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Application of a Meshless Method in
Electromagnetics

S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong

Abstract—An improved meshless method is presented with an
emphasis on the detailed description of this new computational
technique and its numerical implementations by investigating the
usefulness of a commonly neglected parameter in this paper. Two
approaches to enforce essential boundary conditions are also thor-
oughly investigated. Numerical tests on a mathematical function is
carried out as a means of validating the proposed method. It will
be seen that the proposed method is more robust than the conven-
tional ones. Applications in solving electromagnetic problems are
also presented.

Index Terms—Lagrange multiplier method, least squares
method, meshless method, moving-least square approximants.

I. INTRODUCTION

M ESHLESS methods, originated about twenty years ago,
are now proven as a robust technique to study field prob-

lems in which large geometrical deformations are to be modeled
[1]–[3], since such methods avoid the onerous mesh generation
and adaptive updating, thereby resulting in continuous differen-
tiable approximations that are smooth functions and require no
post-processing. In simulation studies in electrical engineering,
it is common to have geometrical deformations for optimization
and nondestructive evaluation problems, and many researchers
have found the meshless method very promising for the study
of electromagnetics [4]–[6].

This paper describes in details the discretization procedures
and the associated discrete formulations of a meshless method
based on the Moving Least Square (MLS) approximant that
are required when using meshless methods to study electro-
magnetic problems. The special techniques for enforcing es-
sential boundary conditions and for approximating the discon-
tinuous derivatives on the interface of different materials are
also investigated. A factor which contributes a significant dif-
ference which is omitted by most related meshless methods is
also pointed out. To validate the new formulation, a set of thor-
ough numerical results are presented and compared with those
obtained from a mathematical function. Some numerical expe-
riences and suggestions are also highlighted for facilitating the
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application of this new computational technique in electrical
engineering.

II. M ESHLESSMETHOD USING MLS

Although the theoretical contents of meshless methods have
been fully demonstrated by many researchers in related fields
[1]–[3], it is felt that there is still a need to give a detailed de-
scription of the method to improve understanding of this new
computational technique by fellow researchers.

A. Governing Equation and Weak Form Functional

For illustrative purposes, one considers two dimensional
magneto/electrostatic problems which are governed by the
equation of equilibrium

(1)

The essential and natural boundary conditions are,
respectively,

(2)

(3)

where , is the boundaries of .
The weak form functional corresponding to the above

boundary value problem is

(4)

Owing to the non-Kronecker delta function property of the
shape functions of meshless methods, an additional term repre-
senting contributions of normal derivatives of the solution vari-
able on essential boundaries that corresponds to that for the fi-
nite element method, is introduced in the formulations of (4). It
should be pointed out that this term is commonly neglected by
most fellow researchers in their related works.

B. Moving Least Square Approximations

In the proposed method, the trial and test functions for the
variational principle are constructed by using moving least
square approximations entirely in terms of a set of nodes, i.e.,

(5)

where the unknown parameters will vary with and
is the basis of a complete polynomial of order.
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For two dimensional problems, , and a linear
basis is used in this paper.

To determine the unknown parameters , the difference
between the local approximation given by (5) and the nodal pa-
rameters , i.e., the weighted, discrete norm as given by (6),
is minimized. Moreover,

(6)

where is a compactly supported weighting
function with center at node and is the number of nodes in
the neighborhood of for which the weighting function

[3], [4].
The weighting functions used in this paper are the tensor

products of one dimensional ones. Minimization of (6) with re-
spect to leads to the following linear equation set

(7)

where, ,
, .

