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Abstract

Clinical classification of sequence variants identified in hereditary disease genes directly affects 

clinical management of patients and their relatives. The International Society for Gastrointestinal 

Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a 

standardized classification scheme to constitutional variants in the Lynch Syndrome genes MLH1, 

MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist variant 

classification, and recognized by microattribution. The scheme was refined by multidisciplinary 

expert committee review of clinical and functional data available for variants, applied to 2,360 

sequence alterations, and disseminated online. Assessment using validated criteria altered 

classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent 

evaluation are now possible for 1,370 variants not obviously protein-truncating from 

nomenclature. This large-scale endeavor will facilitate consistent management of suspected Lynch 

Syndrome families, and demonstrates the value of multidisciplinary collaboration for curation and 

classification of variants in public locus-specific databases.

Identification of a high-risk disease-causing constitutional mutation in a cancer patient 

guides the clinical management of the whole family, with implications for counselling, 

cancer treatment options, pre-symptomatic surveillance, and consideration of risk-reducing 

surgery and/or medication regimes1. Carriers of mutations in the mismatch repair (MMR) 

genes MLH1, MSH2, MSH6 and PMS2 causing Lynch Syndrome (LS)1 have a substantially 

increased risk of colorectal and endometrial cancer, along with increased risk of ovarian, 

gastric, small bowel, urothelial, brain, hepatobiliary, pancreatic, bladder, kidney, prostate, 

and breast cancers1-8. However, intensive management reduces mortality9.

Sequence variants of uncertain functional and clinical significance are common in genetic 

test reports. Although several lines of evidence can be evaluated to assess their significance, 

usually none of them can be used on its own to obtain clinically useful variant interpretation, 

and for many variants comprehensive data are lacking. Laboratories are generally 

conservative in designating pathogenic variants, assigning variants as “uncertain 

significance” unless overwhelming evidence of pathogenicity exists. Several schemes for 

classifying variants in genes associated with Mendelian conditions have been proposed for 

use in the clinical setting. Since clinically useful actions are currently only considered for 

high-penetrant mutations, all of these systems are aimed at differentiating high-penetrant 

from low-penetrant/neutral variants and do not consider intermediate risk variants. They 

differ in the range and format of data used for classification, and the number of variant 

classes10-12. The International Agency for Research on Cancer (IARC) classification system, 

endorsed by the Human Variome Project (HVP), facilitates standardized categorization by 

defining classes that can be linked to validated quantitative measures of causality/

pathogenicity from statistical models13-16, or from validated interpretation of qualitative 

data17. Importantly, only the 5-class IARC system has been linked to clinical 

recommendations for all classes: clinical testing and full high-risk surveillance guidelines 

for Class 5 “pathogenic” and Class 4 “likely pathogenic”; advice to treat as “no mutation 

detected for this disorder” for Class 1 “not pathogenic” and Class 2 “likely not pathogenic”; 
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and acquisition of additional data to provide more robust classifications for Class 2, Class 4 

and Class 3 “uncertain”.

Locus-specific databases (LSDBs) are an important source of information for clinicians and 

researchers to assess data as well as opinion on the clinical relevance of disease gene 

sequence variants, and have a fundamental role in variant classification due to the added 

value of aggregated data. Consistent and normalized data curation is critical to the value of 

databases for categorizing the relationship between genetic variation and disease – 

especially for clinical application. It has previously been recommended by the IARC 

Working Group that a panel covering a range of expertise in variant classification provide 

consensus opinion on variant pathogenicity prior to publicly accessible display of such 

information18. Another important component of the classifications provided by LSDBs is 

transparency regarding the criteria and supporting information used for classification, so that 

LSDB users can consider the information for their own application in the research and 

clinical setting18.

The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) has merged 

multiple gene mutation/variant repositories to create the InSiGHT Colon Cancer Gene 

Variant Database for MMR and other colon cancer susceptibility genes19-23, hosted by 

Leiden Open Variation Database (LOVD). Following recommendations for LSDB 

curation18, InSiGHT formed an international panel of researchers and clinicians to review 

MMR gene variants submitted to the database. To encourage submission of unpublished 

clinical and research data to further facilitate variant classification, the microattribution 

approach24 was implemented using Open Researcher and Contributor Identifications 

(ORCID). Here we present the results of the InSiGHT Variant Interpretation Committee 

(VIC) effort to develop, test and apply a five-tiered scheme to classify 2,360 unique 

constitutional MMR gene variants.

