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 To deal with the considerable deviation of transparency tracing method and digital planimetry method used in 
current clinical diabetic foot ulcer injury assessment, this paper proposes a 3D reconstruction system which can be used to 
get foot model with good quality texture, then injury assessment is done by measuring the reconstructed model. The system 
uses the Intel RealSense SR300 depth camera which is based on infrared structured-light as input device, the required data 
from different view is collected by moving the camera around the scanned object. The geometry model is reconstructed by 
fusing the collected data, then the mesh is sub-divided to increase the number of mesh vertices and the color of each vertex 
is determined using a non-linear optimization, all colored vertices compose the surface texture of the reconstructed model. 
Experimental results indicate that the reconstructed model has millimeter-level geometric accuracy and texture with few 
artificial effect. 

Diabetic Foot Ulcer; 3D reconstruction; depth camera. 

Diabetic foot ulcer is a complicated disease caused by long-term increase in blood sugar, often results in ulcer 
below the ankle, ischemia, deformity and necrosis. The prognosis of diabetic foot ulcer is affected by many factors, 
the more intuitive area and depth of ulcer are important judgment criteria standards of prognosis [1]. The transparency 
tracing method is most used before the development of digital imaging technology, it is difficult to operate, has poor 
accuracy and is easy to form cross-contamination [2]. The application of 2D digital imaging software increases the 
estimate accuracy of ulcer area and decreases the complexity of operation [3]. The wound volume is also increasingly 
being estimated with the help of digital images and photogrammetric software, e.g. VeVMD (Vista Medical, Winnipeg, 
Manitoba, Canada)[4]. Due to the limitations of 2D images, those software are heavily influenced by the fold back 
plane and irregular shape of ulcer, which causes the resulting error to be hard to correct. Especially, measurements 
based on two-dimensional images are powerless to deal with ulcer depth and depth gradient changes. At the same 
time, the clinical application of 3D human body scan measurement technology has been studied in neurosurgery [5], 
foot health [6] and so on. This new technology is expected to have good application in the measurement of area, 
volume and characteristic of diabetic foot ulcer. 

Scene reconstruction has always been a hot research field in computer vision. Some methods directly compute the 
scene depth information from RGB images [7] [8], which have high requirements at the scene surface material and 
lighting and cannot guarantee better accuracy. Recently the appearance of depth camera, like Microsoft Kinect, 
provides a new possibility for dense 3D reconstruction. The KinectFusion algorithm [9], proposed by Newcombe et 
al, has proved the feasibility of 3D reconstruction system based on RGB-D camera using TSDF (truncated signed 
distance function) as fusion media. In KinectFusion the tracking of depth camera pose is accomplished using ICP 
(Iterative Closest Point) algorithm [11]. After all frames have been fused in the TSDF volume, the mesh of the scene 
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can be extracted using MarchingCubes algorithm [12]. In recent years many more algorithm [13][14] have been 
developed to expand the application of RGB-D 3D reconstruction. 

Our 3D scanning system consists of a depth camera and auxiliary drive system. Fig. 1 is a schematic view of the 
drive system. A screw guide allows the camera to move horizontally. A stepping motor drives the camera to rotate in 
the horizontal direction. The whole system is in a circular motion in the vertical plane driven by another motor. With 
the help of those motors, the system can complete the entire multi-angle scan data acquisition in about 20 seconds. 
Compared to hand-held scanning method, using motor to drive the camera can reduce the noise of depth frame and 
blurring of RGB frame caused by hand jitter, greatly improving the accuracy of the data collected. 

 
Schematic view of the drive system 

 
In recent years the appearance of active depth camera using near infrared band light source, have greatly reduced 

the cost and complexity of simultaneously obtaining the depth and lighting information of the scene. This led us to 
choose the infrared depth camera as the input device. Based on the principle of depth acquisition, infrared depth 
camera can be further divided into Time of Flight (ToF) and structured light. ToF-based depth cameras calculate the 
scene depth information by measuring the propagation delay or phase difference of the light pulses between being 
transmitted and being reflected from the object to the receiving sensor. Structured light-based depth cameras use 
optical encoding technology to determine the scene depth information by projecting a predefined infrared pattern to 
the scene and capturing the deformation of the pattern. Table 1 lists the most common infrared depth cameras and 
their parameters. To increase the resolution of the depth map in the imaging plane, the device should have higher 
depth map resolution and smaller effective distance. Taken together, the Intel RealSense SR300 is chosen as the data 
acquisition device in our reconstruction system. 

