
1. Introduction

The ionosphere is populated with large numbers of electrically charged particles, and the charged particles 

ionized by the action of extraterrestrial radiation can affect the propagation of radio waves. Therefore, a 

comprehensive understanding of the physical transportation, photoionization and chemical recombination 

of charged particles in three dimensions has an important role in the ionospheric delay effect, physical 

mechanism explanation (He et al., 2020; Jin et al., 2017; Li, Yue, Guo, et al., 2018; Li, Yue, Yang, et al., 2018). 

Currently, the space-borne and ground-based systems fail to provide information about the ionospheric 

electron density at any time and for any region; thus, it is essential to develop three-dimensional electron 

density models for ionospheric applications. Starting in the previous century, scientists have developed 

some famous physical and empirical models, including the Time-Dependent Ionospheric Model (TDIM), 

Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), Thermosphere-Iono-

sphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), Coupled Thermospheric 

Ionospheric Model (CTIM), International Reference Ionosphere (IRI), etc. (Bilitza & Reinisch, 2008; Malt-

seva & Glebova, 2020; Richmond et al., 1992; Roble & Ridley, 1994; Roble et al., 1988; Schunk & Walk-

er,  1973). These models have an important role in simulating the physical and chemical processes that 

control the variability of three-dimensional charged particles. Each model has its advantages and deficien-

cies. Nevertheless, it is still a remarkably challenging mission to simulate the global electron density with 
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physical mechanisms involved.
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high accuracy, because the ionospheric complex physical mechanism is controlled by several solar-terres-

trial factors, including the solar flux, geomagnetic storms, neutral winds and the electric field (Anderson 

et al., 1998; Atıcı & Sağır, 2020; Du et al., 2019; Karatay, 2020; Schunk et al., 1975).

Traditional ground-based Digisondes measure zenithal ionospheric information with high frequency, but 

this technique only profiles the bottom-side ionospheric electron densities. Due to the paucity of ionospher-

ic observations, particularly the observations that could measure the altitude distribution of electron densi-

ty, it is difficult to achieve uniformly accurate ionospheric imaging in low latitudes and polar regions. With 

the rapid development of the global navigation satellite system (GNSS) radio occultation (RO) technique, 

the space-based RO technique provides a key capability to profile the global ionospheric three-dimensional 

structure. Regular occultation profiles obtained from RO systems are an advantageous data source for im-

proving the simulation performance over the oceans in ionospheric modeling. Now, millions of ionospheric 

density profiles have been gathered by the Constellation Observing System for Meteorology, Ionosphere 

and Climate (COSMIC), Gravity Recovery and Climate Experiment (GRACE) and Chinese Feng-Yun 3C 

(FY-3C) missions. These profiles capture the unprecedented, detailed electron density structure in three 

dimensions. Therefore, it is believed that the data assimilation of multiple ground-based and space-borne 

sources is a key issue in future ionospheric modeling.

The artificial neural network (ANN) has proven to be a promising tool in solving complex nonlinear prob-

lems by systematic learning mechanisms, and it has been applied to develop numerous kinds of ionospheric 

models successfully, including the total electron content (TEC), critical frequency of the F2 layer (foF2) and 

peak electron density (NmF2; Athieno et al., 2017; Hernandez-Pajares et al., 1997; Hu & Zhang, 2018; Li, 

Zhao, He, et al., 2020; Li, Zhao, Shen, & Zhang, 2020; Maltseva & Glebova, 2020; Mansilla, 2019; Sivavara-

prasad et  al.,  2020; Tulasi Ram et  al.,  2018). ANN was first applied to develop the foF2 model over the 

Grahamstown Ionosonde (33°S, 26°E) using data from 1973 to 1983. The root mean square error (RMSE) 

of the simulated residuals was about 0.95 MHz, and the monthly averaged RMSE value reached 0.48 MHz 

(Williscroft & Poole, 1996). Subsequently, the ANN technique has been widely utilized to build regional 

ionospheric models in Japan, Southern Africa, China, the Asia/Pacific sector and the auroral zone. An im-

proved Artificial Neural Network-Based Ionospheric Model (ANNIM) was developed using the combined 

data from COSMIC, GRACE, CHAMP and the global Ionosondes by Tulasi Ram et al., (2018). The RMSEs 

of the predicted hmF2 (F2-layer peak height) residuals in 2009 and 2002 were 29  and 25 km, respectively. 