Curation of MMR gene variants submitted to the InSiGHT Colon Cancer 

Gene Variant Databases

Through December 2012, after 3,458 alterations to standardize nomenclature, there were 

12,635 submissions of 2,730 unique MMR gene variants lodged in the InSiGHT database. 

Furthermore, 370 (13.6%) unique variants were not identified in constitutional (germline) 

DNA (see Supplementary Fig. 1 and Supplementary Table 1 for details), and were excluded 

from further analyses since: (i) no evidence exists that these occur as constitutional variants, 

and (ii) no clinical information was available to assess their potential role in hereditary 

disease. The 2,360 constitutional variants included: 932 MLH1 (39%), 842 MSH2 (36%), 

449 MSH6 (19%), and 137 PMS2 (6%). Most variants were nonsense/frameshift predicted to 

cause protein truncation (800, 34%), followed by “not obviously truncating” non-

synonymous variants as the next largest group, including missense substitutions, small in-

frame insertions/deletions (indels) and read-through alterations of the translation termination 

codon (746, 32%).

Variants had originally been assigned a classification by submitters according to the 

following classes: pathogenic; probably pathogenic; no known pathogenicity; probably no 
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pathogenicity; effect unknown. No information was recorded to document the rationale for 

classification, or standards to classify variants. Considering 1,382 constitutional variants 

with multiple entries in the InSiGHT database, there were discordances in classification 

between submitters for 869 variants. Some of these discordances arose because of 

classification based on single data points or references, such as single functional assay 

results22, or inferences from individual publications originally lodged in the Mismatch 

Repair Genes Variant Database23 (see example in Supplementary Table 2).

Development of a five-tiered system for consistent classification of MMR 

gene variants

The InSiGHT VIC (see Methods) was established in 2007 to address discrepancy in 

classification of MMR gene variants lodged on the InSiGHT database. Since March 2011 

the VIC has made a concerted effort to develop standardized criteria for variant 

classification, employing a modified “Delphi consensus process”25 to evaluate current 

scientific evidence and reach consensus. In line with the HVP26, the IARC classification 

system10 for variant categorization (see Table 1) was adopted by InSiGHT for MMR variant 

classification. Briefly, multiple lines of evidence are required for classification, and 

evidence for each variant must include data associating the variant with both clinical and 

functional consequences (see Methods).

The scheme was first tested on a subset of 117 MMR gene variants, and the criteria evolved 

and were refined by consensus to accommodate new data and inconsistencies over multiple 

classification teleconferences and face-to-face meetings. Final criteria were then applied 

retrospectively and to all remaining unique variants listed in the database (see 

Supplementary Table 3). Figure 1 shows an overview of the InSiGHT classification criteria 

(see Supplementary Note, Supplementary Table 4 for detailed criteria and justifications). At 

the close of each VIC teleconference/meeting, consensus classifications were noted. Where 

necessary, action items to improve or clarify classifications included:

1. Calls for missing clinical and functional information for specific variants to 

committee members and the general InSiGHT membership.

2. Requests for more detailed data or data clarifications from the authors of original 

publications.

3. Re-assessment of classification after additional data were obtained.

At the end of the process, the InSiGHT database was updated with the final consensus 

classifications and the supporting data, to ensure transparency.

The major issues faced by the committee in the review process were determining data 

redundancy across multiple sources (resolved through discussion with authors), paucity of 

information, incomplete/inaccurate data, and difficulties in interpretation of functional 

assays. To facilitate functional assay interpretation, supporting information and flowcharts 

were developed (Fig. 1b, Supplementary Tables 5-6), and multiple meetings dedicated to 

review variants with apparently discordant functional assay results were coordinated 

(Supplementary Table 3).
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Validation of the InSiGHT qualitative classification criteria

Nonsense or frameshift alterations, or large genomic deletions interrupting functionally 

important domains are generally considered pathogenic on the basis of DNA sequence 

alone; here these are referred to as “assumed pathogenic” variants (termed Class 5a in 

figures). There were 990 “assumed pathogenic” variants in the database, 640 of which were 

private mutations. In order to demonstrate the robustness of the qualitative classification 

criteria, 170 “assumed pathogenic” variants (68 MLH1, 75 MSH2, 13 MSH6, 14 PMS2) 

were reviewed as a validation set against the Class 5 (pathogenic) qualitative criteria 

required for the variants termed Class 5b in figures (see Methods, Supplementary Table 7). 