The reconstruction algorithm used in our system consists of geometric model reconstruction and surface texture 
generation. In the geometric model reconstruction section, the RGB-D stream obtained from the depth camera is used 
to reconstruct the mesh of the scanned object. In the surface texture generation section, we first subdivide the mesh 
obtained in the previous section to increase the mesh vertex count. Then an appropriate number of RGB images with 
high quality selected from the RGB-D stream are used to determine the color for each vertex in the subdivided mesh 
by non-linear optimization. The color of all the vertices make up the surface texture of the scanned object. 

The geometric model reconstruction algorithm used in our system is based on the algorithm proposed in [13]. The 
process is shown in Fig. 2. 

The camera pose can be represented as the 6-dimensiona twist coordinates   
 

1 2 3 1 2 3= , , , , , ,                                                             (1) 
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where 1 2 3, ,  represents the translational components and 1 2 3, ,  the rotational components. T is 

the corresponding pose matrix of  . We use function D to represent the depth map 
 

2:D ,                                                                              (2) 
 

and function V to represent the TSDF volume 
 

3:V .                                                                                      (3) 
 

TABLE I. COMMONLY USED INFRARED DEPTH CAMERAS  

Depth 
resolution 

Effective 
distance 

Principl
e

Microsoft Kinect 
V1 320x240 0.4-4.5m Structur

ed light 
Microsoft Kinect 
V2 512x424 0.5-4.5m ToF 

ASUS Xtion pro 640x480 0.8-3.5m Structur
ed light 

Intel Realsense 
SR300 640x480 0.3-2m Structur

ed light 
 

 
Process of the geometric reconstruction algorithm 

 
Reference [13] also proposed a new weight choosing scheme to update the TSDF volume 
 

2

1

,
0

d

d
d e d d

d
,                                                                       (4) 

 
where d refers to the distance value,  to the TSDF truncation distance and  to a distance threshold determined by 

the characteristics of the depth camera.  should be smaller than  . With function  representing the projection from 
image space to camera space, the vertex v corresponding to a pixel p in the depth map can be described as  

 
,pv p D p .                                                                                        (5) 

 

Raw data 

Denoised
data TSDF 

Volume 

Camera 

Mesh 
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The energy function is defined as 
 

2

p
p

V T v .                                                                                  (6) 

 
The desired pose is 
 

arg min E  .                                                                                (7) 

 
This is also the most significant difference between the algorithm proposed by [13] and the KinectFusion algorithm. 

To quantitatively analyze the accuracy of 3D reconstruction algorithm, we made a foot model with known size 
using 3D printing. The reconstruction result of the printed model can be used to determine the accuracy by comparing 
it with the original mesh. It is less expensive compared with using high precision industrial scanner to obtain the 
ground truth. We also noticed that the technology and materials used in 3D printing will have a great influence on the 
depth data obtained by the camera due to the different reflection characteristics of the infrared light. The thickness of 
the printed model is also a very important factor. We use Stereo Lithography Appearance (SLA) and UV Curable 
Resin with 2mm thickness. Fig 3 shows the object model which we used in this paper. 

We found that different value of  and  will influence the accuracy of camera pose estimation and smoothness of 
the resulting mesh. To tolerate the noise of depth map, we need larger values in the camera pose estimation stage , 
which also causes the result to be too smooth at the edges, especially between the toes. In response to this problem, 
we propose a two-stage tracking reconstruction method. After the camera poses of each frame have been determined, 
we fuse all the frames to a new TSDF volume with different weighting function parameters, which will result in a 3D 
model with sharper edge. 

