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Abstract

Objective To identify the feasibility of using a deep convolutional neural network (DCNN) for the detection and localization of

hip fractures on plain frontal pelvic radiographs (PXRs).

Summary of background data Hip fracture is a leading worldwide health problem for the elderly. A missed diagnosis of hip

fracture on radiography leads to a dismal prognosis. The application of a DCNN to PXRs can potentially improve the accuracy

and efficiency of hip fracture diagnosis.

Methods A DCNN was pretrained using 25,505 limb radiographs between January 2012 and December 2017. It was retrained

using 3605 PXRs between August 2008 and December 2016. The accuracy, sensitivity, false-negative rate, and area under the

receiver operating characteristic curve (AUC) were evaluated on 100 independent PXRs acquired during 2017. The authors also

used the visualization algorithm gradient-weighted class activation mapping (Grad-CAM) to confirm the validity of the model.

Results The algorithm achieved an accuracy of 91%, a sensitivity of 98%, a false-negative rate of 2%, and an AUC of 0.98 for

identifying hip fractures. The visualization algorithm showed an accuracy of 95.9% for lesion identification.

Conclusions A DCNN not only detected hip fractures on PXRs with a low false-negative rate but also had high accuracy for

localizing fracture lesions. The DCNN might be an efficient and economical model to help clinicians make a diagnosis without

interrupting the current clinical pathway.

Key Points

• Automated detection of hip fractures on frontal pelvic radiographs may facilitate emergent screening and evaluation efforts for

primary physicians.

• Good visualization of the fracture site by Grad-CAM enables the rapid integration of this tool into the current medical system.

• The feasibility and efficiency of utilizing a deep neural network have been confirmed for the screening of hip fractures.
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Abbreviations

AUC Area under the curve

CAM Class activation mapping

CGMH Chang Gung Memorial Hospital

CGTRP Chang Gung Trauma Registry Program

CT Computed tomography

DCNN Deep convolutional neural network

Grad-CAM Gradient-weighted class activation mapping

MRI Magnetic resonance imaging

PXR Frontal pelvic radiograph

ROC Receiver operating characteristic

Introduction

Hip fractures and the resulting postsurgical outcomes are sig-

nificant public health concerns worldwide [1–5]. Hip fracture

is a predominant injury in elderly patients, and the incidence is

approximately 250,000 per year in the USA and is expected

double in 30 years [1, 3, 6, 7]. Although the incidence has

declined recently [3, 8], the number of hip fractures will in-

crease due to the prolonged human life span and growing

elderly population. As many as 20–30% of people with a

hip fracture will die in the subsequent year [5, 9–11], and

many will experience significant functional loss [5, 12].

Early diagnosis and management might preserve not only

the function of the joint but also the ambulation and quality

of life of the patient [13]. Frontal pelvic radiographs (PXRs)

are an essential and widely used tool for image evaluation for

hip fractures. However, the sensitivity of PXRs for assessing

hip fracture is not optimal. Some previous studies showed that

initial misdiagnosis was as high as 7–14% [14, 15], and de-

layed diagnosis and treatment worsen the prognosis [16]. To

avoid further health sequelae and medical costs associated

with a delayed diagnosis, additional radiographs, nuclear

medicine bone scans, computed tomography (CT) scans, and

magnetic resonance imaging (MRI) scans have been recom-

mended as routine diagnostics [14, 17]. However, it is not an

effective, efficient, or economical method to use these diag-

nostic tools in routine examinations.

Digital medical imaging systems offer not only immediate

and remote access [18] but also the possibility for computer-

aided diagnostic procedures [19]. Computerized analysis

based on deep learning has shown potential benefits as a di-

agnostic strategy and has recently become feasible [20]. The

application and achievement of deep convolutional neural net-

works (DCNNs) in the medical field are expected to grow

rapidly, and some studies have presented a great opportunity

to apply deep learning in trauma [21–24]. DCNN has a proven

ability to classify the bone structure of body parts and identify

fractures in specific sites with expert-level accuracy [25–28].

Meanwhile, the efficiency and feasibility of using a DCNN for

detecting hip fractures have not been evaluated completely.

