𝑏]. Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗−1(𝑥),  are constructed when 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗𝐿(𝑥)+ 𝑢(𝑥𝑗+1)𝜔𝑗+1𝐿 (𝑥), 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],   𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (𝑥), 𝜑3(𝑥) = exp(−𝑥). 
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Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  |𝑢(𝑥) − 𝑈𝑗𝐿(𝑥)|  ≤ 𝐾3ℎ3‖𝐿𝑢‖[𝑥𝑗−1,𝑥𝑗+1], 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  𝐾3 > 0. 
Here 𝐿𝑢 = 𝑢′(𝑥) − 𝑢′′′(𝑥) . 
Proof follows from the method described in [11]. In 
the case of the non-polynomial splines as it was 
shown in paper [11] we construct a homogeneous 
equation, which has a fundamental system of 
solutions 𝜑1(𝑥) = 1, 𝜑1(𝑥) = exp(𝑥) , 𝜑2(𝑥) =exp(−𝑥).

  

We have 

𝐿𝑢 = |1 𝑒−𝑥0 −𝑒−𝑥 𝑒𝑥 𝑢(𝑥)𝑒𝑥 𝑢′(𝑥)0 𝑒−𝑥0 −𝑒−𝑥 𝑒𝑥 𝑢′′(𝑥)𝑒𝑥 𝑢′′′(𝑥)| = 

2𝑢′(𝑥) − 2𝑢′′′(𝑥) = 0. 
It is easy to see, that the Wronskian 𝑊(𝑥) =|1 𝑒−𝑥 𝑒𝑥0 −𝑒−𝑥 𝑒𝑥0 𝑒−𝑥 𝑒𝑥| = −2 does not equal zero. Now we 

can construct a general solution of the 
nonhomogeneous equation 𝐿𝑢 =  𝐹 by the method 
of variation of the constants. 
      Expanding the determinant according to the 
elements of the last column and dividing all terms of 
the equation by 𝑊(𝑥) we obtain the equation 𝐿𝑢 =0 in the form. 𝑢′′ + 𝑞𝑢′ + 𝑝𝑢 = 0. Here  𝑞 and 𝑝 
are some coefficients.  
      After we have constructed a general solution of 
nonhomogeneous equation 𝐿𝑢 = 𝐹 by the method 
of variation of the constants we obtain the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

In particular, we obtain using the method from 
[11] the formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 

𝑢(𝑥) = ∫ (𝑢′(𝑡) − 𝑢′′′(𝑡))(exp(𝑥 − 𝑡)𝑥
𝑥𝑗 + 2 exp(𝑡 − 𝑥) − 2) 𝑑𝑡 + 𝑐1+ 𝑐2 exp(𝑥) + 𝑐3 exp(−𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are some arbitrary constants, 𝑥 ∈[𝑥𝑗, 𝑥𝑗+1]. We construct the approximation of 𝑢(𝑥) 
in the form: 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗𝐿(𝑥)+ 𝑢(𝑥𝑗+1)𝜔𝑗+1𝐿 (𝑥), 

Thus, using the results from paper [11], we get |𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾3ℎ3‖𝐿𝑢‖[𝑥𝑗−1,𝑥𝑗+1], 𝑥 ∈[𝑥𝑗, 𝑥𝑗+1], 
The proof is complete. 

 
Theorem 6. Let function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶3[𝑎, 𝑏]. Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗+2(𝑥),  are constructed when 𝑈𝑗𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1𝑅 (𝑥)+   𝑢(𝑥𝑗+2)𝜔𝑗+2𝑅 (𝑥), 𝑈𝑗𝑅(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],   𝜑1(𝑥) = 1, 𝜑2(𝑥) = cos(𝑥) , 𝜑3(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  |𝑢(𝑥) − 𝑈𝑗𝑅(𝑥)|  ≤ 𝐾2ℎ3 ∥ 𝐿𝑢 ∥[𝑥𝑗,𝑥𝑗+2], 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 
Proof follows from the method described in [11] 
and is similar to the proof of Theorem 5. In 
particular, we obtain using the method from [11] the 
formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 𝑢′(𝑡))sin2𝑥

𝑥𝑗
𝑥 − 𝑡2 𝑑𝑡 + 𝑐1+ 𝑐2 sin(𝑥) + 𝑐3 cos(𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are arbitrary constants 

Here 𝐿𝑢 = 𝑢′′′(𝑥) + 𝑢′(𝑥) . The proof is complete. 

