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In a former study (F.L. de Sousa, F.M. Ramos, F.J.C.P. Soeiro, and
A.J. Silva Neto, Application of the generalized extremal optimization algorithm
to an inverse radiative transfer problem, Inverse Probl. Sci. Eng. 15 (2007),
pp. 699–714), a new evolutionary optimization metaheuristic – the generalized
extremal optimization (GEO) algorithm (F.L. de Sousa, F.M. Ramos,
P.Paglione, and R.M. Girardi, A new stochastic algorithm for design optimization,
AIAA J. 41 (2003), pp. 1808–1818) – was applied to the solution of an inverse
problem of radiative properties estimation. A comparison with two other
stochastic methods; simulated annealing (SA) and genetic algorithms (GA), was
also performed, demonstrating GEO’s competitiveness for that problem. In the
present article, a recently developed hybrid version of GEO and SA (R.L. Galski,
Development of improved, hybrid, parallel, and multiobjective versions of the
generalized extremal optimization method and its application to the design of spatial
systems, D.Sc. Thesis, Instituto Nacional de Pequisas Espaciais, Brazil, 2006,
p. 279. INPE-14795-TDI/1238 (in Portuguese)) is applied to the same radiative
transfer problem and the results obtained are compared with those from the
previous study. The present approach was already foreseen (e.g. in F.L. de Sousa,
F.M. Ramos, F.J.C.P. Soeiro, and A.J. Silva Neto, Application of the generalized
extremal optimization algorithm to an inverse radiative transfer problem, Inverse
Probl. Sci. Eng. 15 (2007), pp. 699–714) as a technique that could significantly
improve the performance of GEO for this problem. The idea is to make use of a
scheduling for GEO’s free parameter � in a similar way to the cooling rate of SA.
The main objective of this approach is to combine the good exploration
properties of GEO during the early stages of the search with the good
convergence properties of SA at the end of the search.
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1. Introduction

For the solution of inverse radiative transfer problems, several explicit and implicit
formulations have been developed [1]. In the implicit formulation, the inverse problem is
usually replaced by an optimization problem in which a cost function is minimized.

In [2], the algorithm generalized extremal optimization (GEO) [3] was applied to the
solution of an inverse problem of radiative properties estimation. In the present article, a
recently developed hybrid version of GEO and simulated annealing (SA) [4] is applied to
the same radiative transfer problem and the results obtained are compared with those from
the previous study.

Basically, the choice of SA to compose a hybrid with GEO is due to three factors:
(i) It is already known elsewhere [5–8] that achieving a good balance between the search
phases of exploration and exploitation is of fundamental importance in order to obtain
performance improvements from an optimization algorithm; (ii) SA uses a schedule that
establishes decreasing values for its ‘temperature’ parameter, and obtaining in that way, a
decreasing stochasticity along the search process. As a consequence, the schedule generates
in the SA a balance between exploration, which occurs in the beginning of the search, and
exploitation, which occurs in the end of the search; and (iii) the canonical GEO uses a fixed
value for its parameter �, keeping in this way, a constant stochasticity. It is reasonable,
then, to imagine that applying a schedule to vary the value of � along the search can
improve GEO’s efficiency. In fact, in [3] this approach was implemented and tested with
five test functions widely used in the literature, obtaining performance improvements.

The remaining part of this article is organized as follows: In Section 2, the
mathematical formulation for both the direct and inverse radiative estimation problems
is presented. In Section 3, the GEOþ SA hybrid algorithm is described. In Section 4,
the results of its application to the solution of the radiative problem are presented. Finally,
in Section 5, the conclusions are presented.

2. Mathematical formulation

2.1. Direct problem

Consider the problem of radiative transfer in an absorbing, isotropically scattering,
plane-parallel gray medium with diffusely reflecting boundary surfaces. The mathematical
formulation of the direct problem with azimuthal symmetry is given by [1,2,9]

�
@Ið�,�Þ

@�
þ Ið�,�Þ ¼

!