Class 5b designation required: evidence of abrogated protein function; at least two tumors 

with microsatellite instability (MSI) or appropriate loss of MMR protein expression; and a 

segregation likelihood ratio >10:1 (incorporating gene-specific cumulative risks27) or 

variant co-segregation with disease reported in at least two Amsterdam criteria positive 

families. Class 5b was attained by all 60 validation set variants that had sufficient clinical 

data to assess these required criteria. The other 110 validation set variants could not be 

assigned to Class 5b largely because family co-segregation and tumor data were scarce or 

unobtainable - presumably because these variants are accepted as disease-causing and 

routinely used for clinical presymptomatic testing in families (see Implementing 

Microattribution). Of these, 72 were assigned to Class 4 due to lack of only one point of 

evidence, and 38 variants fell in Class 3 due to insufficient data. However, only 2/13 MSH6 

and 2/14 PMS2 variants fulfilled Class 5, reflecting the lower penetrances and later ages of 

onset of PMS228 and MSH629 deleterious variants. Together these results indicate that the 

criteria for classification using qualitative data were sufficiently stringent to ensure 

conservative classification.

Application of InSiGHT classification guidelines to 2,360 individual 

constitutional MMR variants

Of the 12,006 eligible variant entries in the InSIGHT database, submitter versus final 

classification differed for 7,935 (66%), including changes from “no known pathogenicity” to 

Class 5 (pathogenic) and vice versa (Fig. 2a). The overall breakdown of final classifications 

is shown in Figure 2b. In addition to the 990 “assumed pathogenic” truncating/large deletion 

variants (Class 5a), consistent medical management is now also possible for the remaining 

1,370 “not obviously truncating” variants; these include 167 (12%) Class 5 (pathogenic) 

variants (Class 5b), 183 (14%) Class 4 (likely pathogenic) variants, 86 (6%) Class 2 (likely 

not pathogenic) variants and 169 (12%) Class 1 (not pathogenic) variants.

As shown in Figure 3 and Supplementary Figure 2, non-synonymous variants (see Fig. 3 

footnote) made up the majority of Class 3 variants (524/765; 68%) and newly assigned Class 

5b variants (91/167; 54%; see Supplementary Table 8 for detailed information supporting 

classifications). Substitutions of canonical dinucleotide splice sites fell predominantly in 

Class 4, due to lack of functional RNA analyses; however if experimentally tested these 

would likely move to Class 5b. Intronic variants outside conserved splice sites were the most 

prevalent variant type in Class 1.
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Final categorization (see methods) of “not obviously truncating” variants as Class 1, 2, 4 or 

5 was achieved by applying qualitative criteria for 391 variants, using quantitative 

multifactorial likelihood analysis methodology for 192 variants (based on bioinformatic 

prior probability plus evidence from segregation and/or tumour data, see Thompson et al16), 

and either quantitative or qualitative criteria for 26 variants. Where classifications derived 

using quantitative versus qualitative criteria differed, this reflected the amount of data 

available rather than deficiencies in the classification criteria, with no variants considered 

Class 1/2 using one approach and Class 4/5 using the other. Six synonymous variants 

reached Class 5b due to their effects on splicing. For substitutions occurring in initiation 

codons (often assumed to be pathogenic30-32), only 1/9 had sufficient evidence to determine 

pathogenicity.

Implementing Microattribution

Microattribution is a means to incentivize placement of unpublished data in the public 

domain, by assigning scholarly contribution to authors similar to citations conventions 

afforded to journal articles33. Retrospective and prospective microattribution was 

implemented to acknowledge and encourage the submission of unpublished data to the 

InSiGHT database, including submission of additional detailed clinical information from 

authors of published reports. Microattribution was assigned for initial variant submission, 

segregation and family history data, pathology (MSI, immunohistochemistry) information, 

in vitro functional assays (mainly RNA splicing), and variant frequency in normal 

individuals. As of July 2013, a total of 6,015 microattributions were conferred, including 

3,763 for variant submission, 2,111 for family and tumor pathology data, 97 for in vitro 

assays, and 25 for frequency data. Notably, 19% of the clinical and functional 

microattributions contributed additional information critical to classification of the “assumed 

pathogenic” validation subset (Class 5a). These data also highlighted that clinical testing for 

“assumed pathogenic” variants is mostly undertaken in the presymptomatic setting (see 

above). The contribution of microattribution to final classification of “not obviously 

truncating” variants is shown in Figure 4. Importantly, classification was altered for 57/169 

(34%) variants for which novel unpublished data were obtained. Moreover, implementation 

of microattribution stimulated submission of 128 novel MMR variants, yet to be classified.