Theorem 7 is similar to Theorem 6. 
Theorem 7. Let function 𝑢(𝑥) be such that 𝑢 ∈ 𝐶3[𝑎, 𝑏]. Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥), 𝜔𝑗−1(𝑥),  are constructed when 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗𝐿(𝑥)+ 𝑢(𝑥𝑗+1)𝜔𝑗+1𝐿 (𝑥), 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), 

for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],   𝜑1(𝑥) = 1, 𝜑2(𝑥) = cos(𝑥) , 𝜑3(𝑥) = sin(𝑥). 

Then, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1] we have  |𝑢(𝑥) − 𝑈𝑗𝐿(𝑥)|  ≤ 𝐾2ℎ3 ∥ 𝐿𝑢 ∥[𝑥𝑗−1,𝑥𝑗+1], 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 

WSEAS TRANSACTIONS on MATHEMATICS 

DOI: 10.37394/23206.2021.20.2 I. G. Burova

E-ISSN: 2224-2880 14 Volume 20, 2021



Here 𝐿𝑢 = 𝑢′′′(𝑥) + 𝑢′(𝑥) . 
Proof follows from the method described in [11] 

and is similar to the proof of Theorem 5. In 
particular, we obtain using the method from [11] the 
formula for 𝑢(𝑥) when 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 𝑢′(𝑡))sin2𝑥

𝑥𝑗
𝑥 − 𝑡2 𝑑𝑡 + 𝑐1+ 𝑐2 sin(𝑥) + 𝑐3 cos(𝑥). 

Here 𝑐1, 𝑐2, 𝑐3  are arbitrary constants. The proof is 
complete. 

The cases when 𝑈𝑗𝑅(𝑥) = 𝑢(𝑥),  𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥), for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], or 𝑈𝑗𝐿(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥), 𝜑3(𝑥),   𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (𝑥), 𝜑3(𝑥) = exp (2𝑥) 
and   𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp (−𝑥), 𝜑3(𝑥) =exp (−2𝑥) are investigated in the similar way. In all 
these cases we get a third-order approximation, that 
is, an error of the order 𝑂(ℎ3). Here we note that in 
the first case (1, exp(𝑥), exp(2𝑥)) the solution on 
the interval 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be represented in the 
form  𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) − 3𝑢′′(𝑡)𝑥

𝑥𝑗 + 2𝑢′(𝑡))(exp(3𝑡) (exp(2𝑥 − 2𝑡)2− exp (x − t) + 1/2) 𝑑𝑡 + 𝑐1+ 𝑐2 exp(𝑥) + 𝑐3 exp(2𝑥). 
In the second case (1, exp(−𝑥), exp(−2𝑥)) the 
solution on the interval 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 
represented in the form: 

𝑢(𝑥) = 2 ∫ (𝑢′′′(𝑡) + 3𝑢′′(𝑡) + 2𝑢′(𝑡))𝑥
𝑥𝑗  

× exp(−3𝑡) (exp(2𝑡−2𝑥)2 − exp(t − x) + 12) 𝑑𝑡 +𝑐1 + 𝑐2 exp(−𝑥) + 𝑐3 exp(−2𝑥). 
We can do some experiments using Maple when ℎ = 0.1  on  [−1,1]. Tables 1, 2 show the actual 
errors of approximation of some functions obtained 
with the use of the polynomial and non-polynomial 
splines of the third order of approximation. Table 3 
shows the actual errors of approximation of some 
functions obtained with the use of the polynomial 
and non-polynomial splines of the second order of 
approximation. 

 
    Table 1. The actual errors of approximation of some 
functions obtained with the use of the polynomial and 
non-polynomial splines of the third order of 
approximation 𝑢(𝑥) 𝜑1(𝑥) = 1,𝜑2(𝑥) = 𝑥, 𝜑2(𝑥) = 𝑥2  

𝜑1(𝑥) = 1 𝜑2(𝑥)= cos(𝑥),   𝜑3(𝑥)= sin(𝑥)  
𝜑1(𝑥) = 1,𝜑2(𝑥)= exp(−𝑥), 𝜑3(𝑥)= exp (𝑥) exp(𝑥) 0.000160 0.000320 0.0 𝑠in(𝑥) 0.0000641 0.0 0.000128 𝑥2 0.0 0.000127 0.000126 exp(−𝑥) 0.000172 0.000344 0.0 𝑠in(2𝑥) 0.000512 0.000384 0.000639 11 + 25𝑥2 0.0296 0.0294 0.0297 

 

