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ABSTRACT

Recent research demonstrates that dynamical models sometimes fail to represent observed teleconnection

patterns associated with predictable modes of climate variability. As a result, model forecast skill may be

reduced. We address this gap in skill through the application of a Bayesian postprocessing technique—the

calibration, bridging, and merging (CBaM) method—which previously has been shown to improve proba-

bilistic seasonal forecast skill over Australia. Calibration models developed from dynamical model reforecasts

and observations are employed to statistically correct dynamical model forecasts. Bridging models use dy-

namical model forecasts of relevant climate modes (e.g., ENSO) as predictors of remote temperature and

precipitation. Bridging and calibration models are first developed separately using Bayesian joint probability

modeling and then merged using Bayesian model averaging to yield an optimal forecast. We apply CBaM to

seasonal forecasts of North American 2-m temperature and precipitation from the North American Multi-

model Ensemble (NMME) hindcast. Bridging is done using the model-predicted Niño-3.4 index. Overall, the

fully merged CBaM forecasts achieve higher Brier skill scores and better reliability compared to raw NMME

forecasts. Bridging enhances forecast skill for individual NMMEmembermodel forecasts of temperature, but

does not result in significant improvements in precipitation forecast skill, possibly because the models of

the NMME better represent the ENSO–precipitation teleconnection pattern compared to the ENSO–

temperature pattern. These results demonstrate the potential utility of the CBaMmethod to improve seasonal

forecast skill over North America.

1. Introduction

Seasonal climate forecasts provide valuable informa-

tion for a number of climate-sensitive societal sectors,

including agriculture, energy, and public health (e.g.,

Challinor et al. 2005; Hawkins et al. 2013; Shukla et al.

2014; Tompkins and Di Giuseppe 2015; Torralba et al.

2017). Over time, seasonal climate prediction has

evolved from an endeavor relying primarily on statistical

modeling (e.g., van den Dool 2007) to one that in-

creasingly utilizes dynamical climate models (e.g., Saha

et al. 2014; Jia et al. 2015; MacLachlan et al. 2015, and

others). In particular, multimodel ensembles such as

the North American Multimodel Ensemble (NMME;

Kirtman et al. 2014) tend to produce more skillful and

statistically reliable forecasts compared to individualCorresponding author: Sarah Strazzo, sarah.strazzo@noaa.gov
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model ensemble systems, likely a result of the cancel-

lation of uncorrelated model errors (Hagedorn et al.

2005). Although dynamical models, particularly multi-

model ensembles, yield skillful predictions of tropical

climate, forecasts of extratropical climate remain rela-

tively less skillful (Doblas-Reyes et al. 2013). For ex-

ample, while Becker and van Den Dool (2016) found

Brier skill scores from probabilistic NMME forecasts of

SST in the Niño-3.4 region to be as high as 0.68, skill

scores fromprobabilistic forecasts ofmidlatitudeNorthern

Hemisphere 2-m temperature did not exceed 0.14. In

light of these deficiencies, a number of statistical post-

processing methods have emerged to improve the skill

and reliability of ensemble and multimodel ensemble

forecasting systems (e.g., Unger et al. 2009; Schepen

et al. 2014; Zhang et al. 2017; Narapusetty et al. 2018).

Here we apply one such method—the calibration, bridg-

ing, and merging (CBaM) method (Schepen et al. 2014,

2016)—in an effort to improve the seasonal forecast skill

and reliability of the NMME.

The CBaMmethodology relies on Bayesian statistical

modeling to postprocess dynamical model forecasts

with an ultimate goal of generating hybrid statistical–

dynamical forecasts that are free of bias and reliable in

conveying forecast uncertainty. The calibration com-

ponent of CBaM consists of a statistical model relating

dynamical model forecasts of temperature (precipita-

tion) to observed temperature (precipitation). Once

established, a calibration model can be used to correct

new dynamical model forecasts. Schepen et al. (2014)

demonstrated that this calibration approach improves

the accuracy and reliability of dynamical model fore-

casts that already exhibit underlying skill.

As Schepen et al. (2016) note, dynamical models

sometimes fail to accurately represent teleconnection

patterns associated with critical drivers of climate vari-

ability (e.g., ENSO). In such instances, we need an al-

ternative postprocessing method to correct for model

teleconnection errors. Using seasonal forecasts from the

Australian POAMA model, Schepen et al. (2014, 2016)

found that bridging—the second component of CBaM—

improved forecast skill beyond what was achieved

through calibration for some seasons and regions.

Bridging models are established very similarly to cali-

bration models, but instead relate dynamical model

forecasts of relevant remote drivers of climate variabil-

ity to observed temperature and precipitation. For ex-

ample, Schepen et al. (2016) developed bridging models

using POAMA forecasts of several ENSO indices and

the Indian Ocean dipole mode index as predictors of

minimum and maximum temperature over Australia.

They then applied Bayesian model averaging to

merge—the final component to CBaM—the calibrated

and bridged forecasts. The resulting fully merged CBaM

forecasts achieved higher skill scores and better statis-

tical reliability than raw mean-corrected forecasts. Ad-

ditionally, Peng et al. (2014) applied the CBaM method

to postprocess ECMWF System 4 precipitation forecasts

over China and similarly found that the fully merged

forecasts produced higher skill scores than calibrated

forecasts. While published research has explored the

application of CBaM to individual model ensembles, the

method has not yet been applied to postprocess multi-

model ensemble systems such as the NMME.

Importantly, recent research reveals that at short

lead times the NMME sometimes fails to represent the

ENSO–temperature teleconnection pattern over North

America (Chen et al. 2017). Because ENSO is the

dominant source of seasonal climate predictability over

North America and is often used as a benchmark for

judging dynamical models (e.g., van Oldenborgh et al.