Although one recent article achieved high accuracy in identi-

fying hip fractures using the region base method [29], the

Bblack box^ mechanism of deep learning is still the major

hindrance for its clinical application. Many methods for the

visual explanation of a DCNN have been developed, such as

saliency mapping, class activation mapping (CAM), and

gradient-weighted class activation mapping (Grad-CAM)

[30]. Visualization mapping of images may validate the lesion

detection ability of deep learning algorithms. Grad-CAMwith

the Keras-vis library generates a heatmap that visualizes the

class-discriminative regions. In a medical image, Grad-CAM

can help the physician to identify the pathologic region and

validate the DCNN performance. Automated detection of hip

fractures has potential benefits, such as increasing efficiency,

decreasing misdiagnosis, reducing delayed management, and

improving patient outcomes, especially in emergent situations

if the algorithm achieved expert-level accuracy.

In this study, we developed an automated fracture diagnosis

algorithm trained based on the DCNN to examine PXRs and

investigated the performance compared with that of the phy-

sicians. We also investigated the validity of this algorithm by

lesion visualization using Grad-CAM.

Materials and methods

Study population

We utilized the Chang Gung Trauma Registry Program

(CGTRP) in Chang Gung Memorial Hospital (CGMH),

Linkou, Taiwan. Demographic data, medical data, periopera-

tive procedures, hospital procedures, medical imaging find-

ings, follow-up data, and information regarding complications

were recorded prospectively in a computerized database. We

extracted the data and images of all trauma patients treated

from August 2008 to December 2017 at CGMH, which is a

level I trauma center. The Internal Review Board of CGMH

approved the study.

Training PXR dataset (2012–2016 PXR dataset)

Patients in the trauma registry treated from January 2012 to

December 2016 were evaluated and selected if admitted and

had frontal PXRs performed on the date of injury. The PXRs

were stored automatically with a Python script for a picture

archiving and communication system (PACS) viewer. The

size of stored images varies from 2128 × 2248 pixels to

2688 × 2688 pixels, and the color is 8-bit grayscale. Each

was given a serial number and de-identified in both the images

and registry. After the images were stored, all images were

evaluated. All labels in each image were carefully examined

and removed.
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Limb radiograph dataset

The limb radiograph dataset, which included views of the

ankles, feet, knees, wrists, and elbows, was collected and de-

identified in a similar way as previously described. Each im-

age was labeled as the corresponding body part during the

automatic storage process. This dataset was used mainly to

develop a pretrained medical imaging model for further trans-

fer learning.

Independent testing PXR dataset (2017 PXR dataset)

Another hundred patients were identified from the trauma regis-

try during 2017 who had PXRs performed. There were 25 pa-

tients with femoral neck fractures, 25 with intertrochanteric frac-

tures, and 50 without hip fractures. The PXRs performed on the

date of injury were prepared as an independent testing dataset.

Image labeling and preprocessing

After the 2008–2016 PXR datasets were established, the im-

ages were initially labeled as a hip fracture or no hip fracture

according to the diagnosis in the trauma registry. The radiol-

ogist’s report, diagnosis, clinical course, and other related im-

ages, such as CTor other views of the hip joint, were reviewed

if the label was questionable. Poor-quality images such as

those with poor image contrast, positioning errors, and foreign

body interference and those with other fractures, including

femoral shaft fractures and pelvic fractures, were excluded.

Each image was reviewed by a trauma surgeon for the pre-

ciseness of the label and quality of the images. The limb

datasets were labeled automatically as previously described.

Development of the algorithm

DCNNs are widely used in computer vision and medical

image recognition [31]. A DCNN is a machine learning

algorithm developed from an artificial neural network.

The basic concept is to use pixel values from a digital

image as inputs using techniques, such as convolution

and pooling, on each layer and to adjust the weights in

the neural network according to the difference between

the output and true label. After a significant amount of

imaging input is used as the training material, the weights

in the neural network are adjusted to fit the problem. We

used DenseNet-121 as the structure of our neural network

[32]. The structure contains a dense block with a skip

connection designed within the dense block. The input

images were resized to 512 × 512 pixels with an 8-bit

grayscale color to reduce the complexity and computa-

tion. Most studies use ImageNet as a pretraining material

for Btransfer learning^ [26, 28, 33, 34]. Instead, we used

the limb dataset as our pretraining material. The model

was initially trained to identify the body part in view on

each limb radiograph. We randomly chose 90% of the

limb dataset for training and 10% for validation. The

pretrained weights of the DCNN were preserved for

PXR training. The PXR dataset was separated as 80%

for training and 20% for validation. During the training

process, image augmentation was applied with a zoom of

10%, horizontal flip, vertical flip, and rotation of 10°. The

batch size was 8, and the Adam optimizer was used. The

initial learning rate was 10−3 with a reduced learning rate

on the plateau. The final model was trained with 60

epochs under the above hyperparameters.