Table 2. The actual errors of approximation of some 
functions obtained with the use of the polynomial and 

non-polynomial splines of the third order of 
approximation 𝑢(𝑥) 𝜑1(𝑥) = 1,𝜑2(𝑥)= exp(𝑥), 𝜑3(𝑥)= exp (2𝑥 ) 

𝜑1(𝑥) = 1,𝜑2(𝑥)= exp(−𝑥), 𝜑3(𝑥)= exp (−2𝑥) exp(𝑥) 0.0 0.0 𝑠in(𝑥) 0.000200 0.000187 𝑥2 0.000666 0.000593 exp(−𝑥) 0.00108 0.0 𝑠in(2𝑥) 0.000843 0.000775 11 + 25𝑥2 0.0272 0.0311 

 

Table 3. The actual errors of approximation of some 
functions obtained with the use of the polynomial and 

non-polynomial splines of the second order of 
approximation 𝑢(𝑥) 𝜑1(𝑥) = 1,𝜑2(𝑥) = 𝑥.   𝜑1(𝑥)= cos(𝑥),   𝜑2(𝑥)= sin(𝑥)  

𝜑1(𝑥) = 1,𝜑2(𝑥)= exp (−𝑥) exp(𝑥) 0.00323 0.00647 0.00646 𝑠in(𝑥) 0.00102 0.0 0.00177 𝑥2 0.00250 0.00363 0.00487 exp(−𝑥) 0.00323 0.00647 0.0 𝑠in(2𝑥) 0.00498 0.00374 0.00558 11 + 25𝑥2 0.0418 0.0407 0.0443 

Consider the approximation by polynomial splines. 
Let the second and third derivatives of the function  
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𝑢(𝑥) be such that max[𝑎,𝑏] |𝑢′′′| ≤ 𝐶, max[𝑎,𝑏] |𝑢′′| ≤𝐶, 𝐶 = 𝑐𝑜𝑛𝑠𝑡 > 0. The example is function   𝑢(𝑥) = exp(𝑥)The calculation results presented in 
Tables 1-3 confirm the fact, that the splines of the 
third order of approximation in this case give a 
smaller error than the splines of the second order of 
approximation if in both cases we apply the same 
step ℎ. A similar statement can be formulated for 
non-polynomial splines. The theorems formulated 
above give asymptotic estimates. This allows us to 
hope that for sufficiently small ℎ, the use of splines 
of the third order of approximation will give a 
smaller error than the use of splines of the second 
order of approximation. 

 Сonsider the following example. We will 
approximate the Runge function  𝑢(𝑥) = 11+25𝑥2 on 
a uniform grid of nodes built on the interval [𝑎, 𝑏] =[−1,1] with the step ℎ . Fig. 1 shows a graph of the 
absolute value of the second derivative of the Runge 
function. Fig. 2 shows a graph of the absolute value 
of the third derivative of the Runge function. We 
use the results of Theorem 2 and Theorem 4. 
Let us introduce the notations: 𝐴(ℎ) = ℎ2/8 max[0,1] |𝑢′′(𝑥)|, 𝐵(ℎ) = 0.0625ℎ3 max[0,1] |𝑢′′′(𝑥)|. 
The plots of 𝐴(ℎ) (blue), and   𝐵(ℎ) (red) are given 
in Fig.3. 
Solving the equation 𝐴(ℎ) = 𝐵(ℎ), we find ℎ0 ≈0.171. At this point, the graph lines intersect. When ℎ is greater than this value (ℎ > ℎ0), the theoretical 
error when using polynomial splines of the second 
order of approximation will be lesser then when 
using polynomial splines of the third order of 
approximation. It is easy to calculate that when ℎ =0.3 we get 𝐴(ℎ) ≈ 0.985, 𝐵(ℎ) ≈ 0.562. 
Let ℎ = 1/3. Fig. 4 shows plot of the actual error of 
approximation of the Runge function by splines of 
the second order of approximation. The maximum 
of the absolute value of the actual error is 0.0623. 
Fig. 5 shows plot of the actual error of 
approximation of the Runge function by splines of 
the third order of approximation. The maximum of 
the absolute value of the actual error is 0.236. 

 
Fig.1. The plot of graph of the absolute value of the 

second derivative of the Runge function. 
 

 
Fig.2. The plot of the graph of the absolute value of the 

third derivative of the Runge function 

 

 
Fig.3. The plots of 𝐴(ℎ) (blue), and   𝐵(ℎ) (red). 