2005; Xue et al. 2013), this particular model shortcoming

has the potential to degrade forecast skill over North

America. In light of this research and given the dem-

onstrated skill of the CBaM methodology using the

POAMA model, here we apply CBaM to postprocess

the NMME hindcast dataset. We specifically seek to

understand 1) whether statistical–dynamical bridging

enhances forecast skill in the NMME beyond what

is achieved through calibration, 2) whether CBaM

improves the statistical reliability of the NMME, and

3) howCBaM forecasts from individual models compare

to CBaM forecasts from a multimodel ensemble. Be-

cause 1) ENSO is the most predictable mode of climate

variability influencing U.S. temperature and precipita-

tion on seasonal time scales (Goddard et al. 2001), and

2) previous research suggests that the NMME does not

capture the observed ENSO influence onNorthAmerican

climate, we limit this initial study to focus on bridging

using an ENSO index. Subsequent research will expand

this work to examine additional bridging predictors

for global seasonal climate prediction.

Finally, we also are interested in developing tools to

improve seasonal temperature and precipitation pre-

diction for the National Oceanic and Atmospheric Ad-

ministration’s Climate Prediction Center (CPC). Given

this interest, we seek to develop and apply the CBaM

method in a manner that is consistent with current op-

erational practices at CPC. Although the research pre-

sented here is not intended to serve as a comprehensive

survey of the wide array of statistical postprocessing

tools available to forecasters, we do include some results

comparing CBaM to another calibration method cur-

rently in use at CPC.

The remainder of the paper is organized as follows. In

section 2, we first provide information about the NMME
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and observed data and then describe the CBaMmethod

and verification metrics used to assess forecast skill.

Section 3 briefly compares observed versus NMME

ENSO teleconnection patterns. Sections 4 and 5 present

CBaM results for NMME temperature and precipitation

reforecasts, respectively. Finally, section 6 provides a

summary and discussion of the results.

2. Data and methods

a. NMME and observed data

We use monthly mean model reforecast precipitation

rate, 2-m temperature, and sea surface temperature

(SST) data from Phase I of the NMME hindcast, which

covers the period 1982–2010 (Kirtman et al. 2014;

NOAA/NSF/NASA/DOE 2014). In all, seven models

are included: the NCEP Climate Forecast System, ver-

sion 2 (CFSv2; Saha et al. 2014), the CanadianCentre for

Climate Modelling and Analysis Third and Fourth

Generation Canadian Coupled Global Climate Model

(referred to here as CMC1 and CMC2; Merryfield et al.

2013), version 2.2 of the Geophysical Fluid Dynamics

Laboratory climate model (GFDL; Zhang et al. 2007),

the Forecast-Oriented Low Ocean Resolution version

of GFDL climate model 2.5 (GFDL-FLOR; Vecchi

et al. 2014; Jia et al. 2015), the NASA Goddard Earth

Observing System model, version 5 (NASA; Vernieres

et al. 2012), and the Community Climate SystemModel,

version 4 (NCAR-CCSM4; Gent et al. 2011). Details

pertaining to Phase I NMME data can be found in

Kirtman et al. (2014). (The data are available for down-

load at http://iridl.ldeo.columbia.edu/SOURCES/.Models/.

NMME/.) As an initial test, we focus on 1-month lead

forecasts of 2-m temperature and precipitation rate

for the 12 overlapping 3-month seasons. We define a

1-month lead forecast as a forecast target period begin-

ning onemonth after the model initial date. For example,

for an NMME forecast initialized in early November,

the 1-month lead seasonal forecast period would be

December–January–February (DJF).

Development of the statistical–dynamical models and

verification of the resulting forecasts relies on observed

2-m temperature data from the Global Historical Cli-

matology Network and Climate Anomaly Monitoring

System (GHCN-CAMS;NOAA/OAR/ESRL/PSD2008;

Fan and van den Dool 2008), observed SST data from

the NOAAOptimum Interpolation SST dataset (NOAA/

OAR/ESRL/PSD 2002; Banzon et al. 2016), and observed

precipitation rate data from the CPC Merged Analysis

of Precipitation dataset (CMAP; Xie and Arkin 1997).

CMAP (precipitation) and GHCN-CAMS (tempera-

ture) data are used for verification of seasonal forecast

tools at CPC. Although the observed data are available

on 1/48 (SST), 1/28 (2-m temperature), and 2.58 (pre-

cipitation) grids, we linearly interpolate these to match

the 18 grid spacing of the NMME data.

When verifying forecasts, we subset on grid points

over land surfaces and compare results for the entire

North American continent. Observed and forecast

Niño-3.4 index values are calculated as the three-month

seasonal mean anomalies over the Niño-3.4 region

(58N–58S, 1708–1208W).We obtain model mean forecast

Niño-3.4 anomalies for each of the seven dynamical

models by subtracting the lead-dependent model mean

climatology (1982–2010) from the reforecast SSTs over

the Niño-3.4 region. Note that for the CFSv2, we follow

Xue et al. (2013) and remove the 1982–98 and 1999–2010

climatologies separately to account for a discontinuity in

the hindcast.

b. Calibration, bridging, and merging method

The CBaM method relies on Bayesian statistical

modeling to postprocess and merge dynamical model

forecasts. We apply Bayesian joint probability modeling

(BJP; Wang et al. 2009) to generate calibrated and

bridged forecasts, and then merge the calibrated and

bridged forecasts using Bayesian model averaging (BMA;

Raftery et al. 1997; Hoeting et al. 1999; Wang et al.

2012a). We provide a brief description of the BJP and

BMAmethods below and refer readers to Schepen et al.

(2014, 2016) for a more detailed mathematical deriva-

tion of the posterior and predictive distributions. Ad-

ditionally, Table 1 provides a concise summary of the

postprocessing steps applied here.