Preliminary Analysis of Class 3 Variants of Uncertain Significance

Missense variants in MMR genes are abundant among Class 3 (uncertain) variants and 

present a considerable clinical problem. Quantitative multifactorial likelihood analysis is an 

effective approach to missense variant classification, since validated bioinformatic 

predictions34 based on amino acid conservation and physicochemical properties can be used 

as a surrogate for in vitro variant effect on protein function. In silico analyses previously 

shown to have high accuracy (area under receiving operator characteristic [ROC] curve 

0.93)34 were used to estimate the prior probability of pathogenicity for all 481 Class 3 

(uncertain) missense variants (see Fig. 5), to prioritize requests for data to facilitate future 

multifactorial analysis. The distribution of prior probabilities for MLH1 and MSH2 Class 3 

variants is clearly bimodal, suggesting that ~50% of MLH1/MSH2 missense variants may be 

classified as pathogenic after further investigation. In total, 401 missense variants had 
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extreme prior probabilities of 20% or ≥80%, 270 of which were <10% or >90%, indicating 

that Class 1 or Class 5 could be easily reached by incorporating segregation or tumor 

information. It is also possible that some Class 3 variants with low prior probability of 

pathogenicity based on predicted missense alteration will cause splicing aberrations, as 

already observed for 42/746 of not obviously truncating non-synonymous variants. 

Incorporation of validated bioinformatic splicing prediction tools into the MMR gene 

multifactorial model, as is under development for BRCA1/235, will assist prioritization of 

such likely spliceogenic variants.

Investigating potential effects of Class 3 regulatory variants (see methods) showed that all 

15 5′UTR variants fell within multiple transcription factor binding sites, but no evidence for 

miRNA binding interruption for six 3′UTR variants was found (data not shown). 

Multifactorial analyses and transcription assays would help elucidate if these variants affect 

gene function.

Discussion

The InSiGHT VIC has successfully undertaken a collaborative effort to establish 

standardized variant interpretation guidelines using a modified Delphi process, encourage 

data submission, and provide objective assessment of MMR gene variants involved in Lynch 

Syndrome. The criteria developed provide a basis for standardised clinical classification of 

variants to inform patient and family management by genetic counselling10. This initiative 

has achieved the systematic evaluation of 2,360 constitutional variants, which will benefit 

thousands of families internationally. Importantly, 605 variants not resulting in premature 

termination codons, including 217 non-synonymous substitutions, have now been assigned 

to Class 5 (pathogenic) and Class 4 (likely pathogenic), or Class 1 (not pathogenic) and 

Class 2 (likely not pathogenic). These can now also be used as standards for the calibration 

of functional assays36,37.

The clinical significance of 32% of the variants investigated remains uncertain. A large 

proportion (71%) of these were “private” variants occurring in only one family, which are 

problematic to classify due to the paucity of available clinical information. Clinicians play a 

fundamental role in promoting collection of segregation and other information relevant for 

classification. We anticipate that development of this interpretation scheme, plus the 

implementation of microattribution, will create incentive to assist in accumulating clinical 

data. The value of microattribution for data accrual has previously been demonstrated for 

hemoglobinopathies24, and the InSiGHT initiative now demonstrates the clinical utility of 

data collection. The promotion of standardised data formats will assist transition into fully 

quantitative unbiased classification, eventually incorporating other components of the 

qualitative guidelines. In addition, the difficulties experienced in interpreting apparently 

discordant functional assays emphasize the importance of assay validation and 

standardization38,39. Such experience will be directly applicable to functional analysis of 

deep intronic and regulatory variants, which are increasingly detected with the advancement 

of DNA sequencing technologies.
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To accommodate the lower penetrance and reported lesser degrees of tumor MSI associated 

with MSH6 and PMS2 mutations28,29,40-44, gene-specific criteria should also be considered 

for future iterations of the classification guidelines e.g., stipulating inclusion of segregation 

odds for MSH6 and PMS2 variants for classification, and use of modified panels to detect 

MSI status.