 

 
Fig.4. The plot of the actual error of approximation of the 

Runge function by splines of the second order of 
approximation 

 

 

Fig.5. The plot of the actual error of approximation of the 
Runge function by splines of the third order of 

approximation 

Thus, there are cases when linear polynomial splines 
will give a smaller approximation error than 
quadratic ones. therefore, to verify the result, both 
types of approximations should be applied. 

Now let's apply splines to the calculation of the 
integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠𝑥𝑎 . 

Transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗   , 𝑗 = 1, … 𝑛 − 1, using formula (3), we obtain 
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∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 =𝑥𝑗+1𝑥𝑗  

𝑢(𝑥𝑗−1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗−1(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).𝑥𝑗+1𝑥𝑗  

Let us introduce the notations: 

𝑉𝑗(𝑥) = �̃�(𝑥𝑗−1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗−1𝐿 (𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

�̃�(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗𝐿(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

�̃�(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+1𝐿 (𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗 ,  𝑗 = 1, … 𝑛 − 1. 

Using formula (4), we obtain 

𝑄𝑗(𝑥) = �̃�(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗𝑅(𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗  

+�̃�(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+1𝑅 (𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗  

+�̃�(𝑥𝑗+2) ∫ 𝐾(𝑥, 𝑠) 𝜔𝑗+2𝑅 (𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗 , 𝑗 = 0, … , 𝑛 − 2. 
Setting 𝑥 = 𝑥𝑘,  we obtain the numerical method: 

�̃�(𝑥𝑘) + ∑ 𝑄𝑠(𝑥𝑘)𝑘−2
𝑠=0 + ∑ 𝑉𝑠(𝑥𝑘)𝑘−1

𝑠=𝑘−1 = 𝑓(𝑥𝑘), 
𝑘 = 0, … , 𝑛. 

As a result of solving the system of equations, we 
obtain approximate values �̃� of the solution 𝑢 to 
equation (2) at the grid nodes  𝑥𝑘. First we have 𝑢(𝑥0) = 𝑓(𝑥0). Next, we solve the system of two 
equations and find �̃�(𝑥𝑖), 𝑖 = 1,2. Solving each next 
equation, we find the approximate values of the 
solution at the next grid points. 
     In the case of a grid consisting of three nodes, the 
system of equations has the form: 𝑢(𝑥0) = 𝑓(𝑥0), 

�̃�(𝑥1) + �̃�(𝑥0) ∫ 𝐾(𝑥1, 𝑠) 𝜔0𝑅(𝑠)𝑑𝑠 +𝑥1𝑥0  

+�̃�(𝑥1) ∫ 𝐾(𝑥1, 𝑠) 𝜔1𝑅(𝑠)𝑑𝑠𝑥1𝑥0  

+�̃�(𝑥2) ∫ 𝐾(𝑥1, 𝑠) 𝜔2𝑅(𝑠)𝑑𝑠 = 𝑓(𝑥1),𝑥1𝑥0  

�̃�(𝑥2) + �̃�(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0𝑅(𝑠)𝑑𝑠 +𝑥1𝑥0  

+�̃�(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1𝑅(𝑠)𝑑𝑠𝑥1𝑥0  

+�̃�(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2𝑅(𝑠)𝑑𝑠𝑥1𝑥0  

+�̃�(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0𝐿(𝑠)𝑑𝑠𝑥2𝑥1  

+�̃�(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1𝐿(𝑠)𝑑𝑠𝑥1𝑥1  

+�̃�(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥2).𝑥2𝑥1  

The advantages of the proposed method include the 
ability to calculate the exact integral ∫ 𝐾(𝑥, 𝑠) 𝜔0𝑅(𝑠)𝑑𝑠𝑥𝑖+1𝑥𝑖  (without error). However, in 
case of difficulties with calculating the integral, we 
can apply a quadrature formula that provides the 
order of approximation 𝑚, 𝑚 ≥ 3. 

3  Numerical results 
Now we apply the polynomial, the non-

polynomial splines of the second order of 
approximation, and the composite trapezoidal rule 
for solving some Volterra integral equations. We 
will carry out the calculations in the package 
MAPLE with 𝐷𝑖𝑔𝑖𝑡𝑠 = 15 and the number of nodes 𝑛 = 32, 64, 128. 

Problem 1. We take the equation 7 from paper 
[8]:  𝑢(𝑥) = exp(−𝑥) + 𝑥 exp(𝑥)− ∫ exp(𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡, 𝑥 ∈ [0, 1].   𝑥

0  
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The exact solution of the equation is 𝑢(𝑥) =exp(−𝑥). 

