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Abstract

This article presents an iterative minimum mean square error- (MMSE-) based method for the joint estimation of

signal-to-noise ratio (SNR) and frequency-selective channel in an orthogonal frequency division multiplexing (OFDM)

context. We estimate the SNR thanks to the MMSE criterion and the channel frequency response by means of the

linear MMSE (LMMSE). As each estimation requires the other one to be performed, the proposed algorithm is iterative.

In this article, a realistic case is considered; i.e., the channel covariance matrix used in LMMSE is supposed to be totally

unknown at the receiver and must be estimated. We will theoretically prove that the algorithm converges for a

relevantly chosen initialization value. Furthermore simulations show that the algorithm quickly converges to a solution

that is close to the one in which the covariance matrix is perfectly known. Compared to existing SNR estimation

methods, the algorithm improves the trade-off between the number of required pilots and the SNR estimation quality.
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1 Introduction
The multipath channel and the additive noise are two

important sources of distortion in wireless communica-

tion systems. Firstly, the channel impulse or frequency

response provides information about the selectivity of the

channel. Secondly, the noise is usually characterized by

means of its comparison with the signal level by the signal-

to-noise ratio (SNR). The knowledge of these parameters

(channel and noise) allows to design more accurately both

transmitter and receiver. For instance, at the transmitter

side, the constellation type and its size can be adapted

according to the SNR level [1]. Yet, at the transmitter,

the time-reversal method [2] can be performed, thanks to

the channel impulse response. At the receiver side, many

algorithms such as the LMMSE channel estimation [3] or

the turbo-decoder [4] require the knowledge of the SNR,

and an accurate channel state information (CSI) allows

to perform a simple one-tap equalization in orthogonal

frequency division multiplexing (OFDM) systems.
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Some SNR estimation methods are proposed in [5-7]

for single carrier systems that are being used in additive

white Gaussian noise (AWGN) channels. The second-

and fourth-order moment (M2M4) estimator, firstly men-

tioned in [8], does not require any channel estimation.

In addition, M2M4 has a low complexity. However, its

efficiency is degraded in frequency-selective channels.

The maximum likelihood (ML) estimator, whose devel-

opments are given in [9], offers a good efficiency, but

has a prohibitive complexity in the case of frequency-

selective channels. The minimum mean square error

(MMSE) estimator, from which we derive our proposed

method, requires the estimation of the transmission chan-

nel. In references [5,10,11] only a theoretical expression

of the MMSE can be found, but the authors do not pro-

pose any practical solution to reach it. Reference [10]

covers the usual M2M4, ML, and MMSE estimators in

an OFDM case, and presents a method so as to esti-

mate the SNR in frequency-selective channels. This latter

method is based on the autocorrelation function given by

the model of the channel (Rayleigh or Rice models). The

authors of [11-13] also present SNR estimation methods

for OFDM transmissions in frequency-selective channels.

In order to avoid the need for the channel estimation,
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author in [11] proposes a method for a 2 × 2 multi-input

and multi-output (MIMO) configuration which features a

two pilot-symbols preamble and assumes that the channel

coefficients are invariant over two consecutive carriers.

Author in [12] also proposes a preamble-based method

featuring two pilot symbols for the estimation of the noise

variance. The SNR’s estimation is performed, thanks to

the combination of this noise estimation with the second

moment order (M2) of the received signal. Themethods of

[11] and [12] require a two pilot-symbols preamble, which

reduces the useful data rate of the transmission, espe-

cially if the preamble is regularly repeated. The authors

of [13] present a SNR estimation based on the proper-

ties of the channel covariance matrix, estimated thanks

to a one pilot-symbol preamble. This method is limited

by the channel’s insufficient statistics, which degrades the

estimation performance.

The literature is very extensive concerning channel esti-

mation. A wide range of usual channel estimation meth-

ods is based onML [9], least square (LS) [14,15], orMMSE

[16,17]. Here we focus on recursive and iterative methods.

The recursive least square algorithm (RLS), described in

[18] or [19], uses the estimations of the previous channel

frequency response to perform the estimation of the cur-

rent one. Similarly to the RLS principle, authors in [20,21]

propose a recursive MMSE method that does not require

an a priori need for channel statistics. In [22], the chan-

nel variations are tracked by employing the Kalman filter

estimator. As presented in [23-26], the iterative channel

estimation methods are combined with equalization, data

detection, decoding, or even interference cancellation. In

this case, a soft or hard feedback from the detection block

to the estimator block performs an iterative channel and

data estimation. The iterative expectation maximization

(EM) algorithm [27,28] has been developed so that the

ML estimator is an appropriate tool in frequency-selective

channels when the observed data are not complete, i.e.,

when the size of the observation is smaller than the vector

to be estimated. An adaptation of this algorithm for both

channel and noise estimation is presented in [29,30], and

joint iterative EM data detection and recursive channel

tracking are proposed in [31]. However, when a preamble

is used, the sizes of the observation and that of the vec-

tor of the channel frequency response to be estimated are

the same, so the EM algorithm is not necessary. Further-

more, under this condition and considering a Gaussian

channel, the ML estimator is equivalent to the usual LS

estimator [32,33]. In [34], we proposed an MMSE-based

iterative algorithm for both SNR and channel estimations.

However, it was a theoretical approach, in which the chan-

nel covariance matrix was supposed to be known at the

receiver.

In the present article, we propose an approach in which

the channel covariance matrix is estimated at the receiver.