1) BAYESIAN JOINT PROBABILITY MODELING

Both bridging and calibration models are Bayesian

joint probability models that relate dynamical model

output to observed climate variables (temperature or

precipitation). A successful calibration model corrects

both model bias and ensemble spread in raw model

forecasts and returns the forecasts to climatology in

the absence of a correlation between the forecasts and

observations. Calibration models are developed using

raw dynamical model reforecasts of 2-m temperature

(precipitation) over North America as the predictor of

observed 2-m temperature (precipitation) over North

America. In contrast, bridging models use dynamical

model reforecasts of Niño-3.4 anomalies as the predic-

tor of 2-m temperature or precipitation over North

America, although any relevant climate index may

be employed as the predictor. The BJP method used

to establish bridging and calibration models involves

modeling the predictor and predictand using a contin-

uous bivariate normal distribution.
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To make this possible, the predictor and predictand

are first transformed using the Yeo–Johnson trans-

formation for temperature and climate index data, or

the log-sinh transformation for precipitation data (Yeo

and Johnson 2000;Wang et al. 2012b). A simple K-S test

shows that transformation of temperature data may not

be necessary for the majority of grid points over North

America, with perhaps a small number of high-latitude

exceptions. Indeed, we find that application of the Yeo–

Johnson transformation to temperature data does not

significantly affect our results. We apply the transforma-

tion to temperature data out of an abundance of caution.

In contrast, transformation is necessary when working

with precipitation data, which are often better described

by a gamma or similar distribution. Other methods at

CPC (e.g., ensemble regression) typically apply a third or

fourth root power transform to make the non-Gaussian

precipitation data appear more Gaussian. However, the

log-sinh transformation previously has been shown to

satisfactorily transform precipitation data for use in BJP,

which is why we select this method for the present study.

We refer readers to Schepen et al. (2014) for a detailed

description of the Yeo–Johnson and log-sinh trans-

formations and their parameters.Here, we simply denote a

generic normalizing transformation function c with pa-

rameters D. The transformed predictor is x5cD(xo) and

the transformed predictand is y5cD(yo), where xo and yo
are the original predictor and predictand variables, re-

spectively. We assume that the joint distribution of the

transformed variables is bivariate normal, that is,

x, y;N(m,S), (1)

where m and S are the means and covariance matrix

parameters from the bivariate normal distribution, re-

spectively. The covariance matrix embeds r, the corre-

lation between x and y.

Model parameter inference proceeds in two phases.

In the first phase, the transformation parameters for

xo and yo are inferred using data Xo 5 (xo,1, . . . , xo,n)

and Yo 5 (yo,1, . . . , yo,n), respectively. We estimate a

single ‘‘best’’ set of transformation parameters using

a Bayesian maximum a posteriori (MAP) solution.

In the second phase, the BJP bivariate normal distri-

bution parameters are estimated fromD5 [(x1, y1), . . . ,

(xn, yn)], a sequence of transformed predictor–predictand

data pairs, for n 5 29 years. In contrast to the inference

of the transformation parameters, the inference of the

bivariate normal parameters allows for parameter un-

certainty. Let u5 (m, S). A Gibbs sampler is used to

obtain m samples from the posterior distribution:

p(ujD)5 p(u)p(Dju) , (2)

where p(u) is the prior distribution of the parameters

and p(Dju) is the likelihood. A noniformative prior is

specified. The collection of sampled parameter sets is

Q5 (u1, . . . , um). Here we obtain a sample ofm5 1000

parameter sets.

Once the model parameter sets have been sampled,

BJP can be used in predictive mode. For each of the m

bivariate normal parameter sets, a Gibbs sampler is used

to obtain a single sample of yjx*, ui, where x* is a new

transformed predictor value. All of these samples of

y are collected in Y*5 (y1*, . . . , ym* ), which is a numer-

ical sample representative of the posterior predictive

distribution:

f (y)5

ð 
p(yjx, u)p(ujD) du : (3)

Moreover, Y* is a forecast from a BJP model, albeit

normally distributed. The forecasts are backtransformed

to the original space using the appropriate inverse

transformation c21
D
(y) to obtain YO

* .

We develop separate bridging and calibration BJP

models for each grid point, initial time, and lead for each

of the seven NMMEmember models. Note that for each

of the seven models, we do not develop separate BJP

models for the individual dynamical model members but

rather use the model ensemble mean. For example,

consider a 1-month lead CFSv2 forecast for a single grid

point initialized in November. Rather than develop 24

bridging and 24 calibration models for each of the 24

CFSv2 individual members, we develop one bridging

and one calibrationmodel using the CFSv2model mean.

Therefore, this method does not directly incorporate

dynamical model spread information. However, when

we compareBJP calibrationwith the ensemble regression

calibration method (Unger et al. 2009), which does in-

corporate dynamical model spread into calibrated fore-

cast probabilities, we find that the two methods yield

similarly skillful and reliable forecasts (not shown).

TABLE 1. Summary of the calibration, bridging, and merging frameworks.

Calibration Bridging Merging

Method Bayesian joint probability modeling Bayesian joint probability modeling Bayesian model averaging

Predictor Temperature or precipitation Niño-3.4 index —

Predictand Temperature or precipitation Temperature or precipitation —
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BJP models for temperature and precipitation gen-

erally follow the same development work flow, with

some exceptions. First, as noted previously, tempera-

ture data are transformed using the Yeo–Johnson

transformation while precipitation data are trans-

formed using the log-sinh transformation. Addition-

ally, BJP models used to postprocess precipitation

forecasts must account for zero values, which occa-

sionally occur for grid points in the southwestern

United States. We follow Wang and Robertson (2011)

and treat zero values as censored data with unknown

values below or near zero. This allows us to work within

the framework of a continuous bivariate normal dis-

tribution. When forecasting, predicted values below

zero are converted to zero.

Finally, we apply leave-one-year-out cross validation

to test the method over the NMME hindcast period.

