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Application of a Meshless Method in
Electromagnetics

S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong

Abstract—An improved meshless method is presented with an application of this new computational technique in electrical
emphasis on the detailed description of this new computational engineering.
technigue and its numerical implementations by investigating the
usefulness of a commonly neglected parameter in this paper. Two
approaches to enforce essential boundary conditions are also thor- II. MESHLESSMETHOD USING MLS

oughly investigated. Numerical tests on a mathematical function is Although the theoretical contents of meshless methods have

carried out as a means of validating the proposed method. It will . .
be seen that the proposed method is more robust than the conven- been fully demonstrated by many researchers in related fields

tional ones. Applications in solving electromagnetic problems are [1]__[3_]1 it is felt that there iS_ still a need to give a detaile_d de-
also presented. scription of the method to improve understanding of this new

Index Terms—tagrange multiplier method, least squares computational technique by fellow researchers.

method, meshless method, moving-least square approximants. . . .
g a PP A. Governing Equation and Weak Form Functional

For illustrative purposes, one considers two dimensional
magneto/electrostatic problems which are governed by the
ESHLESS methods, originated about twenty years agequation of equilibrium
are now proven as a robust technique to study field prob- 92u 92u
lems in which large geometrical deformations are to be modeled Q2 /3@ + ﬁa—yQ =-r 1)
[1]-[3], since such methods avoid the onerous mesh generatioq-he essential
and adaptive updating, thereby resulting in continuous diﬁerelré'spectively
tiable approximations that are smooth functions and require no ’

. INTRODUCTION

and natural boundary conditions are,

post-processing. In simulation studies in electrical engineering, Lp:u=uo. )
itis common to have geometrical deformations for optimization Cy: [3@ —q. 3)
and nondestructive evaluation problems, and many researchers an

have found the meshless method very promising for the stufierel’p ULy = I', I' is the boundaries df.
of electromagnetics [4]-[6]. The weak form functional corresponding to the above

This paper describes in details the discretization proceduR@Hndary value problem is
and the associated discrete formulations of a meshless method 8| /ou\? ou) 2
based on the Moving Least Square (MLS) approximant that W (u) = // {5 l(a) + <8_) ] - fu} dzdy
are required when using meshless methods to study electro- ° Y
magnetic problems. The special techniques for enforcing es- _ </ quds +/ /3@ -uds) . (4)
sential boundary conditions and for approximating the discon- Iy rp, on
tinuous derivatives on the interface of different materials are Owing to the non-Kronecker delta function property of the
also investigated. A factor which contributes a significant dishape functions of meshless methods, an additional term repre-
ference which is omitted by most related meshless methodssésting contributions of normal derivatives of the solution vari-
also pointed out. To validate the new formulation, a set of thagible on essential boundaries that corresponds to that for the fi-
ough numerical results are presented and compared with thaie element method, is introduced in the formulations of (4). It
obtained from a mathematical function. Some numerical expshould be pointed out that this term is commonly neglected by
riences and suggestions are also highlighted for facilitating theost fellow researchers in their related works.

B. Moving Least Square Approximations
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For two dimensional problems{'T = [z ], and a linear different material interfaces, the approximation of (10) then

basisp® = [1 = w]is used in this paper. becomes
To determine the unknown parameter$X), the difference n na
between the local approximation given by (5) and the nodal pa- u(X) = Z Gr(X)us + Z 7’ ()W (7). (12)
rametersy;, i.e., the weighted, discrefe, norm as given by (6), I=1 J
is minimized. Moreover, where
n 5 W, (r) isthe jump function which will generate the discon-
J = wr [uf(Xr, X) — u] tinuous normal derivatives,
I=1 r is the distance to the closest point on the interface
- T 2 line segment of discontinuity, and
- ; wilp™ (Xr)a(X) —ur]” ©® -, is positive on one side and negative on the other side

] o of the interface line section.
wherew; = w(X — X;) is a compactly supported weighting  1he gpline jump function is used in this paper to generate
function with center at nod&; andn is the number of nodes in {h¢ discontinuous normal derivatives, and the details about this
the neighborhood ok for which the weighting functiom; #  jymp function and its numerical implementation are given in [7].
0 [3], [4]- o ) o In order to simplify the development of the discrete equation set
The weighting functionsu used in this paper are the tensof, \hat follows, one will use the form of (10) to approximate
products of one dimensional ones. Minimization of (6) with reg,e solution variable. However one must also note Aty

spect toa(X) leads to the following linear equation set includes both the shape functidn and the jump shape function
A(X)a(X) = B(X)u. @ Vi)

where, A(X) = 7 wip(X)p"(Xr), [B(X)lr = D. Discrete Equations

wip(Xy) (= 1,2,...,0),uT =[u; w2 ... ]