As a consequence, this paper is considered as an appli-

cation of the theoretical approach developed in [34]. We

estimate the SNR thanks to the MMSE criterion, which

requires an estimation of the frequency-selective channel.

Since we use the LMMSE method for the channel esti-

mation, the noise variance is required. We clearly notice

that one estimation feeds the other one. Then, it seems

natural to propose an iterative algorithm. We show that it

converges, thanks to a relevant choice of the initialization.

Since we suppose no a priori CSI at the receiver, this algo-

rithm is also valid for communications systems such as

WiFi or LTE, broadcast systems featuring standards such

as Digital Radio Mondiale DRM/DRM+ [35], or digital

video broadcasting-terrestrial DVB-T [36]. Although we

use the term iterative to describe our method, it differs

from the usual iterativemethods such as [25,26,31] since it

does not require a feedback from the data detection block.

The rest of this paper is organized as follows: Section 2

presents the used OFDM system model, the noise vari-

ance, and the SNR and channel estimations. The proposed

algorithm is developed in Section 3, and we prove in

Section 4 that it converges for a relevant choice of ini-

tialization. Simulations presented in Section 5 verify the

convergence of the method. As for the SNR estimation,

we compare our method to two others presented in the

literature [12,13], the well-known M2M4 [10], and to the

estimation performed in the perfect case [34]. The chan-

nel estimation performance is compared to the perfect

one and to the usual LS. We draw our conclusions in

Section 6.

2 Background and systemmodel
2.1 Notations

In the following, the normal font x is used for scalar

variables, the bold font x is used for vectors, and the

underlined bold font x for matrices. Furthermore, small

letter x refers to the variables in the time domain and

capital letter X to the variables in the frequency domain.

2.2 Systemmodel

We consider the transmission of OFDM symbols over a

multipath channel. After the removal of the cyclic prefix

(CP) and the discrete Fourier transform (DFT), we give

the expression of the nth-received OFDM symbol in the

frequency domain as

Un = CnHn + Wn, (1)

where Un = [U0,n, . . . ,UM−1,n]
T,Hn= [H0,n, . . . ,HM−1,n]

T,

andWn = [W0,n, . . . ,WM−1,n]
T denote theM×1 complex

vectors of the received signal, the multipath channel, and

theGaussian white noise on the nth time slot, respectively.

M is the size of the DFT, which also tallies with the num-

ber of carriers per symbol in our model. The matrix Cn is
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the M×M diagonal matrix of the transmitted signal con-

taining the vector [C0,n, . . . ,CM−1,n]. Each Cm,n is either

a data element or a pilot, whose gain, phase, and posi-

tion are perfectly known at both transmitter and receiver

sides. In this article, the pilots are dedicated to channel

estimation and noise variance estimation. We consider a

pilot-preamble scheme with a sole OFDM pilot symbol

and assume that the channel existing between two con-

secutive preambles is constant. In the rest of the paper,

the pilot symbols are noted with the subscript p. Each

component Hm,n of the vectorHn is given by

Hm,n =

L−1
∑

l=0

hl,n exp
(

−2jπ
m

M
τl

)

, (2)

where m denotes the subcarrier subscript, L the length

of the impulse response, and hl,n the zero-mean complex

process of the lth path of the channel. Each τl is the dis-

crete expression of the delay. All L paths are considered

to be independent. We also assume a quasi-static chan-

nel, i.e., the coefficients Hm,n are supposed to be invariant

over a frame including a one pilot-symbol preamble and

OFDM data symbols.

2.3 Noise variance estimation

We note σ 2 as the noise variance (or noise power) equal to

σ 2 = E{|Wm,n|
2} in its scalar form or σ 2 = 1

ME{||Wn||
2}

in the vectorial form. The matrix Frobenius norm noted

||.|| is defined for a matrix A as ||A||2 = tr(AAH), with

tr(.) the trace and (.)H the Hermitian transpose. In this

article, we use the MMSE criterion to estimate the noise

variance (see [9]) noted by σ̂ 2 and given by

σ̂ 2 =
1

M
E

{

||Up − C pĤp||
2
}

, (3)

where Ĥp denotes the channel estimation performed on

the pilot symbols. The index p refers to the pilot preamble

of a given frame. In practice, the expectation can only be

approximated by the mean over a sufficiently large num-

ber of subcarriers, leading to σ̂ 2 = 1
M

∑M−1
m=0 |Um,p −

Cm,pĤm,p|
2.

2.4 SNR estimation

The SNR noted ρ is basically obtained from the second-

order moment M2 of the received signal and the noise

variance. Thus, M2 = 1
ME{||Un||

2} = PS + σ 2, with PS
being the power of the useful transmitted signal. We then

get the SNR, thanks to ρ = M2

σ 2 −1. In practice, we estimate

the SNR ρ̂ similarly:

ρ̂ =
M̂2

σ̂ 2
− 1, (4)

where σ̂ 2 is defined in (3) and M̂2 by M̂2 = 1
M

∑M−1
m=0 |Um,n|

2.

2.5 Channel estimation

The two basic channel estimation methods are the LS

and LMMSE presented in [14,16]. Equation 5 gives the LS

channel estimation

Ĥ
LS

p = C
−1
p Up = Hp + C

−1
p Wp. (5)

The LS estimation is very simple but sensitive to the

noise. Furthermore, this estimation cannot be used for the

noise variance estimation in (3) since we obtain σ̂ 2 = 0 for

Ĥp = Ĥ
LS

p . Equation 6 gives the efficient LMMSE channel

estimation as follows:

Ĥ
LMMSE

p = RH(RH + σ 2(C pC
H
p )−1)−1

Ĥ
LS

p , (6)

where RH denotes the channel covariance matrix. The

LMMSE channel estimation is more efficient than that of

the LS but requires a matrix inversion. Without loss of

generality, we assume in the rest of the paper that ∀m =

0, . . . ,M − 1,Cm,p = 1 on a given preamble position p.