Compared to the Global Ionospheric Peak Height Model (GIPHM) developed using advanced machine 

learning techniques optimized by the genetic algorithm (Li, Zhao, He, et al., 2020), the predicted accuracy 

of the ANNIM was slightly lower than that of the following GIPHM model, which had predicted RMSEs of 

about 26  and 23 km in the solar moderate and minimum year, respectively. Then, the ANNIM model was 

extended to a complete global three-dimensional ionospheric model (ANNIM-3D; Gowtam et al., 2019). 

ANNIM-3D not only successfully reproduced the large-scale ionospheric phenomena but also predicted the 

ionospheric responses to the disturbed geomagnetic environment as well. Previous studies demonstrate that 

the ANN technique has a great advantage in developing an ionospheric model dependent on the geographic 

position and solar-terrestrial environment, and the performances of the ANN model are significantly better 

than some traditional physical or empirical models. However, the performances of ANN-based models are 

controlled by the input data source, network structure and algorithm. It is believed that the performance 

of the ANN model could be improved substantially with the development of a data assimilation method.

This study aims to develop a completely global ionospheric three-dimensional model based on the ANN 

technique by utilizing the long-term observations from space-borne GNSS RO systems (COSMIC and FY-

3C) and the Digisonde Global Ionosphere Radio Observatory (GIRO). The organization of the paper is as 

follows. The datasets and data quality control method are introduced in Section 2.1, and the ANN methodol-

ogy including the neural network structure and the model's performances are described in Section 2.2. The 

validations of ANN model performances compared with incoherent scatter radars for quiet and disturbed 

space environments are presented in Section 3. The predicted capability of the ANN model in capturing 

some prominent ionospheric dynamic structures, including the Weddell Sea anomaly and the mid-latitude 

summer nighttime anomaly (MSNA), are validated in Section 4. Finally, the merits and limitations of this 

model along with expectations for future improvement are discussed in Section 5.
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2. Data and Methodology

2.1. Data and Analysis

In this study, the global distributed ionospheric electron density profiles 

provided by FORMOSAT-3/COSMIC constellation, FY-3C, and global 

Digisonde stations are utilized to develop a global ionospheric electron 

density model. The COSMIC profiles are obtained from the UCAR com-

munity programs (https://www.cosmic.ucar.edu/), the FY-3C profiles are 

downloaded from the National Satellite Meteorological Center (http://

satellite.nsmc.org.cn/portalsite/default.aspx) and the Digisonde meas-

urements are downloaded from the Digisonde GIRO (http://spase.info/

SMWG/Observatory/GIRO). The periods of three datasets are COSMIC-1 

(2007–2016), FY-3C (2014–2019), and Digisonde (2005–2019). The FOR-

MOSAT-3/COSMIC constellation is an international collaborative project 

between NSPO (National Space Program Office) of Taiwan and UCAR 

(University Corporation for Atmospheric Research) of the United States 

of America. This constellation consists of six low-orbit microsatellites 

was launched on April 15, 2006 (UTC) to collect atmospheric remote 

sensing data for operational weather prediction, climate, ionospheric 

(space weather monitoring), and geodesy research. The COSMIC constel-

lation could provide about 2,000–2,500 global distributed electron density 

profiles when the system was fully operated (http://cdaac-www.cosmic.

ucar.edu/cdaac/index.html). The FY-3 series of CMA/NSMC (China Me-

teorological Administration/National Satellite Meteorological Center) 

represents the second generation of Chinese polar-orbiting meteorologi-

cal satellites (follow-on of FY-1 series), and it is operated by the National 

Satellite Meteorological Center (NSMC) of the China Meteorological Ad-

ministration. The key aspects of the FY-3 satellite series include collecting 

atmospheric data for intermediate- and long-term weather forecasting 

and global climate research (https://directory.eoportal.org/web/eoportal/

satellite-missions/content/-/article/fy-3). The first two satellites of the 

FY-3 series (FY-3A and FY-3B) are considered as research and develop-

ment missions. Therefore, FY-3C is practically the first operational satel-

lite for the FY-3 series (Liao et al., 2016). The FY-3C spacecraft carried the 

GNSS Occultation Sounder (GNOS) was launched to an average altitude 

of 836 km on September 23, 2013, from the Taiyuan Launch Center. Now, 

this system could observe 150–200 RO events daily. Furthermore, the 

ground-based observations provided by the GIRO that consists of 120+ 

global distributed Digisondes are also used. The Digisondes could auto-

matically scale the bottom-side true height electron density profiles, and 

the scaled profiles are computed by the Automatic Real-Time Ionogram 

Scaler with true height (ARTIST-5) software (Galkin & Reinisch, 2008). The bottom-side electron density 

profiles observed by the GIRO network are downloading using the Standard Archive Output (SAO-X, ver-

sion 3.5.3) Explorer from the Digital Ionogram Data Base (DIDBase) web portal (http://umlcar.uml.edu/

DIDBase/). The spatial locations of daily COSMIC, FY-3C RO events, and the Digisondes used in this study 

are shown in Figure 1.