Build a grid of equally spaced nodes with a step ℎ. We will solve by different methods: using 
polynomial and non-polynomial splines, as well as 
the trapezoidal method. 

Table 4 shows the maximum of the error in 
absolute value between the exact solution of the 
equation and the numerical solution obtained with 
the application the linear polynomial splines 
(column 2). The numerical solution obtained with 
the application of the non-polynomial splines (𝜑1(𝑥) = 1 𝜑2(𝑥) = sin(𝑥), 𝜑3(𝑥) = cos(𝑥)) is 
given in the third column. The numerical solution 
obtained with the application of the non-polynomial 
splines (𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) =exp(2𝑥)) is presented in the fourth column of Table 
1. The number of nodes (n) is given in the first 
column of Table 4. The application of the 
quadrature formula of trapeziums for this equation 
gives us the exact solution (see Fig.6). 

 
Fig.6. The plot of error between the exact solution of 
the equation (problem 1) and the numerical solution 

obtained with the application of the quadrature formula of 
trapeziums when we use 64 nodes 

As it is known, the composite trapezoidal rule for 
calculating an integral has the following form:  ∫ 𝑔(𝑠)𝑑𝑠 ≈ ℎ𝑏𝑎 ∑ 𝑔(𝑥𝑗)𝑛−1𝑗=1 + (𝑔(𝑥0) + 𝑔(𝑥𝑛))/2. 
If the function 𝑢 is as such that 𝑔 ∈ 𝐶2[𝑎, 𝑏], then 
the remainder can be written in the form:  

∫ 𝑔(𝑠)𝑑𝑠 − ℎ𝑏
𝑎 ∑ 𝑔(𝑥𝑗) −𝑛−1

𝑗=1  

− 𝑔(𝑥0) + 𝑔(𝑥𝑛)2 = − (𝑏 − 𝑎)ℎ212 𝑔′′(𝜉),𝑎 ≤ 𝜉 ≤ 𝑏. 
We have the equation 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏].  
Consistently applying the composite trapezoidal rule 
for calculating the integral in the linear Volterra 
equation of the second kind, taking into account the 
error in calculating the integral and putting 𝑥 = 𝑥𝑗, 
we obtain the system of equations: 𝑢(𝑥0) = 𝑓(𝑥0), 
𝑢 ̃(𝑥1) = −ℎ𝐾10𝑢(𝑥0)2 − ℎ𝐾11𝑢 ̃(𝑥1)/2 + 𝑓(𝑥1), 

𝑢 ̃(𝑥𝑘) = − ℎ𝐾𝑘0𝑢(𝑥0)2 − ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)𝑘−1
𝑗=1− ℎ𝐾𝑘𝑘𝑢 ̃(𝑥𝑘)2 + 

+𝑓(𝑥𝑘), 𝑘 = 2, . . . , 𝑛. 
Here  𝐾𝑘𝑗 = 𝐾(𝑥𝑘 , 𝑠𝑗), 𝑢 ̃(𝑥𝑘) ≈ 𝑢(𝑥𝑘). 

The calculations can be carried out according to the 
following scheme: 𝑢 ̃(𝑥𝑘) = 11 + ℎ𝐾𝑘𝑘2 (−ℎ𝐾𝑘0𝑢(𝑥0)2 + 𝑓(𝑥𝑘)

− ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)𝑘−1
𝑗=1 ). 

Calculating sequentially according to this scheme, 
we get 𝑢 ̃(𝑥0) = exp(−𝑥0) + 𝑥0 exp(𝑥0), 

For 𝑥0 = 0, we have 𝑢 ̃(𝑥0) = 1. Further, for 𝑥1 =ℎ, we obtain  𝑢 ̃(𝑥1)=exp(−ℎ)+ℎ exp(ℎ)/21+ℎ exp(2ℎ)/2 = exp(−ℎ), 
Continuing to calculate, we obtain 𝑢 ̃(𝑥𝑘) =𝑒𝑥𝑝(−𝑥𝑘), which coincides with the exact solution. 

Applying the quadrature trapezoidal formula to 
other integral equations, such a good result can 
hardly be expected. 