As in the general case of meshless methods, the application
of essential boundary conditions is very complicated and diffi-
cult since the shape functions do not satisfy the Kronecker delta

For the special case where a linear basis is usédl, and
[B(X)]; become, respectively,

n 1 yr criterion. Two different approaches, i.e., the collocation and La-
AX) = wr e 23wy |- (8) grange multiplier methods, are investigated in this paper. Nu-
I=1 yr o Tryr o ui merical experiences show however that the collocation method
1 could not be used simply in the meshless methods. Instead, an
[B(X)]r =wr | zr | . (9) improved form of it, the least squares approach, is proposed in
Ur this paper because of its simplicity when it comes to numerical

Solvinga(X) from (7) and then substituting it to (5), then theimplt_amentation. The d_ifferenqe in the.approaches to !mpose es-
moving least square approximant is given by ;enpal boundary _condmons will resultin some small differences
in discrete equations.
1) Discrete Equations Using Lagrange Multiplier Method
to Enforce Essential Boundary Conditionfn this case, the

) : . Lagrange Multiplier Method is used to enforce the essential
where®;(X) is defined as the shape function of the MLS ap;ondary conditions. The modified functional of (4) needed to

uM(X) =" ®r(X)ur = (X)u. (10)
I=1

proximants, and is determined by using be minimized then becomes [8]
2
©1(X) =Y p(X)(AHX)B(X));1 =pT(X)A LBy Wi (u, ) = W (u) + / Au—ug)ds.  (13)
Jj=0 I'p

(11) wherex is the Lagrange Multiplier and can be expressed as

C. Interface Condition Approximation A(8)|rp = Ni(s)A;. (14)

Although the continuous approximation of the (partialvhereN;(s) is a Lagrange interpolant andis the arc length
derivatives of the solution variable is considered as havirgong the boundary.
the promising characteristics of meshless methods, it alsoFrom the necessary condition for (13) to reach its minimum,
has a drawback in engineering problems where the solutiofe obtains
variable do have discontinuities of (partial) derivatives at, for
example, the interface of different materials, since the contin-6uWr(u, A) :// {{B(6w)ate + (6u)yu,] — foutdrdy
uous differentiable approximations will lead to the solution o

variable exhibiting the well known Gibb’s phenomenon in the — </ qouds +/ /J%Mds)
interfaces. Here the jump function approach is used [7]. The I rp, 90

basic idea of this approach is that some special shape functions + \suds = 0. (15)
are introduced in the interfaces of different materials so as to T'p

generate the required discontinuous normal derivatives. For, _ T/ _

example, considering a problem witly,; line segments of Wi (u, A) = ' SA™(u — uo)ds = 0. (16)
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Substituting (10) and (14) into (15) and (16), lettiftg =
®;(X), 6\ = N;, and then integrating, one obtains

X B ot
K N w| | F 17 ot ngigp:tedu with £
NT 0 A TG (17) B Ocomputedu w1thout 7

where

big = [ BL@Ia@))0 + (@@, Mody. (18
¢ —exactu

Nig = O, N;ds. (29) - Dcomputed u, with £
’ T'p Ocomputed u, w1thout f

fi :/ f®;dxdy +/ q®ids + f;)’- (20) 0 0.2 04 0.6 0.8 1
2 JNS ‘ x
gi = N,ugds. (21) Fig. 1. Comparison between analytical and numerical solutions for the
'p mathematical function using Largrange multiplier method to impose essential
boundary conditions with and without considering the contributions of nonzero
where normal derivatives of the solution variable on essential boundaries.
04 O ted u with £ ) )
3 _ computed u wi
= . /3 (I) ds. (22) " O computed u without f;> ?
D | —
02 exact u
_ Just as ment|on_ed prewou:_sly, an add|_t|onal tqﬁnnu_st be 000000000.0
introduced to the right hand side of the discrete equations when aEeo00 00Q000" .
one considers the contributions of the nonzero normal deriva- 0 02 0.4 0.6 0.8 1
tives of the solution variable on the essential boundaries. Unfor- 0.6
tunately, this term is commonly ignored in most of the related ’:‘0.4:- —exact u,
works [1]-[3].
2) Discretg Equation Using _Lgast Squares Method to Im- O'Zc;oooo 0000000009000
pose Essential Boundary Condition3he collocation method 0 Ocomputed u, with f;
cannot be used easily to enforce essential boundary conditions 02 Ocomputed u, w"h°“tf
in meshless methods. Thus an improved form of it, the least 0 02 04 06 08 !