Sometimes the space-borne and ground-based measurements are affected by instrument failure and severe 

solar-terrestrial events, therefore the RO profiles and Digisonde observations should be checked for quality 

control. In this study, for space-borne technique, first the RO profiles are simulated by the Chapman func-

tion (Lei et al., 2006), and the correlations between observed profiles and simulated profiles are computed. 

The RO profiles with the correlations of smaller than 0.85 are removed. Second, some profiles show that the 

bottom-side electron density values are negative which against the physical regulations, hence these density 

values are regarded as “noisy” values and removed. For ground-based technique, the quality of Digisonde 

LI ET AL.

10.1029/2020SW002605

3 of 19

Figure 1. Spatial locations of daily COSMIC, FY-3C profiles and 
Digisondes of GIRO network. (a) COSMIC, Constellation Observing 
System for Meteorology, Ionosphere and Climate; (b) FY-3C, Feng-Yun; (c) 
GIRO, Digisonde Global Ionosphere Radio Observatory.
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data is checked by the upper and lower bounds, which are determined by the mean values ±1.5times stand-

ard deviation. The Digisondes only can detect the ionospheric bottom-side electron density profiles but fails 

to capture the topside ionospheric structure.

Furthermore, the solar-terrestrial environment also controls the variation of ionospheric electron density 

seriously. For solar activity, the index F10.7 (the noise level generated by the sun at a wavelength of 10.7 cm 

at the earth's orbit) is used to represent the level of solar radiation. Moreover, high-speed solar wind streams 

usually have a remarkable impact on the ionospheric electron density, sometimes the sudden ionospheric 

perturbations can not be attributed to the severe geomagnetic filed motivated by coronal mass ejection or 

solar flare (Hajra et al., 2017). Therefore, it is believed the index solar wind speed (Vsw) play an important 

role in improving the performance of the ANN-TDD model. For geomagnetic filed, the indices Dst, Kp, and 

Ap are used to represent the level of geomagnetic storm. These parameters are obtained from the Space 

Physics Data Facility of NASA (https://omniweb.gsfc.nasa.gov/).

2.2. Artificial Neural Network

Artificial neural network (ANN) has a powerful ability to mimic the human brain to generalize the compli-

cated nonlinear relationship between multiple variables, it has been widely used in the data fitting, cluster-

ing, and time series prediction (Haykin, 2007). A traditional neural network contains an input layer, a hid-

den layer, and output layer, and the layers are connected by neurons. Usually, the output of the preceding 

neuron is used as the input of the current node via their associated weights, and the output of each neuron 

in the hidden layers is computed by active functions, such as Tansig, sigmoid, Relu, and Tanh. The numbers 

of hidden layers and neurons are dependent on the input variables, more details about this relationship 

the readers could refer to (Gowtam et al., 2019; Tulasi Ram et al., 2018). In the training process, the neural 

network stops to update the weights and biases when the cost of the validation set increasing for several 

consecutive steps, in this study the step is set as 6.

In this study, the back propagation (BP) feedforward neural network is used to develop an ionospheric elec-

tron density model, namely artificial neural network-based three-dimensional density model (ANN-TDD). 

During the training process, the entire data set is divided into 10 batches using the mini-batch strategy, 

and each batch contains about one million vectors. The input parameters include day of year (DOY), local 

time (LT), geomagnetic latitude (MLAT), geographic longitude (LON), and altitude. Besides, the electron 

density is also dependent on solar radiation and geomagnetic activity. The parameters F10.7 and Vsw are 

selected to represent the intensity of solar activity, the parameters Dst, Kp, and Ap are chosen to represent 

the level of magnetic activity. Furthermore, the numbers of hidden layers and their corresponding neurons 

are important factors that control the performances of the ANN-TDD model. The BP neural network with 

three hidden layers are used to develop the ANN-TDD model, and the active functions in three correspond-

ing hidden layers are tansig, tansig, and sigmoid, respectively. Tansig is a neural transfer function, and it 

calculates a layer's output A from its net input N, the A elements squash into [−1 1]. This is mathematically 

equivalent to      *2 / 1 exp 2 1A N . The sigmoid activation operation applies the sigmoid function to 

the input data. This operation is equivalent to     1 / 1
xf x e .Thousands of experiments are conducted 

to search the optimal combination of neural neurons in three hidden layers. The result is shown in Figure 2, 

the root-mean-square error (RMSE) of the ANN-TDD model is minimum when the numbers of neurons are 