2

Z 1

�1

Ið�,�0Þd�0, 0 � � � �0, �1 � � � 1 ð1aÞ

Ið0,�Þ ¼ A1 þ 2�1

Z 1

0

Ið0, � �0Þ�0d�0, �4 0 ð1bÞ

Ið�0,�Þ ¼ A2 þ 2�2

Z 1

0

Ið�0,�
0Þ�0d�0, �5 0 ð1cÞ

where I(�, �) represents the dimensionless radiation intensity, � the optical variable, � the
cosine of the polar angle, ! the single scattering albedo, and �1 and �2 the diffuse
reflectivities at �¼ 0 and �¼ �0, respectively. The intensities of the external isotropic
radiation sources are represented by A1 and A2.
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The direct problem arises when the geometry, the radiative properties and the
boundary conditions are known. In that case, problem (1) may be solved yielding the
values of the radiation intensity I(�,�), for 0� �� �0 and �1��� 1. In both, previous
and present work, Chandrasekhar’s discrete ordinates method [10] is used for the solution
of the direct problem.

2.2. Inverse problem

In the inverse radiative transfer problem, from the measured experimental data on the
intensity of the exit radiation we want to obtain estimates for the optical thickness, single
scattering albedo, and the boundary diffuse reflectivities of one-dimensional homogeneous
participating media. That is, we are interested in the following radiative properties, which
are considered unknowns

Z
!
¼ f�0,!, �1, �2g

T: ð2Þ

On the other hand, measured data on the intensity of the exit radiation at the
boundaries �¼ 0 and �¼ �0, i.e. Yi, i¼ 1,2, . . . ,N, are considered available, where
N represents the total number of experimental data.

Because the number of measured data, N, is usually much larger than the number of
estimated parameters, the inverse problem is formulated as a finite-dimensional
optimization problem in which the following cost function is minimized (also referred to
as the objective function)

QðZ
!
Þ ¼

XN
i¼1

½Iið�0,!, �1, �2Þ � Yi�
2

ð3Þ

where Ii represents the calculated value of the radiation intensity (using estimates for the
unknown radiative properties Z

!
) at the same boundary, and at the same polar angle, for

which the experimental value Yi is obtained.
In order to assess the performance of GEOþ SA hybrid in the inverse radiative

problem described above, the same test cases employed in [2] are used, allowing direct
comparisons with GEO itself, as well as with two other stochastic methods, SA and
Genetic Algorithms (GA).

3. GEOYSA hybrid algorithm

In the following, GEO and SA algorithms are briefly described. The GEOþ SA hybrid is
described right after that.

3.1. GEO algorithm

Generalized extremal optimization is an optimization algorithm [3] inspired by a simplified
evolutionary model, developed to be easily applicable to a broad class of nonlinear
constrained optimization problems, with the presence of any combination of continuous,
discrete and integer values for the design variables, while having only one free parameter
(�, see Figure 1) to be adjusted. Its efficacy to tackle complex design spaces has been
demonstrated with test functions and real design problems.
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3.2. SA algorithm

Based on statistical mechanics reasoning applied to a solidification problem,

Metropolis et al. [11] introduced a simple algorithm that can be used to accomplish an

efficient simulation of a system of atoms in equilibrium at a given temperature (T). In each

step of the algorithm a small random displacement of an atom is performed and the

variation of the energy �E is calculated. If �E5 0 the displacement is accepted, and

the configuration with the displaced atom is used as the starting point for the next step.

In the case of �E4 0, the new configuration can be accepted according to Boltzmann

probability

Pð�EÞ ¼ exp
��E

kBT

� �
ð4Þ

where kB is the Boltzmann’s constant.
A uniformly distributed random number r in the interval [0, 1] is then calculated and

compared with P(�E). Metropolis criterion establishes that the new configuration is

accepted if r5P(�E), otherwise it is rejected and the previous configuration is used

again as a starting point. Using the objective function QðZ
!
Þ, defined in Equation (3)

Step 1: Initialize randomly a string of L bits
(population) that codifies M design variables 

No  

Yes 

Step 2: For each bit attribute a fitness number
that is proportional to the gain or loss the
objective function has if the bit mutates,
compared to the best value found so far. 

Step 3: Rank the bits according to their fitness
numbers, independently for each variable,
from k=1 (least adapted one) to lj., where lj is
the number of bits of variable j,  j=1 ,...,M. 

Step 4: Mutate a bit of each variable with
probability given by P (k) = k−γ, k∈{1,2,..., lj}.

Step 5: Stop
criterion met?

Step 6: Return the best solution found during
the search. 

Figure 1. The canonical variant of GEO.
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in place of energy, and defining configurations by a set of variables {Zi}, i¼ 1, 2, . . . ,M,
see Equation (2) where M¼ 4 is the total number of unknowns, the Metropolis procedure
generates a collection of configurations of a given optimization problem at some
temperature T [12]. This temperature is simply a control parameter. The simulated
annealing process consists of first ‘melting’ the system being optimized at a high-effective
‘temperature’, then lowering the ‘temperature’ until the system ‘freezes’ and no further
change occurs.