Consequently, the pilot matrix C p is equal to the iden-

tity matrix noted I, which leads to Ĥ
LMMSE

p = RH(RH +

σ 2I)−1Ĥ
LS

p . As RH and σ 2 are usually unknown at the

receiver, we propose an iterative algorithm for both noise

variance and channel estimation.

3 Proposed algorithm
In this section, we present an iterative algorithm for the

joint estimation of both the SNR and the frequency-

selective channel. The algorithm is based on the MMSE

criterion for both channel and SNR estimations. Indeed,

we perform the noise variance estimation in (3), thanks

to the efficient MMSE channel estimation, and the noise

variance is used in Equation 6 for the LMMSE chan-

nel estimation. As each estimation feeds the other one,

we propose an iterative algorithm, described in Figure 1.

Since the channel covariance matrix used in the LMMSE

estimation in Equation 6 is unknown, it must be esti-

mated. We note this estimated covariance matrix R̃H .

Thus, the difficulty to overcome thereafter is the compu-

tation of a relevant channel covariance matrix. At the first

iteration i = 1, we only dispose of the LS channel estima-

tion Ĥ
LS

p , with which we compute the channel covariance

matrix R̃
LS

H thanks to

R̃
LS

H = Ĥ
LS

p

(

Ĥ
LS

p

)H
. (7)

For the first step of the algorithm, pointed out by

the index (i = 1), the LMMSE channel estimation is

performed as

Ĥ
LMMSE

p(i=1) = R̃
LS

H

(

R̃
LS

H + σ̂ 2
(i=0)I

)−1
Ĥ

LS

p , (8)

where σ̂ 2
(i=0) is the initialization value of the algorithm.

The noise variance is estimated as indicated in (3), with



Savaux et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:128 Page 4 of 11

http://asp.eurasipjournals.com/content/2013/1/128

Figure 1 Block diagram of the proposed iterative algorithm.

Ĥ = Ĥ
LMMSE

p(i=1) . Remembering that C p is equal to the

identity matrix I, we have

σ̂ 2
(i=1) =

1

M
E

{

||Up − C pĤ
LMMSE

p(i=1) ||2
}

(9)

1

M
E

{

||Ĥ
LS

p − Ĥ
LMMSE

p(i=1) ||2
}

. (10)

If the algorithm keeps on computing with R̃
LS

H , we prove

in Appendix that (σ̂ 2
(i)) converges to 0. Under this condi-

tion, the algorithm enters into an endless loop. The reason

is that R̃
LS

H is built thanks to one sole pilot symbol, and this

makes it sensitive to the noise. The proposed solution is,

for i ≥ 2, to use the estimated covariance matrix R̃
LMMSE

H

given by

R̃
LMMSE

H = Ĥ
LMMSE

p(i=1)

(

Ĥ
LMMSE

p(i=1)

)H

, (11)

instead of R̃
LS

H in the following iterations. In Figure 1, the

feedback from Ĥ
LMMSE

p is then valid only for i = 1. For

i ≥ 2, the algorithm then follows these two steps:

Ĥ
LMMSE

p(i) = R̃
LMMSE

H

(

R̃
LMMSE

H + σ̂ 2
(i−1)I

)−1
Ĥ

LS
p , (12)

σ̂ 2
(i) =

1

M
E

{

||ĤLS
p − Ĥ

LMMSE
p(i) ||2

}

. (13)

The characterization of the initialization σ̂ 2
(i=0) will be

discussed in Section 4. However, it is already obvious that

σ̂ 2
(i=0) must be strictly positive. Indeed, if its value is equal

to 0, then Ĥ
LMMSE

p(i=1) is equal to Ĥ
LS

p in (8).

Expressions (12) and (13) are obtained, thanks to a pilot

matrix C p which is equal to the identity matrix I. In a

general case, the pilot matrix C p (respectively, the pilot

total energy) has to be taken into account in (12) and (13)

respectively. A strictly positive threshold eσ is set and can

be as small as needed; this entails that the algorithm pro-

ceeds iterations as long as |σ̂ 2
(i) − σ̂ 2

(i−1)| > eσ . At last, if

the final iteration is noted (i0), and if we use (4), the SNR

is estimated from the noise variance thanks to

ρ̂ =
M̂2

σ̂ 2
(i0)

− 1. (14)

The algorithm given in the realistic case (considering

an unknown channel covariance matrix) is summarized in

Algorithm 1.

Algorithm 1MMSE-based joint estimation of both channel

and SNR

Figure 2 depicts the way our algorithm works. From

the initialization σ̂ 2
(i=0), the noise variance and channel

estimations alternatively feed each other until the algo-

rithm reaches its limit. Thus, step by step, the estimation

(Ĥi,n, σ̂
2
i ) comes closer to the limit characterized by the

couple (Ĥi0,n, σ̂
2
i0
). We also notice that this couple is dif-

ferent from the couple (Hn, σ
2), which characterizes the

perfect estimation. This very low bias of estimation will be

more precisely measured in Section 5.