For a given year, BJP bridging and calibration models

are developed from the rescaled and transformed data

after removing the predictor–predictand pair for that

year, such that the data rescaling and transformation

and BJP model development are all done within each

cross-validation fold. The resulting BJP models are then

used to generate a calibrated and bridged forecast for

the removed year using the forecast predictor value

from that year. While concern exists that the relatively

high autocorrelation of the Niño-3.4 index could in-

troduce artificial skill when leaving out only one year,

Schepen et al. (2014) found previously that the use of a

more stringent leave-three-years-out cross validation

did not affect the results. An alternative method of cross

validation might instead develop the BJP models using

data from the NMME hindcast period and then apply

these BJP models to postprocess NMME data from the

real-time period. However, NMME real-time data are

only consistently available beginning in 2012, leaving

only 6 years of data with which to test BJP. While we

have tested this method and find generally positive skill,

we choose not to use it here given the lack of a suffi-

ciently large real-time sample for calculation of verifi-

cation statistics.

2) BAYESIAN MODEL AVERAGING

Once bridged and calibrated forecasts have been

generated for a given grid point, we calculate a weighted

average of the two forecasts using Bayesian model av-

eraging (Raftery et al. 1997;Wang et al. 2012a).We refer

to this step as ‘‘merging.’’ For each dynamical model,

we create a merged forecast using the calibrated and

bridged forecasts for that model. Additionally, we cal-

culate an NMME merged forecast by merging the

calibrated and bridged forecasts from all seven dy-

namical models. Similarly, NMME bridged (calibrated)

forecasts are calculated by merging all bridged (cali-

brated) forecasts from the seven dynamical models. The

BMA density forecast, fBMA(y), is expressed as

f
BMA

(y)5 �
K

k51

w
k
f
k
(y) , (4)

where fk(y) is the density forecast for model k, and wk

is the weight for model k. When merging calibrated

and bridged forecasts for individual models (e.g.,

CFSv2), we use k 5 2, one bridged forecast and one

calibrated forecast. In contrast, to create the NMME

bridged (calibrated) forecast, we merge the k 5 7

member model bridged (calibrated) forecasts. Finally,

to create the NMME merged forecast, we merge

all member model bridged and calibrated forecasts

(k5 14). We calculate the MAP estimate of the weights

by maximizing the posterior distribution of the weights.

As in Schepen et al. (2016), we use a Dirichlet prior

distribution, p(p),

p(p)}P
K

k51

(w
k
)a21 , (5)

where a is the concentration parameter, a5 11 a0/K,

and a0 is a free parameter. We set a0 equal to 1.0 to force

more even weights among the models.

Once we have calculated estimates of the BMA

weights, we obtain the merged forecast by taking a

random sample from each BJP forecast ensemble we

seek to merge. The size of the random sample from each

forecast ensemble is determined by the weights. The

resulting ensemble of forecasts represents fBMA(y). We

again apply leave-one-year-out cross validation to cal-

culate the model weights. We note that BJP forecasts

and their associated weights are not computed within

the same cross-validation fold. Schepen et al. (2014)

examined the impact of this data leakage by estimating

weights using forecast–observation pairs for the same

events used to fit the BJP model. They found that this

method did not significantly influence the results and in

fact tended to worsen overfitting. Therefore, in this

study we permit some minor data leakage in an effort to

minimize model overfitting.

c. Probabilistic forecast verification metrics

We generate calibrated, bridged, and merged proba-

bilistic forecasts of above and below normal 2-m tem-

perature (precipitation), where ‘‘normal’’ is defined as

the middle tercile of the observed 2-m temperature

(precipitation) distribution over the hindcast period,

1982–2010. We assess forecast skill using Brier skill

score (BSS; Brier 1950; Wilks 2011):
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BSS5 12
BS

BS
ref

. (6)

The Brier score (BS) is calculated as

BS5
1

n
�
n

k51

(p
k
2 o

k
)2 , (7)

where for a given forecast–event pair, pk is the forecast

probability and ok is 1 if the event occurred and 0 if it

did not. Here we consider two events: 1) below-normal

temperature (precipitation) occurs, and 2) above-

normal temperature (precipitation) occurs. The term

BSref refers to the Brier score of a reference forecast.

We use a climatological reference forecast of pk 5 0.33.

The BSS is positively oriented such that BSS 5 1.0

represents a perfect forecast.

We additionally assess the reliability of model fore-

casts using reliability diagrams (Wilks 2011; Hartmann

et al. 2002). Predicted probabilities are binned into

10 separate probability groups ranging from 0–0.1 to

0.9–1.0 and are compared to the observed relative

frequency.

3. NMME representation of ENSO and ENSO

teleconnection patterns

Because statistical–dynamical bridging uses model

forecasts of the Niño-3.4 index to predict temperatures

over North America, dynamical models must skillfully

FIG. 1. (a) The correlation between the observed Niño-3.4 index and observed 2-m temperature over North America during DJF over

the 1982–2010 period compared with the (b)–(i) correlation between the 1-month lead forecast Niño-3.4 index and 1-month lead forecast

2-m temperature during DJF for each of the 7 NMMEmember models and the multimodel mean. For each model, the correlations were

obtained by averaging the correlations of each individual member.
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predict the Niño-3.4 index for bridging to be successful.

Fortunately, previous research demonstrates that the

NMMEENSO forecast skill is very high (Barnston et al.

2018). The correlation between forecast and observed

Niño-3.4 anomalies exceeds 0.8 for all 12 overlapping

seasons for forecasts made with 1-month lead. As ex-

pected, forecast skill decreases as lead time increases,

although the correlation between the observed and

multimodel mean forecast Niño-3.4 index never falls

below 0.6. Skill is sufficiently high to attempt statistical–

dynamical bridging for forecasts made 1–6 months in

advance of the target season.