For the special case where a linear basis is used, and
become, respectively,

(8)

(9)

Solving from (7) and then substituting it to (5), then the
moving least square approximant is given by

(10)

where is defined as the shape function of the MLS ap-
proximants, and is determined by using

(11)

C. Interface Condition Approximation

Although the continuous approximation of the (partial)
derivatives of the solution variable is considered as having
the promising characteristics of meshless methods, it also
has a drawback in engineering problems where the solution
variable do have discontinuities of (partial) derivatives at, for
example, the interface of different materials, since the contin-
uous differentiable approximations will lead to the solution
variable exhibiting the well known Gibb’s phenomenon in the
interfaces. Here the jump function approach is used [7]. The
basic idea of this approach is that some special shape functions
are introduced in the interfaces of different materials so as to
generate the required discontinuous normal derivatives. For
example, considering a problem with line segments of

different material interfaces, the approximation of (10) then
becomes

(12)

where
is the jump function which will generate the discon-
tinuous normal derivatives,
is the distance to the closest point on the interface
line segment of discontinuity, and
is positive on one side and negative on the other side
of the interface line section.

The spline jump function is used in this paper to generate
the discontinuous normal derivatives, and the details about this
jump function and its numerical implementation are given in [7].
In order to simplify the development of the discrete equation set
in what follows, one will use the form of (10) to approximate
the solution variable. However one must also note that
includes both the shape function and the jump shape function

.

D. Discrete Equations

As in the general case of meshless methods, the application
of essential boundary conditions is very complicated and diffi-
cult since the shape functions do not satisfy the Kronecker delta
criterion. Two different approaches, i.e., the collocation and La-
grange multiplier methods, are investigated in this paper. Nu-
merical experiences show however that the collocation method
could not be used simply in the meshless methods. Instead, an
improved form of it, the least squares approach, is proposed in
this paper because of its simplicity when it comes to numerical
implementation. The difference in the approaches to impose es-
sential boundary conditions will result in some small differences
in discrete equations.

1) Discrete Equations Using Lagrange Multiplier Method
to Enforce Essential Boundary Conditions:In this case, the
Lagrange Multiplier Method is used to enforce the essential
boundary conditions. The modified functional of (4) needed to
be minimized then becomes [8]

(13)

where is the Lagrange Multiplier and can be expressed as

(14)

where is a Lagrange interpolant andis the arc length
along the boundary.

From the necessary condition for (13) to reach its minimum,
one obtains

(15)

(16)
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Substituting (10) and (14) into (15) and (16), letting
, , and then integrating, one obtains

(17)

where

(18)

(19)

(20)

(21)

where

(22)

Just as mentioned previously, an additional termmust be
introduced to the right hand side of the discrete equations when
one considers the contributions of the nonzero normal deriva-
tives of the solution variable on the essential boundaries. Unfor-
tunately, this term is commonly ignored in most of the related
works [1]–[3].

2) Discrete Equation Using Least Squares Method to Im-
pose Essential Boundary Conditions:The collocation method
cannot be used easily to enforce essential boundary conditions
in meshless methods. Thus an improved form of it, the least
squares approach, is used as an alternative to incorporate essen-
tial boundary conditions. The minimization of (4) results in the
following discrete equations

(23)

where and are, respectively, defined in (18) and (20).
For the approximants (10) to satisfy the essential boundary

condition (2), the following discrete equations are used:

(24)

where is the total node number on the boundary, and
is the coordinates of the correspondingth node.

Due to the fact that the number of the total equations of (23)
and (24) is greater than the freedom of coefficients, the solu-
tion of is obtained by minimizing the following residual with
respect to .

(25)

Fig. 1. Comparison between analytical and numerical solutions for the
mathematical function using Largrange multiplier method to impose essential
boundary conditions with and without considering the contributions of nonzero
normal derivatives of the solution variable on essential boundaries.

Fig. 2. Comparison between analytical and numerical solutions for the
mathematical function using the collocation method to enforce essential
boundary conditions with and without considering the contributions of nonzero
normal derivatives of the solution variable on essential boundaries.