Evaluating the algorithm

The trained hip model was tested with the independent

2017 PXR dataset to evaluate its accuracy for identifying

hip fractures. The probability generated by the model of

hip fracture was evaluated with a receiver operating char-

acteristic (ROC) curve and the area under the curve

(AUC). A confusion matrix was also calculated using a

cutoff level of probability 0.5 of hip fracture. For those

PXR models that predict fractures, we also used a Grad-

CAM to generate a heatmap that the model activated for

the hip fracture to provide evidence that the model indeed

recognized the fracture site. The heatmaps were also

reviewed by a radiologist to compare with the fracture site

on the original image to evaluate the ability of localiza-

tion. We also recruited experts from the surgical, orthope-

dics, emergency, and radiology departments to evaluate

the accuracy of each subspecialist. A web-based question-

naire for the 2017 PXR dataset was designed with a

multiple-choice question to answer whether or not there

was a hip fracture in the image.

Statistical analysis and software

The software used to build the DCNN was based on an

Ubuntu 14.04 operating system with TensorFlow 1.5.1 and

Keras 2.1.4 open-source library with Python 3.6.5 (Python

Software Foundation). The training process was run on an

Intel® Core™ i7-7740X CPU 4.30 GHz with GeForce®

GTX 1080 Ti GPU. All statistical analyses were performed

using R 3.4.3 with extension packages BpROC,^ BepiR,^

BPublish,^ and Bggplot2.^ Continuous variables were evalu-

ated with Student’s t test, and categorical variables were eval-

uated with the chi-square test.We compared the hip model and

specialists using the sensitivity, specificity, false-negative rate,

and false-positive rate, and the F1 scores and 95% confidence

intervals (CIs) were calculated. ROC curves and AUCs were

used to evaluate the performance of the model.
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Results

The demographic data of the patients in the 2008–2016 PXR

dataset are shown in Table 1. We obtained 3605 PXRs to build

the model and collected 25,505 different limb radiograph

views from 12,583 patients, including radiographs of 6019

ankles, 3832 elbows, 4134 feet, and 3378 wrists.

The model was trained with a limb radiograph dataset and

finally showed an accuracy of 99.5% on the validation dataset

for identifying specific body parts. The weights in the limb

model were preserved and named the Blimb pretrained

model.^ The model was retrained again using the weights

from the limb pretrained model, and the task was changed to

detect hip fractures. The final training accuracy values for the

training set was 0.94 and for the validation set was 0.90, re-

spectively. The change of accuracy and loss during the train-

ing process are shown in Fig. 1.

After applying the hip model to the 2017 PXR dataset, the

accuracy, sensitivity, specificity, false-negative rate, and F1

score of the model were 91% (n = 100; 95% CI, 84–96%),

98% (95% CI, 89–100%), 84% (95% CI, 71–93%), 2% (95%

CI, 0.3–17%), and 0.916 (95%CI, 0.845–0.956), respectively.

A total of 21 experts completed the questionnaire. The range

of sensitivity of primary physicians (except radiologists and

orthopedic surgeons) was 84% to 100% (mean, 95.6%; 95%

CI, 93.6–97.6%), and the specificity ranged from 46 to 94%

(mean, 82.2%; 95% CI, 76.2–88.3%). The experts, including

two radiologists and four orthopedic surgeons, completed the

questionnaire and achieved a mean sensitivity of 99.3% (95%

CI, 98.2–100%) and a specificity of 87.7% (95% CI, 81.5–

93.8%). The ROC curve of prediction probability compared

with individual specialist performance is shown in Fig. 2. The

model achieved an AUC of 0.98 (95% CI, 0.96–1.00). The

95% CI of both mean sensitivity and mean specificity of the

primary physicians were below the ROC curve of the model,

and the mean performance of radiologists and orthopedic sur-

geons was still slightly better than that of the model.

After analyzing 49 heatmap images, the model predicted

positive hip fracture. Only two images identified the wrong

activation site, and 95.9% of the activation area was located at

the hip fracture site, as shown in Fig. 3.