Bridging enhances forecast skill in instances when

models fail to represent the observed teleconnection

patterns between ENSO and climate conditions over

North America. Chen et al. (2017) documented discrep-

ancies between observed and NMME composite temper-

ature patterns over North America during cold and warm

ENSO events. Likewise, we find that several models in

the NMME (e.g., NASA and GFDL-FLOR) produce

different representations of the ENSO–temperature

teleconnection pattern over North America when com-

pared against the observed pattern (Fig. 1). Focusing on

DJF—when the ENSO influence on North American

climate is strongest—we find that the largest differences

occur over the northern and midwestern United States,

where the observed correlation between Niño-3.4 anoma-

lies and North American 2-m temperature is positive

(r 5 0.4–0.6) while the correlation between forecast

Niño-3.4 anomalies and forecast 2-m temperature is

FIG. 2. (a) The correlation between the observed Niño-3.4 index and observed precipitation rate over North America during DJF over

the 1982–2010 period compared with (b)–(i) the correlation between the 1-month lead forecast Niño-3.4 index and 1-month lead forecast

precipitation rate during DJF for each of the 7 NMMEmember models and the multimodel mean. For each model, the correlations were

obtained by averaging the correlations of each individual member.
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less than or near zero (r 5 20.6–0) for the CMC1,

CMC2, GFDL, GFDL-FLOR, and NASA models.

Taking the multimodel mean (Fig. 1i) results in some

improvements in the ENSO–temperature teleconnec-

tion pattern; however, discrepancies remain over parts

of the northern United States. Although the relatively

short hindcast period makes it difficult to determine

whether the models truly misrepresent the ENSO

teleconnection, any biases in forecast teleconnection

patterns have the potential to reduce forecast skill.

Statistical–dynamical bridging provides alternative fore-

casts based on the historical representation of ENSO

teleconnection patterns and therefore may improve

forecast skill for some of the NMME models.

In contrast to temperature, Chen et al. (2017) found

that the ENSO–precipitation teleconnection pattern is

generally well represented by the NMME. Examining

the correlation between 1-month lead forecast Niño-3.4

anomalies and North American precipitation rate

(Figs. 2b–i), we similarly find that overall the models

reproduce the observed pattern (Fig. 2a) relatively well,

although there are exceptions. The magnitude of the

model–forecast relationship tends to be smaller than

the magnitude of the observed relationship for some of

the models (e.g., CMC1, NASA, NCAR-CCSM4),

but most models capture the general spatial pattern.

Because of this, we do not expect bridging with the

Niño-3.4 index to enhance seasonal precipitation fore-

cast skill. We intend to examine additional bridging

predictors beyond ENSO in future work.

4. CBaM forecast skill: 2-m temperature

We first examine 2-m temperature forecast skill by

calculating the BSS associated with calibrated and

bridged 1-month lead seasonal NMME forecasts for

each of the 12 overlapping 3-month seasons. NMME

bridged (calibrated) forecasts are obtained by merging

the bridged (calibrated) forecasts from the 7 NMME

member models. We only show results for probabilistic

forecasts of below normal temperature for brevity, al-

though we note that the results for probabilistic fore-

casts of above normal temperature are very similar.

We compare bridged, calibrated, and merged forecasts

to raw NMME forecasts, where the raw forecasts are

calculated as ensemble frequencies relative to model

mean terciles. Overall, 1-month lead calibrated forecasts

of temperature (Fig. 3) outperform bridged forecasts

FIG. 3. Shading indicates Brier skill score differences between 1-month lead calibrated and 1-month lead raw forecasts of below-normal

2-m temperature for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that calibrated forecast mean

Brier skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the

95% confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.
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(Fig. 4), where bridging is done using model forecasts

of the Niño-3.4 index. Calibration yields the largest

improvement over raw forecasts in the fall and winter, as

indicated by the red shading in Fig. 3. It should be noted

that although the hatching in Figs. 3–5 indicates signifi-

cance at the 95% confidence level, as determined by a

Wilcoxon rank-sum test, the significance does not generally

hold up when stricter field significance tests are applied.

We test field significance using both the Walker coefficient

and the false discovery rate (Wilks 2006) and find that very

few grids meet this stricter standard. Therefore, these dif-

ferences should be interpreted cautiously.

In contrast to calibrated forecasts, bridged forecasts

more often yield lower mean Brier skill scores than raw

forecasts, particularly in the spring and summer months

(Fig. 4). However, bridged winter temperature forecast

skill exceeds raw forecast skill across portions of the

northern United States and southern Canada, including

some areas where calibration does not result in im-

proved skill. This is not particularly surprising when we

consider that the ENSO influence on North American

climate tends to be greatest during the winter months

(Ropelewski and Halpert 1986). Note that when we in-

stead develop the NMME bridged (calibrated) forecasts

from the multimodel mean forecast Niño-3.4 index (2-m

temperature), the results are statistically indistinguish-

able from the BSSmaps presented in Figs. 3 and 4, which

were obtained by merging all calibrated (Fig. 3) or

bridged (Fig. 4) member model forecasts.

Figure 5 suggests that merging the bridged and cali-

brated forecasts results in marginally higher spatial

coverage of positive skill, which agrees well with the

findings of Schepen et al. (2016). Again, merging is

done by taking a weighted (BMA) average of all of

the bridged and calibrated forecasts from the NMME

member models. Therefore, the merged forecasts used

to create Fig. 5 result from merging a total of 14 fore-

casts—1 calibrated and 1 bridged forecast from each of

the 7 models. Merged forecasts generally outperform

raw NMME probabilistic forecasts of 2-m temperature,

although there are some exceptions [e.g., parts of the

northern United States during July–September (JAS)]

for which the CBaM method does not outperform the

raw forecasts. Some of the improvement occurs over

regions for which the raw forecast skill is negative (e.g.,

over the eastern United States during DJF). This occurs

because the CBaMmethod yields a climatology forecast

when no evidence of positive forecast skill exists.

FIG. 4. Shading indicates Brier skill score differences between 1-month lead bridged and 1-month lead raw forecasts of below-normal 2-

m temperature for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that bridged forecast mean Brier

skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the 95%

confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.
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Because DJF appears to be one of the few seasons for

which bridging enhances forecast skill, we focus on this

season and investigate the merged results by NMME

member model (Fig. 6). We apply a bootstrap method

similar to that applied in Schepen et al. (2016) to assess

whether bridging statistically significantly improves

forecast skill beyond what is achieved through cali-

bration. We first use resampling to generate a large

FIG. 5. Shading indicates Brier skill score differences between 1-month lead merged and 1-month lead raw forecasts of below-normal

2-m temperature for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that merged forecast mean Brier

skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the 95%

confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.