3.3. GEOYSA algorithm

The GEOþSA hybrid version developed incorporates in GEO the cooling schedule
characteristic of the SA [12]. In the SA, the stochasticity of the search is determined by the
temperature, T, which is constant by stages, and where the definition of the number of
stages, the number of function evaluations, and the value of T on each stage defines the
cooling schedule. For GEO, the parameter � defines the stochasticity of the search.
Then, the idea is to create for � a schedule similar to that of SA, generating, in this way, a
hybrid algorithm. In the scope of the SA analogy, the temperature defines the amount
of energy available in the system and, by consequence, defines the probability of
changing from one state to another. In the SA, the higher the temperature, the greater the
stochasticity.

In the canonical SA [12], the following equation defines the temperature of a stage:

Tn ¼ qn � T0 ¼ T0 � e
n�lnðqÞ ð5Þ

where n is the stage number and q is the temperature reduction rate, or cooling rate, which
is a constant such that q¼T1/T0¼T2/T1¼ � � �¼Tn/Tn�1 and 05 q5 1.

As q51, Equation (5) indicates that the parameter T of SA decays exponentially with
the stage number, n. As the smaller the temperature, the smaller the search stochasticity,
then, the temperature cooling schedule of SA results in a decreasing search stochasticity.

For GEO, the lower the parameter �, the greater the search stochasticity. Then, in
order to achieve the same effects of the SA cooling schedule, the schedule for � must
provide increasing values, instead of decreasing ones. The following equation was
formulated having this criterion in mind [4]:

�n ¼
�MAX

ð1� qnMAX Þ
� ð1� qnÞ, q4 0, q 6¼ 1 ð6Þ

where �MAX is the maximum limit established for � and nMAX is the maximum limit for the
number of stages, n. Figure 2 shows examples of resulting schedules for nMAX¼ 10 and
for several values of q.

Regarding Equation (6), it is more flexible than the SA schedules, allowing q4 1.
As can be seen from Figure 2, schedules with q4 1 have high stochasticity during many
stages and low stochasticity during a few stages. When q5 1, the situation is similar to
that of SA schedules, where one has high stochasticity during a few stages and low
stochasticity during many stages.

It was decided, in case of GEOþ SA, to use exactly L objective function evaluations
on each stage. Since GEO requires L objective function evaluations per iteration,
a new stage occurs at each algorithm iteration, meaning a new value of � at each iteration.
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If the number of algorithm iterations is greater than nMAX, n is set to zero again and the
schedule is restarted, such that several cycles can occur during a search, as exemplified in
Figure 3, where six complete cycles occur for nMAX¼ 19, q¼ 0.9 and L¼ 80. In Figure 3,
please note that the vertical lines are not � actual values. They have been used only for
better visualization purposes.

The functionalities just described were incorporated to GEO. Figure 4 brings the
resulting GEOþ SA hybrid algorithm. It does not have � as an algorithm parameter.
On the other hand, two other parameters appear. They are the number of algorithm
iterations per cycle, nMAX and q, which defines the shape of the schedule. Rigorously
speaking, �MAX also should be considered as a parameter. However, as �! �MAX must
correspond to T! 0, that is, a condition of very low stochasticity, then, it is enough to
set for �MAX a value that ensures such condition. In this article, the value �MAX¼ 10
was used.

0 10
n

0

2

4

6

8

10

12

gn

g MAX=

q=0.5

q=2

q=0.99

q=0.1
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8642

Figure 2. Scheduling examples for �.

Figure 3. Cyclic scheduling example.
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4. Results and discussion

In order to compare GEOþ SA performance with the algorithms used in [2], it was applied

to the solution of the same inverse radiative transfer problem (described in the Section 2 of

this article), and using the same three cases of the former study, as shown in Table 1.

GEOþSA used 10 bits to encode each of the unknowns.
In the same way as in [2], sets of synthetic experimental data were generated with

Iexpi ¼ IcalciðZ
!

exactÞ þ 2, 576ri� ð7Þ

where Icalci represents the calculated values of the radiation intensity using the exact values

of the radiative properties, Z
!

exact, as given in Table 1, ri is a pseudo-random number in the

range [�1, 1], and � simulates the standard deviation of the measurement errors.