Discussion

These results indicate that a DCNN can be trained to identify

hip fractures within image datasets with high sensitivity (98%)

and accuracy (91%) (F1 score, 0.91). Currently, hip fractures

occur daily, and uneven or nondisplaced hip fractures are

challenging to rapidly identify because of the limitations of

the human eye and PXRs [14, 15]. With the assistance of the

DCNN, we can detect hip fractures immediately with a low

false-negative rate (0.02), which is noninferior to the perfor-

mance of the experts. This DCNN will be useful for primary

physicians to lessen the misdiagnosis rate and to prevent sub-

sequent misdiagnosis events. Hip fractures are a promising

target for deep learning approaches because of the availability

of near-perfect ground truth labels. Because of the weight-

bearing nature of the region, patients who have clinically

Bsilent^ fractures rapidly develop severe pain and immobility.

Early detection and surgery are critical for patient survival and

the preservation of hip function. Postponed management of

hip fractures results in a poor prognosis and even an increased

risk of death years later [35–38]. Therefore, detecting hip frac-

tures as soon as possible is critical for remote mortality and

medical outcomes.

DCNNs allow computers to learn from iterations with au-

tomatic feature extraction under limited programming, and the

prediction rate is highly accurate. Artificial intelligence and

the automation of bony fracture detection have been discussed

[25, 26, 28]; Gale et al also described a DCNN method that

was used for predicting hip fractures [29]. However, the model

developed previously for hip fractures is a region base model

and requires a localization network to identify the femoral

neck first. Our study shows that the detection and diagnosis

of hip fractures on PXRs could be performed by the input of a

whole-scale radiograph to a DCNN without identifying the

specific region first. The deep learning algorithm also

achieved an accuracy level that is compatible with the accu-

racy of radiologists and orthopedic surgeons. Moreover, this

study also substantially added to other current studies.

First, we applied a transferring learning method to develop

our algorithm. We set the pretrained model using 25,505 un-

labeled limb radiographs instead of the Image-Net images

Table 1 The demographic data of

the frontal pelvic radiograph

dataset

With hip fracture Without hip fracture p value

Number of patients 1975 1630

Age, mean, years (SD) 72.34 (16.73) 44.88 (20.46) < 0.001

Gender (% male) 829 (42.0) 1112 (68.2) < 0.001

ISS, mean (SD) 9.96 (4.21) 14.01 (9.29) < 0.001

Type of fracture

Femoral neck fracture 931 (47.1) NA

Trochanteric fracture 1044 (52.9) NA

SD standard deviation, ISS injury severity score
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because we believe that a pretrained model using similar im-

ages reduces the required image sample size and training time.

This study does not compare performance between the Image-

Net pretrained model and the limb pretrained model. We en-

tered 2804 frontal PXRs as training material. After evaluation,

our accuracy increased from 79% (scratch pretrained) to 91%

(limb dataset pretrained), as we expected, and the pretraining

material also impacted the final accuracy.

Unlike in previous works, the process did not require much

extensive processing, lesion segmentation, or extraction of

domain-specific visual features. In contrast, our system needs

no handcrafted features, and it is trained end to end directly

from image labels and raw pixels. Our fully automated system

takes PXRs and automatically detects the presence of hip frac-

tures. These results demonstrate that deep neural networks can

be trained using sizable non-pixel labeled datasets without

having to specify lesion-based features. Our research shows

that despite the challenges specific to radiographic data, the

development of large, clean datasets is sufficient to achieve

high-level automated performance with deep learning sys-

tems. In this way, we can save the time associated with seg-

mentation and labeling.

One paradox in DCNNs for analyzing medical images is

the Bblack box^ mechanism. The model may use another part

of the image rather than the true lesion site to produce the

answer. Therefore, visualization of the features became a so-

lution to realizing the underlying mechanism of DCNNs [39].

In this study, we used whole PXRs for training and testing.

Then, we performed Grad-CAM to visualize the class-

discriminative regions as the fracture sites that DCNN

Fig. 2 Performances of the hip

model and physicians. The blue,

green, yellow, and red spots

indicate the performance of

radiologists, surgeons, orthopedic

doctors, and emergency

physicians, respectively

Fig. 1 Performance in the training and validation datasets using TensorBoard. a. Accuracy change during training process. acc, accuracy of the training

set; val_acc, accuracy of the validation set;b. Change of loss during training process. loss, loss of the training set; val_loss, loss of the validation set
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recognizes in the PXRs (Fig. 3). On the other hand, in normal

PXRs, the Grad-CAM films lacked a heatmap (Fig. 4). After

visualization by the Grad-CAM method, 95.9% of the class-

discriminative regions contained the fracture site, which pro-

vided evidence that the model indeed recognized the hip frac-

ture. To understand what a DCNN uses to make predictions is

a very active research topic in medical aspects, and it may

convince doctors to accept the results because the DCNN

can explain what they find.