FIG. 6. Shading indicates Brier skill scores associated with 1-month lead merged forecasts of below-normal DJF 2-m temperature for

each of the NMME member models and the multimodel mean. Hatching denotes grid cells for which bridging statistically significantly

improves forecast skill, where statistical significance is determined using a bootstrap method without accounting for field significance.
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(n 5 1000) sample of calibrated BSS estimates for each

grid point. If the merged BSS value exceeds the 95th

percentile value from the resampled calibrated BSS

distribution, we conclude that bridging enhances fore-

cast skill at that grid point. As the hatching indicates

in Fig. 6, the degree to which bridging helps varies

by model, although we again note that significance

does not hold up to the stricter field significance

standard. Bridging does little to improve forecast skill

for the CFSv2 and NCAR-CCSM4. Recall that both of

these models already represent the ENSO–temperature

teleconnection pattern relatively well (Fig. 1). Given

this, it seems reasonable to expect that bridging

would do little to improve forecast skill for these

models. In contrast, bridging improves skill over

portions of the northern United States and south-

western Canada for the remaining five models.

The area of improved skill coincides with the region

for which these models fail to reproduce the observed

ENSO–temperature teleconnection. Throughout the

year, bridging statistically significantly enhances fore-

cast skill for less than 1%–6.4% of grid cells over

North America, depending on the model and season.

Interestingly, we find that bridging improves multi-

model mean forecast skill for less than 1% of grid

cells, which is also true for the NCAR-CCSM4

and CFSv2 models. We similarly apply the boot-

strap method described above to determine whether

bridging significantly reduces forecast skill in the

final merged product. For all models and seasons, we

find that bridging degrades forecast skill for ,1% of

grid cells (not shown).

These results support the notion that multimodel en-

sembles on average yield more skillful forecasts than

individual model ensembles (e.g., Palmer et al. 2004;

Kirtman et al. 2014). When we compare the number of

grid cells with BSS. 0.1 (Fig. 7a), we find that 1)merged

forecasts produce the most grid cells with BSS . 0.1

FIG. 7. The number of grid cells over North America with BSS . 0.1 for PAC-calibrated (light blue), BJP-calibrated (dark blue),

bridged (purple), merged (orange), and raw (gray) 1-month lead forecasts of below-normal DJF (a) temperature and (b) precipitation

from each of the NMME member models and the multimodel mean.
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compared to calibration and bridging for each of the

NMME member models, and 2) merged NMME fore-

casts produce the most grid cells with BSS . 0.1 com-

pared to any individual member model. As expected,

merged forecasts from the individual models tend to be

less skillful than merged NMME forecasts, just as raw

forecasts from the individual models are, on average,

less skillful than raw NMME forecasts. However, the

amount of improvement achieved by taking a multi-

model mean tends to be smaller for the merged fore-

casts compared to the raw forecasts. For example, if

we compare the number of merged forecast grids with

BSS . 0.1 (the orange bars in Fig. 7a), we find that the

merged NMME forecast improves upon the merged

individual model forecasts by an average of 15.7%,

with a range of 9.1% to 23.1%. In contrast, the raw

NMME forecast improves upon the raw individual

model forecasts by an average of 39.8%, with a range of

25.7%–51.6%.

Figure 7a also includes a comparison to the proba-

bility anomaly correlation (PAC) calibration method,

which is based on an ordinary regression of predicted

versus observed probabilities (van den Dool et al.

2017). The PAC method is applied at CPC to calibrate

the real-time NMME forecasts produced on a monthly

basis and used by CPC operational forecasters as a

guidance tool. Overall, the PACmethod for calibrating

forecasts performs comparably to BJP calibration. We

note that the NASA model used here for PAC cali-

bration represents a different version than that used in

the BJP analysis and is therefore not directly compa-

rable. As with BJP calibration, PAC calibration does

not yield as many grids with BSS . 0.1 as we find with

the fully merged NMME forecast. This result supports

the hypothesis that the statistical–dynamical bridging

component to CBaM contributes skill and is a poten-

tially useful addition to the current postprocessing

being applied operationally at CPC. While the fully

merged CBaM forecast achieves broader spatial cov-

erage of positive skill, PAC calibration, BJP calibra-

tion, and merging result in similar mean Brier skill

scores of 9.03%, 8.25%, and 9.06%, respectively, for

the NMME. These mean BSS values all exceeded

the 4.42% raw NMME mean BSS. In general, the im-

provement we see from application of CBaM occurs

through increased spatial coverage of positive skill.

Skill associated with fully merged CBaM forecasts may

be slightly lower than the skill of the ‘‘best forecast’’ at

any given grid point.

While we focus on 1-month lead forecasts, we note

that the difference between bridged and calibrated DJF

temperature forecasts tends to decrease as lead time

FIG. 8. Shading indicates Brier skill score differences between bridged and calibrated forecasts of below-normal DJF 2-m temperature

for the NMME for 1–6-month lead forecasts. Red shading indicates that bridged forecast mean Brier skill scores exceeded calibrated

forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the 95% confidence level, as

determined via a Wilcoxon rank sum test without accounting for field significance.
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increases (Fig. 8). As lead time increases and forecast

skill decreases, BJP forecasts tend to be closer to cli-

matology forecasts for more grids. Although both cali-

brated and bridged forecast skill decrease as lead time

increases, mean Brier skill scores remain at or above

climatology skill (BSS remains greater than or equal to

zero) through 6-month lead, the longest lead timewe are

able to assess using NMME data.