When we use the linear piecewise polynomial 
splines with the 64 nodes on the interval [0,1] we 
receive the plot of the error 𝑅 = 𝑢 − �̃� between the 
exact solution of the equation and the numerical 
solution obtained with the application the 

WSEAS TRANSACTIONS on MATHEMATICS 

DOI: 10.37394/23206.2021.20.2 I. G. Burova

E-ISSN: 2224-2880 18 Volume 20, 2021



polynomial splines of the third order approximation 
which is shown in Fig.7. When we use the non-
polynomial splines of the third order approximation 
(𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) = exp(2𝑥)) 
with the 64 nodes on the interval [0,1] we receive 
the plot of the error between the exact solution of 
the equation and the numerical solution obtained 
with the application which is shown in Fig.8.  

When we use the non-polynomial splines of the 
third order approximation (𝜑1(𝑥) = 1, 𝜑2(𝑥) =exp(−𝑥), 𝜑3(𝑥) = exp(−2𝑥)) with the 64 nodes on 
the interval [0,1] we receive the plot of the error 
between the exact solution of the equation and the 
numerical solution obtained with the application 
which is shown in Fig.9. Here we connected the 
points with straight line segments for clarity of the 
drawing. The graph shows the nodes of the grid at 
the interval [0,1] and the values of the errors 𝑅 at 
these nodes. 

 

 
Fig.7. The plot of error between the exact solution of 
the equation (problem 1) and the numerical solution 

obtained with the application of the linear polynomial 
splines when we use 64 nodes 

 

 
Fig.8. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 
obtained with the application of the non-polynomial 
exponential splines of the third order approximation 

(𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥), 𝜑3(𝑥) = exp(2𝑥)) when 
we use 64 nodes 

 

When we use the non-polynomial splines 
(𝜑(𝑥) = sin(𝑥)) with the 128 nodes on the interval 
[0,1] we receive the plot of the error which is shown 
in Fig.10. When we use the polynomial splines of 

the third order approximation with the 64 nodes on 
the interval [0,1] we receive the plot of the error 
which is shown in Fig.11. When we use the 
polynomial splines of the third order approximation 
with the 128 nodes on the interval [0,1] we receive 
the plot of the error which is shown in Fig.12. 

 
Fig.9. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 
obtained with the application of the non-polynomial 
splines of the third order approximation (𝜑1(𝑥) =1, 𝜑2(𝑥) = exp(−𝑥), 𝜑3(𝑥) = exp(−2𝑥)) when we use 

32 nodes 

Table 4. The maximum of the error in absolute value 
between the exact solution of the equation from problem 
2 and the numerical solution obtained with the 
application of the polynomial splines, and the non-
polynomial splines of the third order approximation 

 𝑛 
The error 

obtained 
with the use 
the 
polynomial 
splines 

The error 
obtained with 
the use the 
trigonometric 
splines  

The error 
obtained with 
the use the non-
polynomial 
splines 𝜑1(𝑥) =1, 𝜑2(𝑥) =exp(𝑥), 𝜑3(𝑥) =exp(2𝑥))  

32 0.396 ∙ 10−7 0.792 ∙ 10−7 0.235 ∙ 10−6 
64 0.247 ∙ 10−8 0.496 ∙ 10−8 0.148 ∙ 10−7 
128  0.163 ∙ 10−9 0.310 ∙ 10−9 0.933 ∙ 10−9 

 

 
Fig.10. The plot of error between the exact solution of 
the equation (problem 1) and the numerical solution 
obtained with the application of the non-polynomial 

splines (𝜑1(𝑥) = 1 𝜑2(𝑥) = sin(𝑥), 𝜑3(𝑥) = cos(𝑥)) 
when we use 128 nodes 
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Fig.11. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 
obtained with the application of the polynomial splines of 
the third order approximation when we use 64 nodes. 

 

 
Fig.12. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 
obtained with the application of the polynomial splines of 
the third order approximation when we use 128 nodes. 

 
Note that to calculate the integral on the interval [𝑥𝑗, 𝑥𝑗+1], we can use a quadrature formula, for 

example the formula of the middle rectangles. We 
have in this case: ℎ = 𝑥𝑗+1 − 𝑥𝑗, 𝑉𝑗(𝑥)≈�̃�(𝑥𝑗−1)ℎ𝐾 (𝑥, 𝑥𝑗 + ℎ2)  𝜔𝑗−1𝐿 (𝑥𝑗 + ℎ2) +�̃�(𝑥𝑗)ℎ𝐾(𝑥, 𝑥𝑗 + ℎ/2) 𝜔𝑗𝐿(𝑥𝑗 + ℎ/2) + �̃�(𝑥𝑗+1)ℎ𝐾(𝑥, 𝑥𝑗 + ℎ/2) 𝜔𝑗+1𝐿 (𝑥𝑗 + ℎ/2), 