Another challenging issue to contemplate will be incorporating intermediate risk alleles45 

into classification schemes, including the clinical recommendations that might be linked to 

such variants. The identification of a subset of MMR gene alleles with apparently discordant 

clinical and functional features that renders them “resistant” to classification will provide the 

basis for future studies to define the most appropriate methodology and criteria to identify 

such variants. Further studies will also be required to assess if variants with abrogated DNA 

damage response but normal mismatch repair46 are associated with the same clinical 

features as classical pathogenic mutations in MMR genes.

The InSiGHT database is a well-recognized resource for the clinical and research 

community, receiving over 20,000 hits/month. The development and adoption of standard 

templates allows transparency in the review process. Database users can view relevant 

information and sources in relation to guideline interpretation when considering the 

classification provided by the committee. The guidelines must evolve to accommodate 

additional kinds of evidence, but we anticipate no clinical issues as long as the variant 

classifications are dated and linked to a dated set of guidelines with the supporting 

information used to derive the classification. The final classifications have also been 

submitted to NCBI’s ClinVar for higher exposure, but expert classifications and underlying 

data rest with InSiGHT.

This is the first large-scale comprehensive classification effort demonstrating the value of 

expert panel evaluation to curation of an LSDB, and providing summary information used to 

assign variant pathogenicity. It also shows how classification may be assisted by promoting 

standardized data submission from stake-holders in the clinical and research setting, in order 

to access unpublished clinical and functional information to facilitate variant classification. 

Therefore, the InSiGHT initiative provides an important model of LSDB-centric 

multidisciplinary collaboration for transparent DNA variant interpretation.

Online Methods

InSiGHT Variant Interpretation Committee expertise

The InSiGHT Variant Interpretation Committee (VIC) (current chair author MG), includes 

40 multidisciplinary experts from 5 continents (See Supplementary Table 9 for disciplines 

covered by VIC members). The Committee is responsible to its Governance Committee, 

which in turn is responsible to the InSiGHT Council. InSiGHT has recently joined the 

Human Variome Project and is a founding member of its Gene and Disease Specific 

Council. The InSiGHT Council specifically considered the need and responsibility 

associated with classification assignment on its database, and took all reasonable steps to 

both invite the highest possible expertise to contribute to the classification process and to 

ensure its processes and legal standing are robust.
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InSiGHT database curation

Mutalyzer50 was used to standardize the nomenclature of all variants present on the database 

as of December 2012. Variants with multiple submissions that were originally assigned a 

classification of pathogenic/probably pathogenic, and no known pathogenicity/probably no 

pathogenicity, were included in the group of “discordant” variants used to test the 

classification criteria. All unique variants identified in the database were assigned to one of 

the following sources: constitutional, somatic, artificial, and unknown.

Development of 5-tier InSiGHT classification criteria

The InSiGHT classification criteria were developed using the Delphi method25. A 5-tiered 

classification system originally developed for consistent classification of MMR gene 

variants identified amongst Colon Cancer Family Registry participants16,34 was selected as a 

baseline for the InSiGHT classification criteria. This system included the option of 

classification based on posterior probabilities arising from multifactorial likelihood 

analysis15,16,51,52, and also multiple combinations of qualitative data not yet calibrated for 

inclusion in quantitative analyses but which are often reported in the literature or available 

from clinical sources. These baseline classification criteria were critically reviewed by 

InSiGHT members attending the InSiGHT San Antonio meeting in April 2011, and by VIC 

members via email. In response to comment, the rules were amended for clarity, to apply 

more stringent interpretation of functional assay data, and to consider additional points of 

evidence. These InSiGHT rules were used for variant classification over a series of 11 

meetings (10 teleconferences and one face-to-face meeting), with further changes 

incorporated after each meeting to include additional points of evidence identified to be 

relevant during the review process as the committee encountered different combinations of 

useful data from published and unpublished sources. For example, after discussion, co-

occurrence of a variant with a pathogenic mutation in the same gene with clinical 

information regarding constitutional MMR deficiency phenotype53 was included as an in 

vivo test of MMR function, and the 1000 genomes data54 was accepted as a test for 

population frequency. Consistency of the accumulative evidence required for a given class 

was reviewed by presentation of the rules at a face-to-face meeting of committee members. 