Importantly, we find that the CBaMmethod produces

statistically reliable forecasts of 2-m temperature

(Fig. 9). To make the reliability diagrams, we bin the

probabilistic NMME CBaM forecasts of below-normal

temperature into 10 ‘‘predicted probability’’ bins (0–0.1,

0.1–0.2, . . . , 0.9–1.0), which are shown on the x axis.

The y axis corresponds to the observed relative fre-

quency of an event, where the event of interest is the

occurrence of below-normal seasonal temperatures. In

a well-calibrated forecast system the predicted proba-

bility matches the observed relative frequency. For ex-

ample, a 40% forecast probability of below-normal

temperature should verify as below normal 40% of the

time. We find that the fully merged CBaM forecasts

on average are more reliable than raw NMME forecasts

for all 12 of the 3-month overlapping seasons. The

improvement is particularly evident for higher pre-

dicted probabilities, although we note that the sample

sizes are much smaller for predicted probabilities ex-

ceeding 60%.

FIG. 9. Reliability diagrams comparing the statistical reliability of 1-month lead raw (black) vs CBaM (orange) forecasts of 2-m tem-

perature. The CBaM results refer to the fully merged multimodel (NMME) forecast. The raw forecast refers to the multimodel mean

forecast, without any bias correction applied. The horizontal axis denotes the predicted probability while the vertical axis denotes the

observed relative frequency. The light gray dashed line corresponds to a perfectly reliable forecast. The size of the plotted circles is

proportional to the number of forecast probabilities that fall into a given predicted probability bin.
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5. CBaM forecast skill: Precipitation rate

When we repeat the above analysis using 1-month

lead forecasts of precipitation, we find that bridging

and calibration tend to improve upon raw Brier skill

scores in the same areas (Figs. 10 and 11). In contrast

to 2-m temperature forecasts, calibrated precipitation

rate forecasts tend to achieve higher skill during the

winter and very little skill throughout the remainder

of the year. A qualitative assessment of Figs. 10 and 11

suggests significant overlap between grid cells with

improved skill from calibration and grid cells with

improved skill from bridging. This is also supported by

Fig. 7b where we see that for somemodels (e.g., CMC1),

approximately 300 grid cells achieve a BSS . 0.1 for

calibrated, bridged, and merged forecasts. In general, if

calibration and bridging yielded skillful forecasts over

different areas, we would expect the number of grid cells

with positive skill to be highest for the merged forecasts.

This result supports the idea that we can attribute much

of the wintertime precipitation forecast skill to ENSO.

In contrast to temperature, we find that taking a multi-

model mean results in large improvements in skill rela-

tive to individual models for both merged forecasts

(comparing the orange bars in Fig. 7b) and raw forecasts

(comparing the gray bars in Fig. 7b). ThemergedNMME

forecast improves upon merged individual model fore-

casts by an average of 38.3%, and the raw NMME fore-

cast improves upon raw individual model forecasts by an

average of 25.2%. Calibrated and merged forecasts in

particular result in higher coverage of positive skill

compared to raw NMME forecasts, with calibration

marginally outperforming merging.

Figure 7b also includes a comparison with PAC-

calibrated precipitation forecasts. PAC calibration

tends to yield fewer grid cells with BSS . 0.1 than we

find with CBaM-calibrated or merged forecasts, with the

exception of the CFSv2. It is not clear what contributes

to this difference in performance. One possible expla-

nation is that BJP applies a more robust data trans-

formation method and includes censoring as a means of

handling grid points with zero values. Of course, other

differences in the method may contribute to the differ-

ence in skill. The CBaM probabilities are calculated

from an ensemble of 1000 members, while the proba-

bilities used in the PAC analysis are calculated from

model ensemble frequencies. Additionally, PAC prob-

abilities are damped to climatology in areas where

FIG. 10. Shading indicates Brier skill score differences between 1-month lead calibrated and 1-month lead raw forecasts of below-

normal precipitation rate for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that calibrated forecast

mean Brier skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance

at the 95% confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.
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historical raw forecast skill is near zero or significantly

negative. BJP probabilities are damped to climatology

in areas where raw forecast skill is near zero, but not in

areas where raw forecast skill is significantly negative.

The significant negative correlation informs the BJP

calibration, yielding a ‘‘flipped’’ calibrated forecast rel-

ative to the raw forecast. There is some debate regarding

whether this method makes sense in an operational

setting given that the resulting probability forecasts

may be less physically justifiable in cases when raw

forecast skill is significantly negative. As with tem-

perature, we find that PAC calibration, BJP calibra-

tion, and merging (Fig. 12) all result in higher mean BSS

relative to the raw forecast (PAC 5 4.9%, BJP-cal 5

5.25%, merged 5 4.75%, raw 5 22.56%).

The CBaM precipitation results also support our hy-

pothesis that because the ENSO–precipitation telecon-

nection pattern is well represented by the NMME

member models, bridging with the forecast Niño-3.4

index will not contribute significant additional skill.

In fact, when we apply the bootstrap significance test,

we find that bridging enhances skill for less than 1% of

grid cells for most model-season combinations, with the

most improvement occurring for CMC1 forecasts of

JFM precipitation (3.5%). It seems reasonable to expect

some improvement with bridging for the CMC1 given

that, as is evident in Fig. 2, the CMC1 representation of

the ENSO–precipitation teleconnection pattern least

resembles the observed pattern when compared against

the other NMME member models.

Although bridging does not significantly increase

precipitation forecast skill beyond what is achieved by

calibration, application of the CBaM method does im-

prove forecast reliability (Fig. 13). Even so, precipita-

tion forecasts remain less reliable than temperature

forecasts overall, particularly at the higher probability

bins where the sample size is smaller. Although pre-

cipitation forecast skill remains modest, the results

presented in Figs. 9 and 13 demonstrate the utility of the

CBaMmethod to improve the representation of forecast

uncertainty relative to raw NMME forecasts.

Finally, we note that because the analysis is applied at

each grid point, CBaM forecasts, and precipitation

forecasts in particular, tend to be noisy. We do not apply

any smoothing to the final CBaM forecasts, although

future work will likely include some type of smoothing.