Most deep learning works evaluating medical images

use cropped images to avoid Bblack box^ mechanisms

and enhance the accuracy of final validation [29, 32].

Once the target is cropped to include the necessary features

for recognition, the DCNN will detect the lesion more eas-

ily and quickly. In this study, instead of cropping images,

we reduced the image matrix size to 512 × 512 pixels. We

prefer to input whole PXR images because this method

might be more instinctual and physicians are more familiar

with it. Because we integrated the DCNN into the clinical

pathway, doctors will prefer to use whole images rather

than cropped images. The dimensionality reduction also

decreases the computational requirement and shortens the

training time with an acceptable result. Furthermore, based

on our model, we also applied this algorithm to other types

Fig. 3 Grad-CAM-assisted image

identification of hip fractures. a

The original pelvic radiograph

with a mildly displaced right

femoral neck fracture (arrow) and

b the image generated after ap-

plying the model with Grad-

CAM, which visualizes the class-

discriminative regions, as the

fracture site. c PXR presenting a

right total hip replacement with a

left femoral neck fracture (arrow)

and d a Grad-CAM-assisted im-

age. e PXR with a mildly

displaced left femoral neck frac-

ture and f a Grad-CAM-assisted

image
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of fracture in PXRs. In the future, based on the observa-

tions from this study, the development of similar high-

performance algorithms for medical imaging might shorten

the training process time and resources required.

This study has several limitations. One fundamental limi-

tation arises from the nature of DCNNs because the neural

network was provided with only an image and associated

diagnosis, without explicit definitions of features. Because

the DCNN Blearned^ the features that were most predictive,

the algorithm might use features previously unknown to or

ignored by humans. Although this study showed good visu-

alization for identifying fractures, the exact features being

used are still unknown. It is possible that the heatmaps show

differences in femoral alignment or soft tissue contrast due to

edema or hemorrhage between the fractured and nonfractured

sites. In this study, two of the images did not demonstrate the

right activation location of the fracture. One of the wrong

activation sites is located on the opposite hip, and another

had a stronger signal over the iliac bone region. This error

is indeed a limitation of DCNN because it is difficult to ex-

plain why it activates at the wrong site. Inputting the whole

image to the model is also the most challenging part, and we

will exert further effort to solve this issue using a greater

number of input samples. In addition, the algorithm was spe-

cifically trained to discriminate between healthy bones and

fractures in the background of the bony architecture on radio-

graphs, but the algorithm might be unable to identify other

pathological presentations. The detection of other lesions on

PXRs, which is relevant for routine diagnoses, was not in-

cluded in this study. In the current study, although we used

only PXR as the input material, we still observed differences

in age, gender, and ISS between both fracture and nonfracture

patients, which might create some selective bias.

Furthermore, we extracted the hip fracture images by final

diagnosis from the registry and identified the fracture site

on the images when we validated the performance of the

Fig. 4 Grad-CAM-assisted image

of a normal PXR. a Frontal PXR

without a hip fracture and b a

Grad-CAM image with no

heatmap. c Frontal PXR with a

right hip replacement without a

hip fracture and d a Grad-CAM

image showing no identification

of a fracture site. e Frontal PXR

without a hip fracture and f Grad-

CAM visualized no class-

discriminative regions
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DCNN. Therefore, it is difficult to clarify the exact occult

fracture rate. In this study, we still manually excluded a cer-

tain proportion of images, which will be problematic when

trying to incorporate this process into the clinical workflow.

Finally, although the results of this study are promising, inte-

grating this automatic detection algorithm into clinical work

to increase the detection rate of hip fractures presents another

challenge. Therefore, we utilized a web-based system that can

input the PXR from PACS in the hospital, and the DCNN will

detect the presence of a fracture or not and localize the frac-

ture region by Grad-CAM. A randomized, prospective study

should be conducted to evaluate the clinical impact on the

diagnostic accuracy and economic value of DCNN for iden-

tifying hip fractures.

In conclusion, to identify hip fractures on PXRs, the algo-

rithm trained by a DCNN achieved excellent performance

with a high accuracy and low false-negative rate and is useful

as a screening tool. Furthermore, our algorithm can localize

the fracture site with high accuracy and thus assist clinical

physicians in identifying more occult hip fractures and man-

aging patients with these fractures early to prevent further

medical costs and decreased quality of life.
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