Figure 2 Principle of the proposed iterative algorithm.
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4 Convergence of the algorithm in realistic case
This section aims at proving that the algorithm converges

in the realistic case (i.e., using an a priori unknown chan-

nel covariance matrix) if a relevant initialization σ̂ 2
(i=0) is

chosen. Thanks to the expressions (12) and (14), it is obvi-

ous that the channel estimation and the SNR converge,

since the convergence of (σ̂ 2
(i)) is established.

4.1 Scalar expression of the sequence (σ̂ 2

(i)
)

As seen in (8) and (10) in Section 3, a first channel

and noise variance estimation is performed using R̃
LS

H .

Indeed, the estimation of the covariance matrix R̃
LMMSE

H =

Ĥ
LMMSE

p(i=1) (Ĥ
LMMSE

p(i=1) )H requires beforehand a LMMSE chan-

nel estimation.We prove in Appendix that if the algorithm

is performed exclusively with R̃
LS

H , this leads to a noise

variance estimation which is equal to 0. This justifies the

substitution of R̃
LS

H by R̃
LMMSE

H for i ≥ 2. The noise vari-

ance estimation at the ith iteration (13) can be expressed

as

σ̂ 2
(i+1) =

1

M
E

{

||Ĥ
LS

p − Ĥ
LMMSE

p(i+1) ||2
}

(15)

=
1

M
tr

(

σ̂ 4
(i)

(

R̃
LMMSE

H + σ̂ 2
(i)I

)−1
(

RH + σ 2
I
)

×
(

R̃
LMMSE

H + σ̂ 2
(i)I

)−1
)

. (16)

We express R̃
LMMSE

H , computed after the first iteration

(11), as

R̃
LMMSE

H =
1

M
Ĥ

LMMSE

p(i=1)

(

Ĥ
LMMSE

p(i=1)

)H

(17)

=

(

R̃
LS

H

(

R̃
LS

H + σ̂ 2
(i=0)I

)−1
Ĥ

LS

p

)

×

(

R̃
LS

H

(

R̃
LS

H + σ̂ 2
(i=0)I

)−1
Ĥ

LS

p

)H

(18)

= R̃
LS

H

(

R̃
LS

H + σ̂ 2
(i=0)I

)−1
Ĥ

LS

p

(

Ĥ
LS

p

)H

×

(

R̃
LS

H

(

R̃
LS

H + σ̂ 2
(i=0)I

)−1
)H

. (19)

For a sufficiently large value of M, we consider that
1
M tr(R̃

LS

H ) = 1
M tr(RH + σ 2

I). Since the estimation of the

noise variance is calculated thanks to the trace in (16), we

make the assumption that R̃
LS

H = Ĥ
LS

p (Ĥ
LS

p )H = RH + σ 2I

as a first approximation in (19). Remembering that RH +

σ 2I is an Hermitian matrix leads us to consider that its

inverse is also Hermitian, we get

R̃
LMMSE

H =
(

RH + σ 2
I
)

(

RH + (σ 2 + σ̂ 2
(i=0))I

)−1

×
(

RH + σ 2
I
)

(

RH +
(

σ 2 + σ̂ 2
(i=0)

)

I

)−1

×
(

RH + σ 2
I
)

.

(20)

As shown in [34], it is possible to obtain the diagonal-

ized form of the expression (20). If we insert (20) into (16),

we then get the scalar expression of the noise variance

estimation:

σ̂ 2
(i+1) =

σ̂ 4
(i)

M

M−1
∑

m=0

(λm + σ 2 + σ̂ 2
(i=0))

4(λm + σ 2)

((λm + σ 2)3 + σ̂ 2
(i)(λm + σ 2 + σ̂ 2

(i=0))
2)2

(21)

⇔ σ̂ 2
(i+1) =

σ̂ 4
(i)

M

M−1
∑

m=0

λm + σ 2

(
(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 + σ̂ 2
(i))

2
, (22)

where λm are the eigenvalues of the matrix RH . From (22)

we remark that the choice of the initialization σ̂ 2
(i=0) plays

a key role in the convergence of the algorithm. Indeed,

if σ̂ 2
(i=0) is close to 0, the term (λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 is then

roughly equal to (λm + σ 2). It is therefore equivalent to

use the covariance matrix R̃
LS

H and the noise estimation

then converges towards 0. The solution is then to choose

a value of σ̂ 2
(i=0) that is arbitrarily large. Nevertheless, it

is possible to characterize the initialization, thanks to the

necessary condition given below. We define the function

f2 as σ̂ 2
(i+1) = f2(σ̂

2
(i)). We set x = σ̂ 2

(i) ≥ 0 so that the

function f2(x) is

f2(x) =
x2

M

M−1
∑

m=0

λm + σ 2

(

(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 + x

)2
. (23)

4.2 Necessary condition for the convergence of the

sequence (σ̂ 2

(i))

The limits of f2 are f2(0) = 0 and lim
x→∞

f2(x) = M2. The

derivative f ′
2 of f2 (24) is positive,

f ′
2(x) =

2x

M

M−1
∑

m=0

(λm + σ 2)
(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2

(

(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 + x

)3
, (24)

so f2 is growing in [ 0,+∞[ and we can make the

inclusion f2([ 0,M2] ) ⊂[ 0,M2]. Thus f2 has at least a

fixed point in the interval [ 0,M2]. From (23), we know

that 0 is an obvious fixed point of f2. A necessary
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(but not sufficient) condition for f2 to have other fixed

points can be expressed as follows: there exists x0 ≥ 0

such as maxx(f
′
2(x)) = f ′

2(x0) ≥ 1, i.e., f2 is above the first

bisector. Then, σ̂ 2
(i=0) can be adjusted in order to ensure

this condition. If we note f ′
2m

(x) as the function extracted

from f ′
2(x) such as f ′

2(x) =
∑M−1

m=0 f
′
2m

(x), we have

f ′
2m

(x) =
1

M

2x(λm + σ 2)
(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2

(

(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 + x

)3
. (25)