Supporting documentation was developed to assist the interpretation of splicing and 

functional assay results, by author BAT in consultation with a subset of committee members 

with specific expertise in this field (see Fig. 1b, Supplementary Tables 4-5). Where 

necessary, rule alterations were applied retrospectively to variants evaluated in previous 

meetings. The finalised rules (shown in simplified format in Fig. 1, detailed in the 

Supplementary Note) were then used to assess all remaining variants lodged in the InSiGHT 

database.

Classification of MMR gene variants by literature review and data collation

Variants occurring in 1000 genomes54 with allele frequency greater than 1% were 

automatically classified as Class 1. Committee members were invited to participate in at 

least one classification meeting. A core group participated in each meeting, with attendance 

invited from Committee membership to make up the balance. Before each meeting, 

participants were assigned, through randomisation, a subset of variants to be assessed. Each 
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attendee was provided with literature pertaining to the list of variants to be discussed, and 

where relevant, additional unpublished clinical or research information submitted by 

committee members to InSiGHT curator JPP. Meeting attendees were requested to 

thoroughly review and summarize all information pertaining to the subset of variants in a 

spreadsheet template, and provide a class assignment based on their interpretation of the 

information accessed. All reviewer summaries, submitted clinical information, and causality 

analysis results were compiled into a single file to allow comparison of data and class 

assignments for each variant, and circulated to the teleconference participants. During 

committee meetings, variants were discussed one at a time, assessing the following: class 

assigned by each reviewer; rationale for classification according to the classification 

guidelines; difficulties in interpreting specific data sources; assessment of possible 

redundancy of information due to multiple publications including all or part of the same 

information pertaining to a variant; differences in interpretation of the guidelines as 

provided and adjustments required to improve their clarity; consensus view on variant class 

considering the preceding discussion; action required to obtain additional information for 

refining classification of variants that remained in Class 2, 3 or 4 at the close of discussion. 

Where classifications differed using qualitative versus quantitative criteria, this was due to 

differences in availability of specific data types for the two approaches, and the most 

extreme classification was assigned for relevant variants. Author BAT applied rules-based 

classification for variants that were truncating/large deletion from nomenclature, canonical 

splice site with no splicing data, or frequency >1% in a control reference group. Author 

BAT then collated all information for all unique “not obviously truncating” variants 

(including those reviewed in teleconferences previously), and determined which variants had 

sufficient information to allow classification outside of class 3. Summary information for 

these variants were circulated for independent class assignment by at least three reviewers 

from the VIC, and classification finalized at teleconferences or by email.

Validation of Qualitative Criteria

A subset of truncating variants and large genomic deletions were selected to validate the 

qualitative classification criteria. The variants were selected on the basis of availability of 

data from the first point of evidence in the qualitative Class 5 criterion, i.e. in vitro 

functional assay results (e.g. protein truncation test or genomic/mRNA confirmation of large 

deletions); Constitutional MMR Deficiency Syndrome phenotype; or different haplotypes 

across multiple families. Published and unpublished data for these variants were then used to 

validate the other points of evidence required for Class 5 “pathogenic”.

Preliminary Analysis of Class 3 “uncertain” Variants

In silico probabilities of pathogenicity were estimated for all Class 3 missense variants, as 

described elsewhere34. Preliminary bioinformatic analysis of Class 3 regulatory variants was 

undertaken using the ENCODE data55 on UCSC genome browser.

Implementation of the microattribution process

The variant interpretation process utilizes both published and unpublished data. For 

published literature the pubmed ID was used to reference the original work. Some 
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unpublished data was recorded in the InSiGHT database at study initiation, and InSiGHT 

members were also requested by email to contribute information important for variant 

classification using a standardized submission template. Data submitters were requested to 

provide a permanent unique publicly searchable ID, preferably from the ORCID system to 

facilitate adoption of the microattribution approach. Microattribution was assigned for the 

different types of information corresponding to the points of evidence required for 

classification, namely submitters were allocated one credit of microattribution for each type 

of information received:

1. Variant (Mandatory)

2. Family History/Pedigree

3. MSI

4. Immunohistochemistry

5. In-vitro functional

6. RNA splicing assays

7. Population frequency

All unpublished data received by the VIC was recorded in microattribution tables for each 

element type, where each microattribution table lists a unique researcher ID along with 

submitted information. Microattribution counts for submitters are publically available on the 

InSiGHT website. Additionally, the data will be made available in nanopublication format.