24, 22, 20 in three hidden layers, the minimum RMSE is about 7.8 × 104 el/cm3. The detailed structure of 

the ANN-TDD model is shown in Figure 3.

3. Results

In this study, multiple observations derived from the space-borne COSMIC and FY-3C missions and the 

ground-based Digisondes are used to develop the ANN-TDD model, and the predicted performances of the 

ANN-TDD model in the training stage and under various solar-terrestrial environments are analyzed in the 

following sections.
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3.1. Training Performance

In the training stage, the whole samples are divided into the training set, the validation set and the test set, 

which contain 70%, 15% and 15% of the samples, respectively. A training data set is a set of examples used 

to fit the parameters (e.g., the weights of the connections between neurons) during the learning process. 

Usually, a training data set consists of pairs made up of an input vector and the corresponding output vector. 

A validation data set is a set of examples used to tune the hyper-parameters of a classifier. The validation 

datasets can be used for regularization by early stopping, which is helpful to avoid overfitting during the 

training process. A test data set is independent of the training data set, but it follows the same probability 

distribution as the training data set. It is only used to evaluate the performance (i.e., generalization) of a 

fully specified classifier (Provost & Kohavi, 1998). The training results of the ANN-TDD model are shown 

in Figure 4.

Figure 4 shows the correlations between the measured densities and simulated values of the ANN-TDD 

model for the training set, validation set, test set and whole sample. The density points in each panel are 

fitted by the linear function (see the black solid line). The training results show that a majority of points are 

centered around the solid lines; the correlation coefficients in the four sets are 0.96269, 0.96238, 0.96307, 

and 0.9627, respectively, and the averaged RMSE is 7.8 × 104 el/cm3. The correlation coefficients demon-

strate that the ANN-TDD model has a strong capability to predict the variation of electron density with high 

accuracy.

3.2. Predicted Performance in High-Low Solar Activity

Solar radiation is a main energy source for the chemical effect and dynamic transportation of ionospheric 

electron density. To validate the performances of the ANN-TDD model in the solar maximum year (2015) 

and solar minimum year (2009), the vertical electron density profiles obtained from the ground-based in-

coherent scatter radar (ISR) at Millstone Hill (71.49°W, 42.62°N) and Jicamarca (76.87°W, 11.95°S) are se-

lected as target values. The seasonal validations are shown in Figures 5 and 6; it is noted that each sample 
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Figure 2. Statistical RMSEs of the ANN-TDD model with different neurons in three hidden layers. ANN-TDD, artificial neural network-based three-
dimensional density; RMSE, root-mean-square error.
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data set contains 5,000 true electron density values. Additionally, the International Reference Ionosphere 

(IRI-2016) model is also chosen as a comparison object. The comparisons of the performances between the 

ANN-TDD and IRI-2016 at Millstone Hill and Jicamarca are shown in Figures 5 and 6, respectively.

Figure 5 shows the comparative results of the ANN-TDD and IRI-2016 in spring, summer, autumn and 

winter during the solar maximum year (2015) and solar minimum year (2009). The correlation coefficients 

between target profiles and simulations are also computed to evaluate the predicted performances. Gener-

ally, the performances of ionospheric models based on the ANN technique are better than those of the IRI-

2016 model. For example, in the spring of the solar maximum year (2015), the correlation coefficients of the 

ANN-TDD and IRI-2016 model are 0.89 and 0.79 and the corresponding RMSEs are 1.01 × 105 el/cm3 and 

1.46 × 105 el/cm3, respectively (see Figures 5a and 5e). The predicted accuracy of the ANN-TDD model is 

30.82% higher than that of the IRI-2016. This phenomenon is also observed in summer, autumn and winter. 