III. N UMERICAL EXAMPLES

A. Numerical Validation

In order to validate the proposed method, a one dimensional
mathematical function with analytical solutions is solved [3].
The problem is to find the solution of

(26)

and (27)

The exact solution of (26) and (27) is .
It is obvious that at the essential boundary , the following
nonzero normal derivative of the solution variable exists,

(28)

This problem is solved by using the proposed method under
four different cases, namely, cases where Lagrange multiplier
method is used to enforce essential boundary conditions with
and without considering the contributions of (28), and cases
in which the least squares method is used to impose the
essential boundary conditions with and without considering
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Fig. 3. A parallel plate capacitor.

Fig. 4. An infinite square ground metal slot.

(a)

(b)

Fig. 5. Nodal arrangement and background integration cell for the 2-D
problem: (a) nodal arrangement; (b) integration cell.

the contribution of (28). In the numerical computations, 11
equi-distance nodes are used, and the weighting function used
is a cubic spline one [3]. The comparisons of numerical results
with the exact ones for different cases are given in Figs. 1 and
2. From these results one can see that: (1) as revealed by Fig. 2,
by considering contributions of the nonzero normal derivative
of the solution variable on the essential boundary , the
proposed method based on the least squares method to enforce
the essential boundary conditions gives “almost exactly” nu-
merical results for both the solution variable and its derivative,
although only 11 equi-distance nodes are used. When excluding
this contribution, other things being equal, the method will lead
to fictitious numerical results; (2) as demonstrated in Fig. 1, the
computed results of the proposed method based on Lagrange
multiplier method to impose essential boundary conditions
under two different cases, i.e., whether the contribution of

Fig. 6. Comparison of computed and exact solutions for the parallel plate
capacitor.

Fig. 7. The computed equipotential contours of the ground metal slot.

TABLE I
PERFORMANCECOMPARISON OF THEMESHLESS ANDFINITE ELEMENT

METHODS FOR THE2-D PROBLEM RUNNING IN A 600 MHZ MACHINE

the nonzero normal derivative of the solution variable on the
essential boundary is considered or not, are almost the same
and show good agreement with the exact solutions. However,
the computed Lagrange multipliers in the two different cases
are, respectively, and .

B. Application

The proposed method is used to study both 1-D and 2-D field
problems, i.e., to determine the fields of a parallel plate capacitor
with a uniform permittivity between the plates (Fig. 3), and to
determine the fields of an infinite square grounding metal slot
(Fig. 4). In the numerical implementation, the cubic spline func-
tion is also used as the weight function, 11 equi-distance nodes
are used for the 1-D problem, and the nodal arrangement and
the background integration cells for the 2-D problem are shown
in Fig. 5. The comparison between the analytical and the com-
puted solutions for the 1-D problem is given in Fig. 6, and the
equipotential contours obtained by using the proposed method
for the 2-D problems is shown in Fig. 7. The performance com-
parisons between the finite element and the proposed methods
for the 2-D problem is given in Table I. From these results it can
be seen that (1) the computed results of the 1-D problem agree
well with the analytical solutions, and (2) the proposed method
is competitive to finite element methods although the CPU time
used by the proposed method is much longer compared with that
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of the finite element method considering the fact that the numer-
ical solver of MATLAB for the large sparse equation set used
in the proposed meshless method is not as efficient as that, i.e.,
ICCG, used for the finite element method.

IV. CONCLUSION

A detailed description of a meshless method and its nu-
merical implementation is presented. A significant difference
between the finite element and meshless methods lies in
a parameter which is commonly neglected in most related
works. An improved formulation is thus derived. The presented
numerical results show that: (1) the contributions of nonzero
normal derivatives of the solution variable on the essential
boundaries, as a general rule, must be included in the discrete
equation set of meshless methods; (2) the improved formulation
with the aforementioned contributions presented in this paper
is more robust than the traditional ones; (3) one must keep
in mind that the normal derivatives of the solution variable
on essential boundaries are also important when one applies
the meshless methods. Alternatively, it is suggested that one
should select formulations such as those based on the Lagrange

Multiplier Method and those combinations of the finite element
and the meshless methods that are not so sensitive to these
contributions.
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