𝑄𝑗(𝑥) ≈ �̃�(𝑥𝑗)ℎ𝐾 (𝑥, 𝑥𝑗 + ℎ2)  𝜔𝑗𝑅 (𝑥𝑗 + ℎ2) 

+�̃�(𝑥𝑗+1)ℎ𝐾 (𝑥, 𝑥𝑗 + ℎ2)  𝜔𝑗+1𝑅 (𝑥𝑗 + ℎ2) 

+�̃�(𝑥𝑗+2)ℎ𝐾 (𝑥, 𝑥𝑗 + ℎ2)  𝜔𝑗+2𝑅 (𝑥𝑗 + ℎ2). 
Fig.13 shows the plot of error between the exact 

solution of the equation (problem 1) and the 
numerical solution obtained with the application of 
the polynomial splines of the third order 
approximation and  the middle rectangles formula  
when we use 128 nodes. 

 

 
Fig.13. The plot of error between the exact solution of 

the equation (problem 1) and the numerical solution 
obtained with the application of the polynomial splines of 
the third order approximation when we use 128 nodes. 

3 Application to Solving a 

Nonlinear Equation 

Let us now consider the application of splines of 
the second order of approximation to the solution of 
the nonlinear Volterra equation of the second kind. 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏]. 

We approximate 𝑢(𝑠) with the expression: 𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),        (5) 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
Now transforming the integral ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠𝑥𝑗+1𝑥𝑗  using formula (5), we obtain 

∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 ≈𝑥𝑗+1𝑥𝑗 ∫ 𝐾(𝑥, 𝑠, 𝑈(𝑠))𝑑𝑠𝑥𝑗+1𝑥𝑗 . 

Using formulas (3), (4) we obtain the approximate 
solution with the lesser error. 

Here we take the nonlinear Volterra equation of 
the second kind of the form: 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢2(𝑠))𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏] .     

Now let us solve equation from paper [8] and 
compare the results with the result obtained with 
splines. First, in problem 4 we consider problem 6 
from paper [8]. 

Problem 2. We take the equation 

𝑢(𝑥) = 𝑔(𝑥) + ∫ 𝑥𝑠2𝑢2(𝑠)𝑑𝑠,    𝑥 ∈ [0, 1].𝑥
0  
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Here 𝑔(𝑥) = (1 + 2𝑥4/9 − 𝑥3/3 + 2𝑥2/3 +11𝑥/9)log (𝑥 + 1) + 5𝑥3/18 − 11𝑥2/9 −2𝑥4/27 + (− 𝑥43 − 𝑥3) (ln(𝑥 + 1))2. 

The exact solution is taken by 𝑢(𝑥) = log(𝑥 + 1). 

At first, we build a grid of nodes on the interval [0,1]: 𝑥𝑘 = 𝑘ℎ, 𝑘 = 0,1, … 𝑛, ℎ = 1𝑛. 
To solve the problem, we need the following 

expressions:  

𝑊𝑘(𝑥) = ∫ 𝐾(𝑥, 𝑠)(𝑢𝑘𝜔𝑘(𝑠) + 𝑢𝑘+1𝜔𝑘+1(𝑠)𝑥𝑘+1𝑥𝑘 + 𝑢𝑘+2𝜔𝑘+2(𝑠))2 𝑑𝑠; 
𝑊1𝑘(𝑥) = ∫ 𝐾(𝑥, 𝑠)(𝑢𝑘−1𝜔𝑘−1(𝑠) + 𝑢𝑘𝜔𝑘(𝑠)𝑥𝑘+1𝑥𝑘 + 𝑢𝑘+1𝜔𝑘+1(𝑠))2 𝑑𝑠; 
Hereinafter 𝑢𝑘 ≈ 𝑢(𝑥𝑘). Then we sequentially 

calculate 𝑢𝑘. We have 𝑢0 = �̃�(𝑥0): �̃�(𝑥0) = 𝑓(𝑥0), 
To determine 𝑢1 𝑢2, we solve the system of 
equations 𝑉1 = 0, 𝑉2 = 0: 𝑉1 = 𝑢1 − 𝑊0(𝑥1) − 𝑓(𝑥1), 𝑉2 = 𝑢2 − 𝑊0(𝑥2) − 𝑊11(𝑥2) − 𝑓(𝑥2), 
Next, we sequentially find 𝑢𝑚 by solving the 
equations: 𝑢3 − ∑ 𝑊1𝑗(𝑥3)2