Statistical Analysis

Multifactorial likelihood analysis was done for variants with appropriate tumor and 

segregation data available, using methods previously reported16,34,51, described briefly as 

follows. Bayes factor analysis was conducted by author BAT to assess MLH1, MSH2, 

MSH6, and PMS2 variant causality from segregation data16,51, for both published and 

unpublished pedigrees with sufficient relevant information on cancer and variant carrier 

status. Penetrance estimates from Senter et al28 were used in the Bayes segregation 

analysis27 of PMS2 variants. Where family relationship status was unknown, a conservative 

segregation likelihood ratio (LR) was derived i.e. setting affected carriers as first-degree 

relatives, which is less informative than segregation between second-degree relatives. 

Colorectal tumor MSI and somatic BRAF mutation status were used to assign LRs according 

to tumor phenotype, derived as previously reported from the ratio of these characteristics in 

known mutation carrier cases vs non-mutation carrier cases16. For each variant, the 

individual LRs (co-segregation, tumor) were multiplied to calculate the odds for causality. 

Then, a posterior probability was calculated from combining the prior probability (in silico 

for missense variants34 or based on sequence location for all other variants13) and the odds 

for causality using Bayes rule: posterior = (prior × odds × (1/(1-prior)))/(prior × odds × 

(1/(1-prior))+1).

STATA 11 was used to calculate sample size of truncating variant validation set: H0: p=0.01 

with the following assumptions =0.05 (one-sided) and power=0.95.

Thompson et al. Page 12

Nat Genet. Author manuscript; available in PMC 2015 January 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



All other analyses were completed using the statistical package R and GraphPad Prism 6. 

For meta-analysis of population frequency data, the proportions were combined using an 

inverse variance random effects model, to account for heterogeneity between studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Overview of 5-tiered InSiGHT classification guidelines.

(a) Simplified guidelines describing levels and types of evidence required to reach different 

classes. See the supplementary information for the full guidelines (Supplementary Note) and 

detailed rationale behind each criterion (Supplementary Table 3). The Lynch Syndrome 

molecular phenotype described in Classes 5 and 4 includes microsatellite instability and/or 

loss of expression of relevant protein(s) as determined by immunohistochemistry. In this 

study, variants resulting in a premature termination codon or large genomic deletions of 

functionally important domains, generally considered pathogenic on the basis of DNA 

sequence alone, are referred to as Class 5a “assumed pathogenic” variants. All other variants 

reaching class 5 are termed Class 5b. (b) Flowchart used to assist in interpretation of 

available functional assay data. Assays reviewed for classification are shown in 

Supplementary Table 4, and the values used to define abrogated or normal function are 

shown in Supplementary Table 5. The cut-offs <25% and >75% set for protein expression, 

as used in previous publications47,48, are very conservative given reported abrogated 

function associated with MLH1 expression defects of ~50% or lower49. For variants that had 

normal/inconclusive/intermediate MMR activity in 2 independent assays, but deficient 

protein function in 2 independent assays, abrogated function was assigned. AF – allele 

frequency; PP – posterior probability of pathogenicity derived by multifactorial likelihood 

analysis; CMMRD – constitutional mismatch repair deficiency (MIM 276300); LR – 

likelihood ratio; LS – Lynch Syndrome; MSS – microsatellite stable; CRC – colorectal 

cancer; IHC – immunohistochemistry; NMD – nonsense mediated decay.
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Figure 2. Outcome of standardized 5-tiered InSiGHT classification of constitutional MMR gene 
variants

a) The plot represents the proportion of the 5-tiered classifications for all documented 

constitutional variants in the database, against the original LOVD database classifications 

assigned by submitters for each entry. Class 5a is a subset of Class 5 containing the assumed 

pathogenic nonsense mutations, small frameshift indels, and large deletions. Class 5b 

includes not-obviously truncating variants considered to be pathogenic on the basis of 

combined evidence (See Supplementary Note). Results show that standardized classification 

led to altered classifications for a considerable proportion of variant entries, including 