Let us note that f ′
2min

(x) as the function whose maxi-

mum that reached for x = x0min is less important than any

other maxima of the functions f ′
2m

among the set { f ′
2m

},

m = 0, . . . ,M−1. If we adjust σ̂ 2
(i=0) so that f

′
2min

(x0min) ≥

1, then we fulfil the necessary condition, f ′
2(x0min) ≥ 1.

Indeed, if f ′
2min

(x0min) ≥ 1, then

1 ≤ f ′
2min

(x0min) ≤
1

M

M−1
∑

m=0

f ′
2m

(x0min) = f ′
2(x0min).

(26)

In order to find x0min, we calculate the second derivative
f ′′
2min

of f2min :

f ′′
2m

(x)=
1

M

2(λm+σ 2)
(λm +σ2)

3

(

λm +σ2 + σ̂2
(i=0)

)2

(

(λm +σ2)
3

(

λm +σ2 + σ̂2
(i=0)

)2 −2x

)

(

(λm +σ2)
3

(

λm +σ2 + σ̂2
(i=0)

)2 +x

)4
.

(27)

The second derivative f ′′
2min

is equal to 0 for x0min =

1
2

(λm+σ 2)3

(λm+σ 2+σ̂ 2
(i=0))

2 , so we get the maximum value of f ′
2min

:

f ′
2min

(x0min) =
8

27

(

λm + σ 2 + σ̂ 2
(i=0)

)2

(

λm + σ 2
)2

. (28)

Whatever the values of σ 2 and σ̂ 2
(i=0), f

′
2min

(x0min) are

minimum for λm = λmax, with λmax the maximum

eigenvalue of RH , we can then minimize σ̂ 2
(i=0):

8

27

(

λmax + σ 2 + σ̂ 2
(i=0)

)2

(

λmax + σ 2
)2

≥ 1 (29)

⇔σ̂ 2
(i=0) ≥

(

√

27

8
− 1

)

(

λmax + σ 2
)

. (30)

The necessary condition maxx( f
′
2(x)) ≥ 1 is fulfilled for

σ̂ 2
(i=0) ≥ (

√

27
8 − 1)(λmax + σ 2). Since λmax and σ 2 are

unknown, the condition is necessary but not sufficient so

as to assess that f2 has a fixed point that is different from 0.

However, λmax is, by definition, the maximum eigenvalue

of the channel covariance matrix, so λmax ≥ 1
M

∑M−1
m=0 λm.

Furthermore, as M2 = 1
M

∑M−1
m=0 λm + σ 2, so thanks to

(30), we can minimize σ̂ 2
(i=0) and get

σ̂ 2
(i=0) ≥ (

√

27

8
− 1)M2. (31)

4.3 Sufficient condition for the convergence of the

sequence (σ̂ 2

(i))

The lower bound (31) satisfies the necessary condition

f ′
2 ≥ 1. Thus, this entails that f2 has a fixed point which

is different from 0. In order to give a sufficient condi-

tion, the initialization value σ̂ 2
(i=0) has to be set equal to

�M2, with � >> 1. Indeed, for all x ∈[0,M2], we have

lim
σ̂ 2

(i=0)→+∞
f (x) = M2, so it is possible to find σ̂ 2

(i=0) such

as f (x) > x. Given that lim
x→+∞

f (x) = M2, we deduce

that a fixed point different from 0 exists for a well-chosen

initialization σ̂ 2
(i=0) = �M2. However, the previous devel-

opment only proves the existence of a sufficient condition

on σ̂ 2
(i=0) for the convergence of (σ̂ 2

(i)) to a non-null limit

but it does not give a precise characterization of σ̂ 2
(i=0). In

order to get a suitable value of σ̂ 2
(i=0), the receiver should

test some initialization values (e.g., thanks to an abacus)

until it finds the expected one, as depicted on Figure 3.

The latter illustrates the shape of two examples of f2: one

with a relevant initialization σ̂ 2
(i=0) = 10 M2 (we see a

fixed point that is different from 0) and one with an ini-

tialization which does not match the necessary condition

(0 is the sole fixed point). We actually observe that if σ̂ 2
(i=0)

is not chosen as being large enough, then σ̂ 2
(i) converges

to 0.

However, the choice of a relevant value � is not obvi-

ous. Indeed, since the channel frequency response and the
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noise variance can take an infinite number of values, the

design of an abacus of f2 is computationally prohibitive.

Furthermore, we assume that the receiver has no a priori

knowledge of the set of the parameters {λm, σ
2}, which

makes the choice of the optimal initialization impossi-

ble. In order to overcome the issue of the complexity of

the choice of σ̂ 2
(i=0), we propose in Section 4.4 a simple

characterization which does not require any abacus.