The values of �¼ 0.005, 0.002 and 0.0025 lead to the same amount of measurement errors,

which are in the order of, or smaller than, 5% in the exit radiation intensities for cases 1, 2,

and 3, respectively.

Step 1: Initialize randomly a string of L bits
(population) that codifies M design variables 

No

Yes 

Step 2: For each bit attribute a fitness number
that is proportional to the gain or loss the
objective function has if the bit mutates,
compared to the best value found so far.  

Step 3: Rank the bits according to their fitness
numbers, independently for each variable,
from k=1 (least adapted one) to lj., where lj is
the number of bits of variable j, j=1 ,...,M.  

Step 4: (4.1) Calculate g value of the current
iteration:       g = γMAX⋅ (1−qn) ⁄ (1−qnMAX), 
where n is the current iteration number and 
gMAX , q and nMAX are constant parameters. If
n= nMAX, restart n.
(4.2) Mutate a bit of each variable with
probability given by P (k) = k−γ, k∈{1,2,..., lj }. 

Step 5: Stop
criterion met? 

Step : Return the best solution found
during the search. 

Figure 4. GEOþ SA algorithm.
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The values of the two parameters of GEOþ SA, nMAX and q, were tuned using all nine
combinations from the sets nMAX 2 {5, 15, 25} and q2 {0.5, 1.01, 2}. For each case, the
pairs (nMAX and q) with the best average results over 10 runs were retrieved and used to be
presented in the figures. The runs of GEOþ SA were performed on a PC with the
processor AMD Athlon 64 (2.2 GHz with 512 MB of RAM). Each run took an average
of approximately 45min.

Figure 5 presents the evolution of the average of the best values of the objective
function, in 10 runs, and for each method (GEOþ SA, GEO, SA and �GA), for
Case 1 listed in Table 1, using experimental data without noise, i.e., �¼ 0 in
Equation (7). In Figure 6 the same test case is considered, but now with noisy data,
�¼ 0.005.

Table 1. Exact values of the radiative properties.

Radiative property Case 1 Case 2 Case 3

Optical thickness, �0 1.0 2.0 0.5
Single scattering albedo, ! 0.5 0.8 0.3
Diffuse reflectivity, �1 0.2 0.1 0.1
Diffuse reflectivity, �2 0.2 0.8 0.8

Figure 5. Average of the best values of the objective function, as a function of the number of
function evaluations for Case 1, without noise.
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Table 2 presents the worst, average and best estimates obtained for the unknown
radiative properties (design variables) in Case 1. Here the worst estimates obtained
for each method correspond to the run, among the 10 runs performed for each method, for
which the objective function is the highest at the end of the run, and the best estimates
correspond to the run for which the value of the function is the lowest.

Figures 7 and 8, and Table 3 present the results for the Case 2, as defined in Table 1
and using �¼ 0 (data without noise) and �¼ 0.002 (data with noise).

For Case 1, it can be seen from the results presented in Figures 5 and 6 that GEOþ SA
did not performed significantly differently from GEO alone, having objective function
evolution curves only marginally different. Without noise, GEO was slightly better than
GEOþSA at the end of the search, whereas, with noise, the opposite occurred. For both
tests, however, it is possible to notice that GEOþSA is better than GEO early in the
search. This advantage early in the search also happens when GEOþ SA is compared with
the SA. In the end of the search, however, the SA takes the lead with a great margin in the
case without noise and a slight one for the case with noise.

For Case 2, Figures 7 and 8 show that GEOþSA performed slightly better than GEO
alone, during greater part of the search. Without noise, GEO and GEOþ SA both
converged to almost the same value of the objective function in the very end of the search.
With noise, GEOþ SA kept its advantage over GEO alone during the entire search,
having the second best performance among all algorithms. When GEOþSA is compared
with the SA, a similar behaviour to the one observed for Case 1 is noticed. That is,
GEOþSA is better early in the search for either problems with and without noise,

Figure 6. Average of the best values of the objective function, as a function of the number of
function evaluations for Case 1, with noise.
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Table 2. Worst, average and best estimates for Case 1.