. . . —_— X
squares approach, is used as an alternative to Incorporate essen-

tial boundary conditions. The minimization of (4) results in thejg. 2. comparison between analytical and numerical solutions for the

following discrete equations mathematical function using the collocation method to enforce essential
boundary conditions with and without considering the contributions of nonzero
normal derivatives of the solution variable on essential boundaries.

(K {uy = {F}- (23)

whereK andF are, respectively, defined in (18) and (20).
For the approximants (10) to satisfy the essential boundaky Numerical Validation
condition (2), the following discrete equations are used:

I1l. NUMERICAL EXAMPLES

In order to validate the proposed method, a one dimensional
: mathematical function with analytical solutions is solved [3].
S @ Xpur = (o) (k=1,2,...,Nr,). (24)  The problem is to find the solution of

I
d*u
where N, is the total node number on the boundany, and a2 =~ (O<z<l). (26)
X}, is the coordinates of the corresponditt) node. 4(0) =0 and /(1) =0. (27)

Due to the fact that the number of the total equations of (23)-|-he exact solution of (26) and (27)ix) = (/2) — (2°/6)
and (24) is greater than the freedom of coefficientthe solu- ;s orious that at the essential boundars 0, the following
tion of  is obtained by minimizing the following residual with ., o normal derivative of the solution variable exists,

respect tou.
P du
dn|,_,

R= Z <Z kpqtq — fp> This problem is solved by using the proposed method under
P a four different cases, namely, cases where Lagrange multiplier

=-0.5. (28)

2 method is used to enforce essential boundary conditions with

+ Z <Z Qr(Xp)ur — (U'O)p> . (25) and without considering the contributions of (28), and cases
in which the least squares method is used to impose the

essential boundary conditions with and without considering
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Fig. 3. A parallel plate capacitor. Fig. 6. Comparison of computed and exact solutions for the parallel plate
capacitor.

P o

u=0 x

Fig. 7. The computed equipotential contours of the ground metal slot.

TABLE |
PERFORMANCE COMPARISON OF THEMESHLESS ANDFINITE ELEMENT
METHODS FOR THE2-D PROBLEM RUNNING IN A 600 MHz MACHINE

@ (i

Nodes (Unknown Elements Integ  CPU

il variables) cells  time(s)
LLLiiiiil Finite 441 800 / 1.42
oo element
Meshless 441 / 400 1.58

the nonzero normal derivative of the solution variable on the
(b) essential boundary is considered or not, are almost the same
and show good agreement with the exact solutions. However,
the computed Lagrange multipliers in the two different cases
are, respectivel\§.888 066 x 10~> and—0.499 931 1.

Fig. 5. Nodal arrangement and background integration cell for the 2-%' AppI|cat|on
problem: (a) nodal arrangement; (b) integration cell. The proposed method is used to study both 1-D and 2-D field
problems, i.e., to determine the fields of a parallel plate capacitor
the contribution of (28). In the numerical computations, 1With a uniform permittivitye between the plates (Fig. 3), and to
equi-distance nodes are used, and the weighting function usietiermine the fields of an infinite square grounding metal slot
is a cubic spline one [3]. The comparisons of humerical resultSig. 4). In the numerical implementation, the cubic spline func-
with the exact ones for different cases are given in Figs. 1 afidn is also used as the weight function, 11 equi-distance nodes
2. From these results one can see that: (1) as revealed by Fi@r2, used for the 1-D problem, and the nodal arrangement and
by considering contributions of the nonzero normal derivatitbe background integration cells for the 2-D problem are shown
of the solution variable on the essential boundary= 0, the in Fig. 5. The comparison between the analytical and the com-
proposed method based on the least squares method to enfptted solutions for the 1-D problem is given in Fig. 6, and the
the essential boundary conditions gives “almost exactly” neguipotential contours obtained by using the proposed method
merical results for both the solution variable and its derivativégr the 2-D problems is shown in Fig. 7. The performance com-
although only 11 equi-distance nodes are used. When excludpagisons between the finite element and the proposed methods
this contribution, other things being equal, the method will leddr the 2-D problem is given in Table I. From these results it can
to fictitious numerical results; (2) as demonstrated in Fig. 1, the seen that (1) the computed results of the 1-D problem agree
computed results of the proposed method based on Lagramgdl with the analytical solutions, and (2) the proposed method
multiplier method to impose essential boundary conditions competitive to finite element methods although the CPU time
under two different cases, i.e., whether the contribution oked by the proposed method is much longer compared with that
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of the finite element method considering the fact that the numeadultiplier Method and those combinations of the finite element
ical solver of MATLAB for the large sparse equation set useahd the meshless methods that are not so sensitive to these
in the proposed meshless method is not as efficient as that, icentributions.

ICCG, used for the finite element method.
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