Thompson et al. Page 20

Nat Genet. Author manuscript; available in PMC 2015 January 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



downgrading for variants submitted as pathogenic (24%), and upgrading of variants with 

unknown pathogenicity to likely pathogenic (5.6%) or pathogenic (48%). In addition, 

clinically important misclassifications were identified for unique variants initially submitted 

as not pathogenic (54 unique variants reclassified as Class 5b, and 25 reclassified as Class 4) 

and unique variants submitted as pathogenic (28 unique variants reclassified as Class 1, 16 

reclassified as Class 2, and 218 reclassified as Class 3). b) Pie chart showing distribution of 

final InSiGHT VIC classifications.
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Figure 3. Classifications of all documented unique variants by variant type

The plot represents the proportion of the different variant types within the 5 classes. Class 5a 

is a subset of Class 5 containing the assumed pathogenic mutations (nonsense mutations, 

small frameshift indels, and large deletions). All other variants reaching class 5 are termed 

Class 5b (see Supplementary Note). The different variant types are: PTC – variants that 

introduce premature terminating codons, i.e. nonsense mutations and small frameshift 

indels; LGDel – large genomic deletions or disrupting inversions; LGDup – large genomic 

duplications; SS – variants in the canonical splice site dinucleotides; NS – not obviously 

truncating non-synonymous variants outside the Kozak consensus sequence i.e. missense, 

small in-frame insertion/deletions, and read-through translation termination codon 

alterations; S – synonymous variants; I – intronic variants outside the canonical splice site 

dinucleotides; ATG/UTR – variants in the initiation codon, and the 5′ or 3′ untranslated 

regions. See Supplementary Figure 2 for further details of variant types, by MMR gene.
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Figure 4. Contribution of microattribution to classification of “not obviously truncating” 
variants

Dark shading (YES) indicates the proportion of variants for each class, where the additional 

data obtained through microattribution contributed to their final classification.
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Figure 5. Probabilities of pathogenicity for 481 Class 3 “uncertain” missense variants, derived by 
in silico analysis

Distribution of probabilities of pathogenicity as estimated from a calibrated algorithm based 

on customized MAPP and PolyPhen2 scores34, for (a) MLH1, n=186; (b) MSH2, n=169; (c) 

MSH6, n=145; (d) PMS2, n=24; (e) all four MMR genes, showing stratification of variants 

with prior probabilities ≤20% or ≥80% to prioritize variants for further investigation and 

classification.
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Table 1

InSiGHT variant classification scheme with accompanying recommendations for family 

management, adapted from the IARC 5-tiered classification system*

InSiGHT MMR variant
class definition for

Lynch syndrome**

Predictive
testing of at-risk
relatives

Surveillance for positive at-risk relatives Research
testing of
relatives

5: Pathogenic Yes Full high-risk guidelines Not indicated

4: Likely pathogenic Yes*** Full high-risk guidelines Yes

3: Uncertain No*** Based on family history & other risk
factors

Yes

2: Likely not pathogenic No*** Based on family history & other risk
factors. Treat as “no mutation detected” in
this gene for this disorder

Yes

1: Not pathogenic No*** Based on family history & other risk
factors. Treat as “no mutation detected” in
this gene for this disorder

Not indicated

*
Adapted from Plon et al10. Full high-risk surveillance guidelines for cancers in the Lynch spectrum are outlined in Vasen et al1. Research testing 

entails cascade testing for the variant in affected and unaffected family members to facilitate segregation analysis, and is indicated for variants in 

classes 2-4 to refine classification. Consent from subjects through a protocol approved by a human subjects committee should be obtained.

**
Class definition is described in detail in the Supplementary Note and Supplementary Table 4, and is based on quantitative evidence defined by 

multifactorial likelihood posterior probability (with cut points >0.99 for Class 5; 0.95-0.99 for Class 4; 0.05-0.949 for Class 3; 0.001-0.049 for 

Class 2; <0.001 for Class 1) or combined qualitative evidence determined by consensus opinion as defined by the InSiGHT Variant Interpretation 

Committee. “Pathogenic” is defined as “clinically relevant in a genetic counseling setting such that germline variant status will be used to inform 

patient and family management.”

***
Recommend continued testing of proband for any additional available testing modalities available e.g. rearrangements.
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