For example, the predicted RMSEs of the ANN-TDD model in summer, autumn and winter are 9.65 × 104 

el/cm3, 9.07 × 104 el/cm3, and 1.13 × 105 el/cm3, and the corresponding RMSEs are 55.94%, 54.42%, and 

53.88% smaller than those of IRI-2016. The predicted performances of the ANN-TDD model in summer and 

autumn are better than those in spring and winter. Compared with IRI-2016, the improved accuracy of the 

ANN-TDD model exceeds 50% in summer, autumn and winter in 2015.

In the solar minimum year (2009), the comparative results are consistent with those in the solar maximum 

year. Generally, the predicted RMSEs of the two models in the solar minimum year are lower than those 

in the solar maximum year. In spring, the RMSEs of the ANN-TDD and IRI-2016 are 6.20 × 104 el/cm3 

and 9.02 × 104 el/cm3 (see Figures 5i and 5m). Compared with the IRI-2016, the predicted accuracy of the 

ANN-TDD model is improved by about 31.26%. The performances of the two models in summer, autumn 

and winter agree well with their performances in spring. For example, as shown from Figures 5j to 5l, the 

RMSEs of the ANN-TDD model in summer, autumn and winter are 4.89 × 104 el/cm3, 5.28 × 104 el/cm3, 
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Figure 3. Architecture of the BP feedforward neural network used in the ANN-TDD model. ANN-TDD, artificial 
neural network-based three-dimensional density; BP, back propagation.
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and 5.52 × 104 el/cm3, and the corresponding RMSEs are 60%, 52.86%, and 36.27% smaller than those of the 

IRI-2016. The comparative results demonstrate that for low solar activity, the predicted performance of the 

ANN-TDD model is also remarkably better than that of the IRI-2016, by 30%–60%.

Similar to the comparative results concerning the Millstone Hill ISR, the predicted performances between 

the ANN-TDD and IRI-2016 for the Jicamarca ISR are also evaluated, and the comparative results in the 

solar maximum year and solar minimum year are shown in Figure 6. In the equatorial region, the predicted 

performances of the ANN-TDD model are also better than those of the IRI-2016 model, which is consistent 

with the comparative results over the middle-latitude Millstone Hill station. From Figures 6a–6d, the pre-

dicted RMSEs of the ANN-TDD in spring, summer, autumn and winter are 1.71 × 105, 1.52 × 105, 1.69 × 105, 

and 1.94 × 105 el/cm3, and the corresponding RMSEs are 23.0%, 53.1%, 43.3%, and 46.3% smaller than those 

of the IRI-2016. The comparative results demonstrate that the ANN technique also improves the accuracy 

in predicting equatorial ionospheric density by an amplitude of 20%–50% compared to the IRI-2016. This 
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Figure 4. Line regression between the target parameters and simulated values of the ANN-TDD model for the (a) training set, (b) validation set, (c) test set and 
(d) whole data set. ANN-TDD, artificial neural network-based three-dimensional density.
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Figure 5. Linear regressions between the Millstone Hill ISR, ANN-TDD and IRI-2016 in the solar maximum year (2015) and solar minimum year (2009). The 
red and green points signify the predictions of the ANN-TDD and IRI-2016, respectively. ANN-TDD, artificial neural network-based three-dimensional density; 
IRI, International Reference Ionosphere; ISR, incoherent scatter radar.

Figure 6. Similar to Figure 5, but for the Jicamarca station.
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remarkable improvement in modeling equatorial ionospheric electron density is also observed in the solar 

minimum year. From Figures 6i–6p, the RMSEs of the predicted residuals of the ANN-TDD model are 29%, 

58.7%, 52.9%, and 34.3% smaller than those of the IRI-2016.

Figures 5 and 6 indicate that the ionospheric model developed with the ANN technique has a stronger capa-

bility in predicting electron density than the IRI-2016 on quiet days in both solar maximum and minimum 

years. How will the ANN-TDD model perform under severe geomagnetic storms? The authors will further 

investigate this in the following section.