4.4 Optimal choice of the initialization σ̂ 2

(i=0)

The conditions on σ̂ 2
(i=0) given in previous Section 4.3 are

either not relevant enough (σ̂ 2
(i=0) = �M2 with � >> 1),

or too complex (use of abacus of f2). Here, we propose a

simple characterization of σ̂ 2
(i=0) made thanks to the noise

variance estimation σ̂ 2, which was performed on the last

frame. If we note F the index of the current frame, the

proposed method is as follows:

• For the first frameF = 1, perform the algorithm
thanks to the arbitrary initialization σ̂ 2

(i=0) = �M2

chosen with the sufficient condition � >> 1.
• For F > 1, get the noise variance σ̂ 2 and the

eigenvalues of the channel covariance matrix R̃
LMMSE
H

(11), estimated at the previous frameF − 1.
• Considering the expression of f2 given in (23), look

for σ̂ 2
(i=0),opt so that

σ̂ 4

M

M−1
∑

m=0

λm + σ̂ 2

(

(λm+σ̂ 2)
3

(

λm+σ̂ 2+σ̂ 2
(i=0),opt

)2 + σ̂ 2

)2
− σ̂ 2 = 0.

(32)

The direct solving of (32) is very complex, but in prac-

tice, the receiver can use a simple binary search algorithm

to approach the optimal solution. This optimal solution

σ̂ 2
(i=0),opt can then be found at the frame F .

For a relevant choice of the initialization σ̂ 2
(i=0), we have

given a sufficient condition so that the algorithm con-

verges to a non-null solution. Additionally, an optimal

value of σ̂ 2
(i=0) can be found, which allows the convergence

to take place at the expected noise and channel values.

Section 5 depicts the performance of our algorithm and

finally shows that the estimated couple (σ̂ 2, Ĥn) is close to

the perfect estimation one (σ 2,Hn).

5 Simulations results
This section aims at confirming, by means of simula-

tions, the theoretical results developed in the previous

sections. Furthermore, it characterizes the algorithm per-

formance, such as the speed of convergence, the bias of

the noise variance estimation, or the bit error rate (BER),

thanks to the proposed channel estimation compared to

the perfect one. The simulation parameters are based

on the Digital Radio Mondiale (DRM/DRM+) standard

[35], designed for the digital audio broadcasting over the

current AM/FM frequency bands. We consider a 201-

subcarrier OFDM modulation with a sampling frequency

equal to 12 kHz. Each OFDM frame is composed of

20 symbols, each symbol being filled with data symbols

from a 16-QAM constellation. The added CP featuring a

TCP duration of 2.66 ms is supposed to avoid the inter-

symbol interferences, i.e., it is longer than the maximum

delay of the channel. Although the DRM standard rec-

ommends a distribution of the pilot tones in staggered

rows in the OFDM frame, we considered a preamble dis-

tribution for the purpose for our method. As previously

mentioned, each preamble is composed of one pilot sym-

bol only. We consider the US Consortium channel model,

also described in theDRMstandard. It is a four-path chan-

nel in which the maximum delay is τmax = 2.2 ms and

the maximum Doppler spread is equal to 2 Hz. Here,

the channel is supposed to be quasi-static, which means

that it varies very slowly during a frame duration. In the

following, the term ‘perfect case’ refers to the algorithm

proposed in [34], in which the channel covariance matrix

is supposed to be known at the receiver, whereas ‘practical

case’ refers to the proposed algorithm.

5.1 Convergence of the noise variance estimation

Figure 4 depicts the noise variance estimation as a func-

tion of the iteration number i. The estimation in the

practical case is compared to that of the perfect case and

the real value of the noise variance. Furthermore, two val-

ues of SNR are considered: ρ = 0 dB for the upper curves

and ρ = 10 dB for the lower curves. The initialization

value σ̂ 2
(i=0) in the perfect case is equal to 2. In the practical
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case, it is equal to σ̂ 2
(i=0) = 20M2. The curves are obtained

by means of an average made over 4,000 simulation runs.

For iterations i ≥ 1, we remark that the sequence

(σ̂ 2
(i)) is monotonous and converges to a single non-null

value, which verifies the theoretical developments given in

Section 4. We also observe a fast convergence to the sin-

gle limit, which will be confirmed in Section 5.2. Figure 4

characterizes the noise variance estimation thanks to the

normalized bias β calculated by β = |(σ̂ 2
(i)) − σ 2|/σ 2, β

being averaged over 4,000 runs. Expressed in percentage,

the bias of the proposed estimation is equal to 5.9% for

ρ = 0 dB and 1.2% for ρ = 10 dB. These results are very

close to the estimation performed in the perfect case.

5.2 Speed of convergence of the algorithm

Figure 5 shows the values of the difference |σ̂ 2
(i) − σ̂ 2

(i−1)|

versus the number of iterations for i ≥ 2, for both the

perfect and the practical cases. Simulations are performed

with ρ = 10 dB and the initialization value σ̂ 2
(i=0) = 2

in the perfect case and σ̂ 2
(i=0) = 20M2 in the practical

case. These curves characterize the required number of

iterations to get an expected value of threshold eσ .

For example, in order to reach a fixed value eσ = 0.01,

three iterations are required in the practical case and two

in the perfect case. For eσ = 0.0001, seven iterations are

required in the practical case and three in the perfect case.

These results confirm the high-speed convergence of the

algorithm.

5.3 Comparison of SNR estimation with othermethods

Figures 6 and 7 display the normalized MSE (NMSE)

of the SNR estimation of the proposed method com-

pared to the perfect case and three existing methods:

Ren’s method [12], Xu’s method [13], and the usual M2M4

[10]. Ren’s method requires a two pilot-symbols preamble

2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number (i)

e
rr

o
r |

σ
2 (i
)−

σ
2 (i
−

1
)|

perfect case
practical case

Figure 5 Error |σ̂ 2

(i)
− σ̂ 2

(i−1)
| in function of the iteration number i.