Precipitation forecasts are particularly noisy in the

summertime when the ENSO signal is weaker over

FIG. 11. Shading indicates Brier skill score differences between 1-month lead bridged and 1-month lead raw forecasts of below-normal

precipitation rate for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that calibrated forecast mean

Brier skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the

95% confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.
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North America and when much of the precipitation

occurring over a large portion of the United States is

convective in nature.

6. Discussion

These results suggest that, particularly for individual

model ensembles, the CBaM method improves forecast

skill and statistical reliability over North America, both

through calibration to correct for model biases in re-

gions and seasons with underlying model skill, and

through bridging to correct for model misrepresentation

of teleconnection patterns. In particular, bridging using

the forecast Niño-3.4 index statistically significantly

enhances 2-m temperature forecast skill for several of

the individual NMME member models, primarily over

regions where the model and observed ENSO telecon-

nection patterns differ. Improvements through bridging

largely are confined to the winter season (DJF). While

bridging enhances forecast skill for the individual

models that make up the NMME, when we calculate

the multimodel mean results, we find that bridging im-

proves skill for less than 1% of grid cells. Similarly, for

models that better represent the ENSO–temperature

teleconnection (e.g., CFSv2, NCAR-CCSM4), bridging

significantly improves forecast skill for less than 1%

of grid cells over North America. This suggests that

the multimodel mean at least partially improves the

representation of the teleconnection. Additionally, be-

cause the NMME-calibrated forecast was obtained by

applying BMA to merge the individual member model-

calibrated forecasts, greater weight was given to models

that performed better (e.g., CFSv2, NCAR-CCSM4),

resulting in a better calibrated forecast and less need

for improvement via bridging.

In contrast to temperature, bridging does not im-

prove skill for 1-month lead forecasts of precipitation.

This result supports our initial hypothesis that bridg-

ing should lead to fewer improvements in precipitation

forecast skill because the ENSO–precipitation telecon-

nection is better represented by the NMME member

models. Future work will explore other possible

methods for improving precipitation forecast skill,

for example, by using calibrated NMME tempera-

ture as a predictor of precipitation (e.g., Narapusetty

et al. 2018).

Finally, we find that application of CBaM narrows the

average gap between the skill of an individual model

FIG. 12. Shading indicates Brier skill score differences between 1-month lead merged and 1-month lead raw forecasts of below-normal

precipitation rate for the NMME for each of the 12 overlapping 3-month seasons. Red shading indicates that calibrated forecast mean

Brier skill scores exceeded raw forecast mean Brier skill scores over the 1982–2010 hindcast period. Hatching indicates significance at the

95% confidence level, as determined via a Wilcoxon rank sum test without accounting for field significance.
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temperature forecast and the skill of an NMME tem-

perature forecast. Merged temperature forecasts by in-

dividual models are on average 15% less skillful than

merged NMME temperature forecasts, whereas raw

temperature forecasts by individual models are on av-

erage 40% less skillful than raw NMME temperature

forecasts. It is not immediately clear why this occurs or

whether these results would hold true if the method

were to be applied to a different multimodel ensemble.

Future work will test the method with other multimodel

ensembles and may yield additional insight into this

result. In contrast to temperature, CBaM does not nar-

row this skill gap for forecasts of precipitation. NMME

precipitation forecasts tend to be substantially better

than individual model precipitation forecasts regardless

of whether CBaM is applied.

CBaM postprocessing is currently being applied to

real-time NMME forecasts. These postprocessed real-

time forecasts serve as an experimental tool to aid in

the monthly production of operational seasonal fore-

casts by CPC. The real-time CBaM forecasts, available

since October 2018, can be accessed at http://www.cpc.

ncep.noaa.gov/products/people/sstrazzo/cbam/. For com-

parison, PAC-calibrated NMME forecasts can be found

at http://www.cpc.ncep.noaa.gov/products/NMME/

prob/pac/.

There are several caveats to this study worth men-

tioning. Owing to the short hindcast period, uncertainty

FIG. 13. Reliability diagrams comparing the statistical reliability of 1-month lead raw (black) vs CBaM (orange) forecasts of pre-

cipitation rate. TheCBaM results refer to the fullymergedmultimodel (NMME) forecast. The raw forecast refers to themultimodel mean

forecast, without any bias correction applied. The horizontal axis denotes the predicted probability while the vertical axis denotes the

observed relative frequency. The light gray dashed line corresponds to a perfectly reliable forecast. The size of the plotted circles is

proportional to the number of forecast probabilities that fall into a given predicted probability bin.
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in observed ENSO teleconnection patterns makes it

difficult to reasonably evaluate model teleconnections,

although a new approach for doing so was recently in-

troduced (Deser et al. 2017). This problem is further

compounded by the variability observed among histor-

ical ENSO events (i.e., no two ENSO events are exactly

alike). Therefore, the results presented here are heavily

influenced by a handful of extreme ENSO events. The

short sampling period can also prove problematic when

attempting to estimate the BMA weights for model

merging. In some cases, the model that performs best is

given a very large percentage of the weight, while the

remainingmodels are given weights near zero. Although

we find that the BMA weighting method outperforms

equal weighting for the hindcast period, differences in

hindcast versus real-time individual model configura-

tions (e.g., number of ensemble members) may render

the BMA weights less useful in a real-time forecasting

setting. We are currently testing alternative weighting

approaches to address this issue.

Additionally, we limit bridging to ENSO and there-

fore do not consider other critical sources of North

American climate variability that models may be mis-

representing (e.g., the Arctic Oscillation). Future work

also will examine more bridging predictors on a global

scale. Finally, CBaM is one among many methods

used to postprocess individual and now multimodel

ensemble systems. Although here we include some

discussion comparing CBaM tomethods currently in use

operationally (e.g., PAC, ensemble regression), future

work should include a more thorough comparison of

the full set of methods available to seasonal forecast

practitioners.
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