3.3. Predicted Performance Under Severe Geomagnetic Storms

Ionospheric electron density is usually seriously affected by severe geomagnetic conditions (Atıcı & 

Sağır, 2020; Danilov & Lastovicka, 2001; Fuller-Rowell et al., 1994; Mansilla, 2019). In quiet geomagnetic 

conditions, the electron density profiles are regular, and their shapes conform to the Chapman function, 

while in severe conditions, the ionospheric electron densities are greatly disturbed. Predicting high-accu-

racy electron density is still a great challenge for current ionospheric models. Therefore, it is necessary to 

evaluate the performance of the ANN-TDD model under severe geomagnetic conditions. In this study, the 

electron density profiles derived from the Millstone Hill and Jicamarca incoherent scatter radars under 

the severe geomagnetic storms from March 17 to 19, 2015 and September 7 to 9, 2017 are selected as the 

reference values, and the predicted profiles of the IRI-2016 model are also computed for comparison. The 

IRI-2016 has a storm option to investigate the ionospheric dynamic evolution under severe solar-terrestrial 

conditions specifically, and the availability of the storm model has been validated by many studies in the 

literature. Therefore, in this paper, the storm option of the IRI-2016 model is turned on. The comparative 

results of the ANN-TDD and IRI-2016 models during the two geomagnetic storms are shown in Figure 7.
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Figure 7. Validations of the predicted profiles of the ANN-TDD and IRI-2016 compared to the electron density profiles derived from the incoherent scatter 
radars at Millstone Hill and Jicamarca, (a) and (d) represent the comparative results of the ANN-TDD and IRI for example profiles measured by Millstone Hill 
and Jicamarca ISR, respectively, (b) and (c) represent the predicted residuals of the ANN-TDD and IRI under the March 17–19, 2015 geomagnetic storm at 
Millstone Hill ISR, and (e) and (f) represent the predicted residuals of the ANN-TDD and IRI under the September 7–9, 2017 geomagnetic storm at Jicamarca 
ISR. ANN-TDD, artificial neural network-based three-dimensional density; IRI, International Reference Ionosphere; ISR, incoherent scatter radar.
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In Figures 7a and 7d, two example electron density profiles observed by Millstone Hill and Jicamarca ISR 

under severe geomagnetic storms are randomly selected for case studies. From Figure 7a, it is found that 

the electron density profile is distorted and seriously affected by the violently disturbed geomagnetic field, 

especially at the topside ionosphere. The predicted profiles of the ANN-TDD and IRI-2016 agree well with 

the target profile at the bottom-side ionosphere, but neither of them predicts the top-ionosphere electron 

density enhancement well. The RMSEs of the predicted residuals for the ANN-TDD and IRI are 2.74 × 105 

and 2.97 × 105 el/cm3, and the corresponding standard deviations (STD) are 2.45 × 105 and 2.31 × 105 el/

cm3. For the example profile, the predicted accuracy of the ANN-TDD is much higher than that of the IRI-

2016, but the dispersion of the ANN-TDD predicted values is also larger. More details about the predicted 

capability of the ANN-TDD over the middle latitude region are shown in Figures 7b and 7c. In these figures, 

about 20 electron density profiles derived from Millstone Hill ISR during the March 17–19, 2015 geomag-

netic storm are selected as references. Figures 7b and 7c show that both the profiles of the ANN-TDD and 

IRI-2016 agree well with the target profiles at the bottom-side ionosphere; the amplitudes of the predicted 

residuals range from −5 × 105 to 5 × 105 el/cm3. However, above 600 km altitude, the magnitude of the 

predicted residuals grows with increasing altitude, and the maximum residual reaches 1.5 × 106 el/cm3. The 

RMSEs of the predicted residuals of the ANN-TDD and IRI-2016 are 2.90 × 105 and 1.96 × 105 el/cm3, and 

the corresponding STDs for the two models are 2.73 × 105 and 1.93 × 105 el/cm3. Both the RMSE and STD of 

the ANN-TDD are larger than those of the IRI-2016 at Millstone Hill ISR. The comparative results indicate 

that the ANN-TDD has a weaker capability in capturing ionospheric dynamic evolution from a violent, 

disturbed geomagnetic field at middle latitudes compared to the IRI-2016.

Similar to Figure 7a, the comparative results between the ANN-TDD and IRI-2016 at the near-equator re-

gion are shown in Figure 7d. From Figure 7d, an example profile observed by the Jicamarca ISR on Septem-

ber 8, 2017 is selected as a reference. Both of the shapes of predicted profiles of the ANN-TDD and IRI-2016 

conform to the Chapman function. The ANN-TDD underestimates the peak density with an amplitude of 

about 2 × 105 el/cm3. However, the IRI-2016 negative predicted residuals are more remarkable; the peak 

density of the IRI-2016 is 2 times smaller than the target profile, with an negative amplitude of about 8 × 105 

el/cm3. Both the RMSE and STD of the ANN-TDD are better than those of the IRI-2016, which indicates 

that the capability of predicting ionospheric responses to severe space weather of the ANN-TDD may be 

stronger than that of the IRI-2016 in low latitude regions. To capture more evidence to validate the predicted 

performances of the two models at the equator, about 15 profiles measured by the Jicamarca ISR from Sep-

tember 7 to 9, 2017 are utilized as targets. The statistical results of the ANN-TDD and IRI-2016 are shown in 