−4 −2 0 2 4 6 8 10 12 14 16

10
−3

10
−2

10
−1

10
0

10
1

N
M

S
E

 o
f 
th

e
 e

s
ti
m

a
te

d
 S

N
R

perfect case[30]
practical case
Ren’s method [12]
Xu’s method [13]
M

2
M

4
 [10]

SNR (in dB) 

Figure 6 Comparison of NMSE of SNR estimation of the

proposedmethod with existing methods at condition

σ̂ 2

(i=0)
= 20M2. NMSE of the SNR estimation of the proposed

method compared to the two existingmethods; σ̂ 2
(i=0) is chosen

thanks to the sufficient condition σ̂ 2
(i=0) = 20M2.

in order to avoid the effect of the frequency-selective

channel. The noise variance estimation is then given by

σ̂ 2 = 0.5||Up+1 − Up||
2 = 0.5||Wp+1 − Wp||

2, and

the SNR is computed thanks to (4). Xu’s method requires

a one pilot-symbol preamble in order to compute the

covariance matrix of the channel. The noise variance

estimation is made thanks to the subspace of the eigen-

values which includes only the noise samples. The M2M4

method directly computes the SNR estimation, thanks to

the second moment order M2 and the fourth moment
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(0) is chosen thanks to the proposed

characterization of Section 4.4.
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orderM4 of the received signal. For a 16-QAM constella-

tion in Rayleigh fading channels, authors in [10] give the

estimation of the SNR as ρ̂ = (

√

M4 − 2M2
2)/(0.8M

2
2 −

√

M4 − 2M2
2). Figures 6 and 7 also compare the SNR esti-

mation performed with two different initializations. In

Figure 6, we use the sufficient condition σ̂ 2
(i=0) = 20M2

for each frame. In Figure 7, the initialization step σ̂ 2
(i=0) =

20M2 is used for the first frame F = 1, and then σ̂ 2
(i=0)

is updated thanks to the proposed method presented in

Section 4.4. When Figure 6 or 7 is considered, we now

consider i0 = 7 iterations. In the perfect case, the initial-

ization value is σ̂ 2
(i=0) = 0.1, and the number of iterations

is i0 = 3. The NMSE given by NMSE = E{|ρ̂ − ρ|2/ρ2} is

approximated and simulated, thanks to an average made

over 200,000 samples.

As mentioned in [10], we remark that the performance

of the M2M4 method is degraded in Rayleigh channels,

which is the case here. Whatever the SNR is, the pro-

posedmethod outperforms the one fromXu’s. In Figure 6,

the performance of the algorithm is degraded compared

to that obtained with the Ren’s method for low SNR val-

ues (<3 dB). It confirms that for low values of SNR, σ̂ 2
(i=0)

is not large enough compared to the value of the noise

variance σ 2. However, when the algorithm is used with

an updated initialization (Figure 7), the method outper-

forms Ren’s one whatever the SNR is, and the SNR gap

with the perfect case is less than 1 dB from SNR = 0 dB.

This proves the efficiency of the proposed algorithm and

the validity of the improvement with regard to the choice

of σ̂ 2
(i=0), when performed with an update in each frame.

Furthermore, our method requires only one pilot-symbol

preamble while Ren’s requires two. We conclude that we

can improve both the rate of the required pilots and the

efficiency of the estimation.

5.4 Channel estimation

Figure 8 illustrates the BER of the proposed method as a

function of the SNR over a relevant span (from 0 to 32

dB). The estimation is compared to the ones performed in

the perfect case, perfect estimation, and the usual LS. We

remind that the channel is the four-path US Consortium

from the DRM standard [35] and the constellation is a

16-QAM. The initialization is chosen as previously, i.e.,

σ̂ 2
(i=0) = 0.1 in the perfect case and σ̂ 2

(i=0) = 20M2

with an update in the practical case. The BER curves

are performed by the means of simulating a 2.5 × 106

bits transmission. As mentioned in Section 2, the chan-

nel is quasi-static, so it is considered as being invariant on

each frame of 20 OFDM symbols, where the first one is a

pilot-symbol preamble.

We observe on Figure 8 that the channel estimation con-

verges to a value that is close to the perfect estimation.
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Figure 8 Proposedmethod BER versus SNR and comparisonwith

the perfect estimation, perfect case, and LS.

Indeed, zooming around SNR = 25 dB, we can see that

the gap between the perfect channel estimation and our

method is less than 0.2 dB after seven iterations. It con-

firms the high speed of convergence and illustrates the

efficiency of the channel estimation algorithm.

6 Conclusions
In this article, we presented a practical algorithm for a

joint and iterative MMSE-based estimation of the SNR

and the frequency-selective channel in an OFDM con-

text. The SNR is estimated, thanks to the MMSE noise

variance estimation combined with the second moment

order of the signal, and the channel, thanks to the LMMSE

method. Since each estimation requires the other one, the

algorithm is iterative, as proposed in [34] for a theoretical

case in which the channel covariance matrix is supposed

to be known at the receiver. However, we considered in

this paper a practical case which assumes that the chan-

nel covariance matrix is a priori unknown at the receiver

side. We theoretically proved that for a well-chosen ini-

tialization value, the algorithm converges. Furthermore,

simulations showed that the proposed method has a very

good quality of estimation for both the SNR and the chan-

nel frequency response. Compared to existing methods,

the algorithm improves the ratio between the required

number of pilots and the efficiency of the SNR estima-

tion. Further works will concern the application of the

proposed algorithm to the domain of the cognitive radio,

in particular, for free bands detection.