𝑗=1 − 𝑊0(𝑥3) − 𝑓(𝑥3) = 0, 
𝑢𝑚 − ∑ 𝑊1𝑗(𝑥𝑚)𝑚−1

𝑗=1 − 𝑊0(𝑥𝑚) − 𝑓(𝑥𝑚) = 0. 
When we use the linear piecewise polynomial 

splines with the 64 nodes on the interval [0,1] we 
receive the plot of the error between the exact 
solution of the equation and the numerical solution 
obtained with the application of the polynomial 
splines of the third order approximation which is 
shown in Fig.14. When we use the linear piecewise 
polynomial splines with the 128 nodes on the 
interval [0,1] we receive the plot of the error 
between the exact solution of the equation and the 
numerical solution obtained with the application of 
the third order approximation polynomial splines 
which is shown in Fig.15.  

 
Fig.14. The plot of error between the exact solution of 
the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 
the third order approximation when we use 64 nodes 

 
Fig.15. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 
obtained with the application of the polynomial splines of 
the third order approximation when we use 128 nodes 

Table 5 shows the maximum of the error in 
absolute value between the exact solution of the 
equation (Problem 2) and the numerical solution 
obtained with the application of the linear 
polynomial splines of the second order 
approximation (column 2). The numerical solution 
obtained with the application the polynomial splines 
of the third order approximation (𝜑(𝑥) = 𝑠𝑖𝑛(𝑥)) is 
presented in column 3. The numerical solution 
obtained with the application the non-polynomial 
splines of the second order approximation (𝜑(𝑥) =𝑒𝑥𝑝(−𝑥)) is given in column 4. The number of 
nodes (n) is given in the first column of Table 5.  

Table 5. The maximum of the error in absolute value 
between the exact solution of the equation from problem 
2 and the numerical solution obtained with the 
application of the linear polynomial splines, non-
polynomial splines  𝑛 The error 

obtained with 
the use the 
linear 
polynomial 
splines of the 
second order 
approximation 

The error 
obtained with 
the use the 
polynomial 
splines of the 
third order 
approximation 

The error 
obtained with 
the use the non-
polynomial 
splines of the 
second order 
approximation 𝜑(𝑥) =𝑒𝑥𝑝 (−𝑥) 

32 0.116 ∙ 10−4 0.216 ∙ 10−6 0.856 ∙ 10−5 
64 0.290 ∙ 10−5 0.267 ∙ 10−7 0.214 ∙ 10−5 
128 0.724 ∙ 10−6 0.332 ∙ 10−8 0.536 ∙ 10−6 
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When we use the non-polynomial splines of the 
second order approximation 𝜑(𝑥) = exp (−𝑥) with the 
64 nodes on the interval [0,1] we receive the plot of 
the error which is shown in Fig.16. When we use the 
non-polynomial splines of the second order 
approximation 𝜑(𝑥) = exp (−𝑥) splines with the 128 
nodes on the interval [0,1] we receive the plot of the 
error which is shown in Fig.17. 

 

 
Fig.16. The plot of error between the exact solution of 
the equation (problem 2) and the numerical solution 

obtained with the application of the polynomial splines of 
the second order approximation when we use 64 nodes 

 

 
Fig.17. The plot of error between the exact solution of 

the equation (problem 2) and the numerical solution 
obtained with the application of the polynomial splines of 
the second order approximation when we use 128 nodes 
 

4 Conclusion 

In this paper, polynomial and non-polynomial 
splines of the third order of approximation are used 
to solve the linear and nonlinear models of the 
Volterra integral equations of the second kind. It is 
assumed, that the integral of the product of the 
kernel and the basis spline can be calculated exactly 
(in the form of a formula). The basis spline is the 
polynomial spline or non-polynomial spline of the 
third order of approximation. The numerical 
examples are done. The graphs of the error between 
the exact and approximate solutions at the different 
number of grid points are also drawn. As it is 
shown, the application of the local interpolation 
splines of the third order of approximation for the 

Volterra integral equations of the second kind can 
give an appropriate result, better than the local 
interpolation splines of the second order of 
approximation. But it is quite possible that the 
splines of the second order of the approximation 
order will give a smaller error (for example, if the 
absolute value of the maximum of the second 
derivative of the function turns out to be less than 
the absolute value of the maximum of the third 
derivative). The use of various methods allows us to 
verify the result. The non-polynomial spline can 
sometimes provide the result better than the 
polynomial splines.  
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