Figures 7e and 7f. In Figure 7e, the dispersion of the predicted residuals of the ANN-TDD is relatively low, 

and the absolute magnitude of the residuals is within 4 × 105 el/cm3 at both the bottom-side and topside 

ionosphere. However, unlike for the ANN-TDD, the dispersion of the predicted errors of the IRI-2016 is re-

markable. For example, several predicted profiles agree very well with the target profiles, with residuals of 

smaller than 2 × 105 el/cm3, while other predicted profiles underestimate the peak densities with residuals 

that exceed 10 × 105 el/cm3 (similar to Figure 7d). In Figures 7e and 7f, the RMSEs of the predicted residuals 

of the ANN-TDD and IRI-2016 are 1.47 × 105 and 1.2 × 105 el/cm3, which indicates that the predicted accu-

racy of the ANN-TDD is also slightly lower than that of the IRI-2016 at the equator. However, for prediction 

stability, the ANN-TDD, with an STD of 0.46 × 105 el/cm3, is significantly superior to the IRI-2016, with an 

STD of 0.87 × 105 el/cm3.

3.4. Comparison With FormoSat-7/COSMIC-2 Observations

Sections  3.2 and  3.3 have demonstrated that the ANN-TDD model has a powerful predicted capability 

under quiet conditions during high-low level solar activities. The ionosphere has well-known global spa-

tial-temporal variations controlled by solar ultraviolet irradiance; therefore, the capability of the ANN-TDD 

in capturing ionospheric dynamic characteristics must be evaluated. The FormoSat-7/COSMIC-2 constel-

lation is an international collaboration between Taiwan (NSPO) and the United States (NOAA) that uses a 

constellation of six remote sensing microsatellites to collect atmosphere-ionosphere-thermosphere profiles 

for weather prediction, climate change and gravity research. The FormoSat-7/COSMIC-2 constellation is a 

follow-up mission to the FormoSat-3/COSMIC mission to meet RO data continuity requirements, and the 

six microsatellites include two payloads: a Radio Frequency Beacon (RFB) transmitter and an Ion Velocity 

Meter (Meter) were launched into low-inclination orbit on June 25, 2019. Now, the six-satellite constellation 
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can track more than 4,000 high-quality profiles per day, and the quality of the profiles has been validated 

by (Tsai et al., 2019). In this study, the COSMIC RO profiles measured in spring and winter are selected to 

reconstruct the global ionospheric electron density maps within altitudes of 200–400 km. These maps are 

used as references to evaluate the performances of the ANN-TDD model in capturing global ionospheric 

spatial-temporal characteristics under different levels of solar activity. The validations are shown in Fig-

ures 8 and 9.

In Figure 8, the COSMIC RO profiles from UT11:00–13:00 from March 10 to March 30 in 2020 are utilized to 

reconstruct global ionospheric electron density maps with a spline interpolation algorithm, as shown in the 

panels of the top row. During this period, the solar activity is quiet; therefore, the variation of ionospheric 

electron density is relatively stable. Now, the six FormoSat-7/COSMIC-2 satellites are positioned in a low 

inclination orbit at a nominal altitude of ∼520–550 km with an inclination of 24°, and the geographic cover-

age of RO profiles of the COSMIC-2 constellation is 40°S ∼ 40°N. For more details about the geographic cov-

erage of daily COSMIC-2 RO profiles, the reader can refer to (https://www.cosmic.ucar.edu/what-we-do/

cosmic-2/). Therefore, the comparative results of three kinds of products are validated within 40°S∼40°N.