There are two traditional methods to generate surface texture for models reconstructed using RGB-D depth camera. 
First one is to map each triangle of the reconstructed mesh to a RGB image and synthesize each mapped region into 
one texture map [16]. Another one is to subdivide the mesh and determine the color value for each vertex of the 
subdivided mesh, the surface texture is saved in the form of all vertices’ color implicitly [17]. The texture generation 
algorithm used in this paper is based on [17].  

Fig. 4 represents the basic flow of  the texture generation algorithm. In the mesh subdividing stage, each triangle 
of the mesh is divided into four sub-triangles using the middle points of the three edges [18]. The subdivision can 
increase the number of vertices without geometrical change to the mesh.  Next is the keyframe selection stage. 
Proposed algorithm selects proper keyframes based on the image blurring degree [19] and camera pose of each image 
from the RGB-D stream.  The selected keyframes are further used in a global non-linear optimization to generate the 
texture.  In the global optimization stage, the camera poses and image deformation of each keyframe are adjusted to 
get clear and sharp textures. Finally, each vertex is assigned to several keyframes with appropriate weights which are 
used to compute the vertex color as a weighted average. Fig.5 represents texture results generated by the geometry 
reconstruction algorithm. Fig. 6 represents the results after texture generation optimization.  
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Since the algorithm is strongly depends on the assumption that the color values of the same point are constant 
among keyframes obtained from different view, the lighting conditions have great impact on the performance of the 
algorithm. To get adequate lighting at all scanning views, we provide many fill lights. It should be noted that all light 
should avoid the near-infrared band to eliminate impacts on depth camera. 

 

 
. The test object model 

 

 
. Process of  the texture Generation Algorithm 

 

 
 The blended texture from geometry reconstruction 

Original 
mesh 

All RGB 
frames 

High quality 
Frames

Subdivided 
mesh

Texture 
mesh
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. Texture after optimization 

We implemented the geometry reconstruction and texture generation algorithm by ourselves according to [13][17] 
with the help of the opensource Point Cloud Library (PCL) [20]. The implemented software is further improved using 
CUDA(Compute Unified Device Architecture) framework to take full advantage of the high parallel computing power 
of modern GPGPU(General Purpose Graphics Processing Unit). As for reconstruction error analysis, we use the 
Hausdorff distance metric[21] implemented by MeshLab[12]. 

 The algorithms are tested on a personal computer with Intel core i5 CPU and Nvidia GTX 1060 GPU. The 
scanning phase took about 20 seconds at 30 frames per second, resulting in approximate 600 RGB-D frames. The two-
stage geometry reconstruction section cost 18 seconds. The texture generation section cost 5 minutes with 80 
optimization iterations. 

For the two-stage reconstruction algorithm, we set to 2mm and to 9mm for the first stage, to 1mm and 
to 6mm for the second stage. Fig. 7 and Fig. 8 represent the reconstruction results of the 3D-printed model for each 
stage. It can be observed that the margin of toes is sharper in Fig. 8. Fig. 9 represents the error distribution results of 
original test model for both stages. The second stage can improve the reconstruction error as shown in Fig.9. Fig.10 
represents the actual reconstruction result for a foot of volunteer.  

 

 
. One stage reconstruction result 
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. Two stage reconstruction result 

 

  
(a)One stage error            (b)Two stage error  
0mm  2mm 

. The error distribution of one and two stage results 
 

. The reconstruction result of a real foot 

In this paper, we propose a 3D scanning reconstruction system suitable for the injury assessment of diabetic foot 
ulcer. The system uses an infrared structured light depth camera as input device, captures the needed data from 
different views by driving the depth camera with motors. After geometric reconstruction several RGB images with 
less blurring are chosen to generate the model surface texture by non-linear optimization. The experimental results 
show that the system can reconstruct with millimeter-level geometric accuracy and texture with few artificial effect. 
Based on the reconstructed model, automatic ulcer location and measurement algorithm can be studied considering 
the characteristics of diabetic foot ulcer. 
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