Appendix
We prove the convergence towards 0 of the algorithm

when it is performed with the channel covariance matrix

R̃
LS

H . It justifies the substitution of this matrix by R̃
LMMSE

H



Savaux et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:128 Page 10 of 11

http://asp.eurasipjournals.com/content/2013/1/128

for i ≥ 2. We give the expression of the noise variance (13)

using the developments made for the theoretical case [34]:

σ̂ 2
(i+1) =

1

M
E

{

||Ĥ
LS

p − Ĥ
LMMSE

p(i+1) ||2
}

(33)

=
1

M
tr

(

σ̂ 4
(i)

(

R̃
LS

H + σ̂ 2
(i)I

)−1
(

RH + σ 2
I
)

×

(

(

R̃
LS

H + σ̂ 2
(i)I

)−1
)H

)

. (34)

We remind that for a large valueM, we have 1
M tr(R̃

LS

H ) =
1
M tr(RH + σ 2

I), so we will consider, in a first approxi-

mation, that R̃
LS

H = RH + σ 2
I in order to develop (34)

σ̂ 2
(i+1) =

1

M
tr

(

σ̂ 4
(i)

(

RH +
(

σ̂ 2
(i) + σ 2

)

I

)−1
(

RH + σ 2
I
)

×

(

(

RH +
(

σ̂ 2
(i) + σ 2

)

I

)−1
)H

)

.

(35)

With RH being an Hermitian matrix, we use the same

diagonalization property as in [34] for the expression (35),

and we finally find the scalar form of (35):

σ̂ 2
(i+1) =

σ̂ 4
(i)

M

M−1
∑

m=0

λm + σ 2

(λm + σ 2 + σ̂ 2
(i))

2
, (36)

where λm are the eigenvalues of the covariancematrixRH .

If we note x = σ̂ 2
(i), the sequence (σ̂ 2

(i+1)) is built from a

function f1 so that

f1(x) =
x2

M

M−1
∑

m=0

λm + σ 2

(

λm + σ 2 + x
)2
, (37)

with x ∈[0,+∞[. The proof of the convergence towards

zero of the sequence (σ̂ 2
(i+1)) in (36) is based on the fixed

point theorem, i.e., we show that the only solution to the

equation f1(x) = x is 0. The limits of f1 are f1(0) = 0 and

lim
x→∞

f1(x) = 1
M

∑M−1
m=0 (λm + σ 2) = M2. Furthermore, the

derivative of f1

f ′
1(x) =

2x

M

M−1
∑

m=0

(λm + σ 2)2

(λm + σ 2 + x)3
, (38)

is positive for x ∈[0,+∞[, so f1 is growing on this interval.

We then deduce the inclusion f1([0,+∞[ ) ⊂[0,M2] and

so f1([0,M2] )⊂[0,M2]. Thus f1 has at least one fixed point

on [0,M2]. As f1 is growing on [0,M2], we conclude that

the sequence (σ̂ 2
(i+1)) converges to one of the fixed point

of f1. An obvious fixed point of f1 is 0, since f1(0) = 0. We

now prove that 0 is the sole fixed point of f1 on [0,M2]. To

this end, we show that f ′
1(x) < 1, which is equivalent to

(f1(x) − x)′ < 0. We define the functions f1m(x) extracted

from f1(x) so that f1(x) = 1
M

∑M−1
m f1m(x):

f1m(x) =
x2

(

λm + σ 2
)

(

λm + σ 2 + x
)2
. (39)

Since f1 is defined by a sum, we also have for the

derivative f ′
1(x) = 1

M

∑M−1
m f ′

1m
(x), with:

f ′
1m

(x) =
2x(λm + σ 2)2

(λm + σ 2 + x)3
. (40)

For any value ofm = 0, 1, . . . ,M−1 and x ≥ 0, f ′
1m

(x) ≥

0, so we can apply the following triangle inequality on the

derivate of f1:

max
x

(f ′
1(x)) ≤

1

M

M−1
∑

m=0

max
x,m

(f ′
1m

(x)). (41)

Form = 0, 1, . . . ,M−1, we find the maximum of f ′
1m

(x),

thanks to a second derivation so that

f ′′
1m

(x) =
2(λm + σ 2)2(λm + σ 2 − 2x)

(λm + σ 2 + x)4
. (42)

The second derivative of f1m(x) in (42) is null for x =
1
2 (λm + σ 2), so we find, thanks to expression (40)

max
x

(f ′
1m

(x)) = f ′
1m

(

x =
1

2
(λm + σ 2)

)

=
8

27
. (43)

Equation 43 shows that for any value of m = 0,

1, . . . ,M − 1, the maximum of f ′
1m

is equal to 8
27 , so the

triangle inequality is simplified:

max
x

(f ′
1(x)) ≤

8

27
, (44)

which then proves that f ′
1(x) < 1, i.e., f has only one fixed

point equal to 0. Figure 9 displays an example of f1(x) and
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f ′
1(x). We conclude that if the algorithm is performed with

the covariance matrix R̃
LS

H , then the sequence (σ̂ 2
(i)) con-

verges to 0 and the algorithm enters into a endless loop,

whatever the value of the initialization σ̂ 2
(0) is.
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