Exact value fxa

SA Without noise Worst 6.07� 10�8

Averageb 1.80� 10�8

Best 1.84� 10�9

With noise Worst 4.03� 10�4

Averageb 4.03� 10�4

Best 4.03� 10�4

mGA Without noise Worst 2.50� 10�4

Average 4.93� 10�5

Best 2.79� 10�6

With noise Worst 2.2755
Average 1.8205
Best 5.58� 10�4

GEO Without noise Worst 2.63� 10�3

Average 1.31� 10�4

Best 9.00� 10�6

With noise Worst 9.46� 10�4

Average 6.16� 10�4

Best 4.37� 10�4

GEOþ SA Without noise Worst 3.05� 10�4

Average 2.15� 10�4

Best 1.39� 10�4

With noise Worst 6.94� 10�4

Average 5.58� 10�4

Best 4.45� 10�4

Notes: afx is the value of the objective function at the end of the run.
bThe SA stopping criterion was reached for all runs in 525,000 evaluations.

Figure 7. Average of the best values of the objective function, as a function of the number of
function evaluations for Case 2, without noise.
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Figure 8. Average of the best values of the objective function, as a function of the number of
function evaluations for Case 2, with noise.

Table 3. Worst, average and best estimates for Case 2.

Exact value fxa

SA Without noise Worst 1.72� 10�8

Averageb 8.64� 10�9

Best 0.92� 10�9

With noise Worst 7.76� 10�5

Averageb 7.75� 10�5

Best 7.75� 10�5

mGA Without noise Worst 1.45� 10�4

Average 7.11� 10�5

Best 7.63� 10�6

With noise Worst 4.01� 10�4

Average 3.10� 10�4

Best 2.50� 10�4

GEO Without noise Worst 4.28� 10�4

Average 1.72� 10�4

Best 1.80� 10�5

With noise Worst 5.21� 10�4

Average 2.62� 10�4

Best 9.90� 10�5

GEOþ SA Without noise Worst 4.94� 10�4

Average 1.86� 10�4

Best 2.37� 10�5

With noise Worst 3.09� 10�4

Average 1.80� 10�4

Best 8.87� 10�5

Notes: afx is the value of the objective function at the end of the run.
bThe SA stopping criterion was reached for all runs in 525,000 evaluations.
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Figure 9. Average of the best values of the objective function, as a function of the number
of function evaluations for Case 3, without noise.

Figure 10. Average of the best values of the objective function, as a function of the number of
function evaluations for Case 3, with noise.
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while SA yields a better performance in the long run. Figures 9 and 10, and Table 4 present
the results for Case 3, as defined in Table 1 and using �¼ 0 (data without noise) and
�¼ 0.0025 (data with noise).

For Case 3, it can be seen from the results presented in Figures 9 and 10 that
GEOþSA performed slightly better than GEO alone in the case without noise. In the case
with noise, Figure 10 shows that the GEOþ SA curve detached from the GEO alone curve
a little before 5000 objective function evaluations and performed considerably better than
GEO until the end of the search. When GEOþSA is compared with the SA for Case 3, the
last is better with and without noise and during the entire search.

5. Conclusions

In the present work, a hybrid version of GEO and SA algorithms was described and its
performance on tackling an inverse radiative problem compared to the GEO and SA
standalone versions. Called GEOþ SA, it achieved mostly a similar or slightly better
performance that GEO alone, with the exception of Case 3 with noise, where the hybrid
had a clearly better performance than GEO. Compared to the SA stand alone algorithm,
the results showed that the latter yields better results, with GEOþ SA being superior in
some cases, but only early in the search. Ongoing studies are being done in order to

Table 4. Worst, average and best estimates for Case 3.

Exact value fxa

SA Without noise Worst 3.08� 10�8

Averageb 1.57� 10�8

Best 8.49� 10�10

With noise Worst 1.08� 10�4

Averageb 1.08� 10�4

Best 1.08� 10�4

mGA Without noise Worst 5.82� 10�4

Average 2.08� 10�4

Best 2.52� 10�5

With noise Worst 4.8� 10�3

Average 8.01� 10�3

Best 1.6� 10�3

GEO Without noise Worst 1.91� 10�2

Average 4.32� 10�3

Best 2.08� 10�4

With noise Worst 3.31� 10�2

Average 6.82� 10�3

Best 8.17� 10�4

GEOþ SA Without noise Worst 7.86� 10�3

Average 3.86� 10�3

Best 4.54� 10�4

With noise Worst 3.72� 10�3

Average 2.05� 10�3

Best 1.05� 10�3

Notes: afx is the value of the objective function at the end of the run.
bThe SA stopping criterion was reached for all runs in less than 25,000
evaluations.
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verify if, for instance, real instead of binary encoding for the design variables would yield
better performance results for GEOþ SA.
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