From the panels in the top row, the ionospheric electron density values have an obvious relationship with 

geographic position and altitude. Large values of electron density distribute in the Africa-India sector 

densely, and two high-amplitude electron density crests are located at low latitudes along the magnetic 

equator; this is called the equatorial ionization anomaly (EIA; R. Raghavarao, 1988). For altitude, a large 

number of electrons gather at a height of 300 km with a peak value of 1.0 × 106 el/cm3; the electron density 

in this layer is 3–4 times larger than that in the neighboring layers of 200  and 400 km. The simulated maps 

of the ANN-TDD model in the middle row agree well with the COSMIC-2's products. The ANN-TDD model 

not only successfully captured the EIA feature, but also has a powerful high-accuracy prediction ability. In 

general, the ANN-TDD model tends to underestimate the electron density, and this conforms to the compar-

ative results in Figure 7. For example, in Figure 8e, the maximum value of electron density predicted by the 

ANN-TDD is 8.5 × 105 el/cm3, which is lower than the reference by 15%. Like the ANN-TDD, the IRI-2016 

model can also simulate the global ionospheric spatial-temporal characteristics well, but this model tends to 

overestimate the electron density. For example, in Figure 8h, the scope of high-amplitude electron density 

predicted by the IRI-2016 model covers South America and the Africa-India-Southeast Asia sector; this is 

much larger than the reference. Besides, the maximum value predicted by the IRI-2016 is higher than the 

reference by more than 30%. This phenomenon is also observed in Figure 8i.
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Figure 8. Comparisons of global ionospheric electron density maps produced by the COSMIC-2 profiles, ANN-TDD, and IRI-2016 model spans from 200 to 
400 km with an interval of 100 km in March 2020, the black line is the magnetic equator. (d)-(f) ANN-TDD, artificial neural network-based three-dimensional 
density; (a)-(c) COSMIC, Constellation Observing System for Meteorology, Ionosphere and Climate; IRI, International Reference Ionosphere.

https://www.cosmic.ucar.edu/what-we-do/cosmic-2/
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The COSMIC RO profiles in the period of UT11:00–13:00 from December 10–December 30, 2019 are utilized 

to reconstruct global ionospheric electron density maps in winter for the northern hemisphere, as shown in 

the panels of the top row in Figure 9. Both of the predicted maps of the ANN-TDD and IRI-2016 agree with 

the COSMIC-2 products, and all three kinds of winter maps (for the northern hemisphere) could capture 

the EIA characteristics. However, unlike the EIA features in spring, the EIA in winter has a special structure 

dependent on altitude. For example, at the altitude of 200 km (Figure 9a), the north crest of EIA-covered 

North Africa is much stronger than the south crest, and the maximum value (about 4 × 105 el/cm3) of the 

north crest is 2–3 times larger than the south crest. However, at the altitude of 300 km, the south crest of the 

EIA grows stronger remarkably and covers southern Africa and the Indian Ocean, with a maximum value 

of 9 × 105 el/cm3, while the scope and magnitude of the north crest weaken significantly. At the 400 km lay-

er, the two crests move closer to the magnetic equator, and the EIA pattern cannot be observed in this layer. 

From the panels in the middle row, the three-dimensional EIA structure simulated by the ANN-TDD model 

agrees well with the COSMIC-2 products, and the ANN-TDD model underestimates the electron density 

by 10%–15%. This is consistent with the results in Figure 8. However, the EIA structures simulated by the 

IRI-2016 within the altitudes of 200–400 km are contrary to the reference maps (see Figures 9g–9i), and the 

IRI-2016 overestimates the density by more than 30%, especially at the 300 km layer.

Many studies reported that the EIA is controlled by the equatorial plasma fountain effect: the equatorial 

upward E × B drift lifts the plasma from the magnetic equator to high altitudes, and the accumulated plas-

mas diffuse down to high latitudes along the geomagnetic field lines. The diffusion process results in the 

two ionization crests on both sides of the magnetic equator (Balan & Bailey, 1995; Lin, Wenbin, et al., 2007). 

In the drift and diffusion processes, the strength of the fountain effect and thermospheric neutral winds 

control the EIA formation significantly. On the one hand, a stronger plasma fountain drifts more plasmas to 

higher altitudes, which creates stronger and more poleward extended crests of the EIA. On the other hand, 

a stronger thermospheric equatorial neutral wind could sustain the plasma at higher altitudes for a longer 

time, which contributes to enhancing the strength of EIA crests. These factors explain why the crests in the 

lower latitudes are more poleward.

The strength of the equatorial fountain effect controls the development of the EIA, and the thermospheric 

neutral winds alter the symmetrical structure of the EIA through field-aligned plasma transport (Tulasi 

Ram et  al.,  2009). In the summer hemisphere, the summer-to-winter neutral winds will drive the plas-

mas in the equatorward/upward direction, but the equatorial fountain process diffuses the plasma in the 
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Figure 9. Similar to Figure 8, but in December 2019. (a)-(c) COSMIC, Constellation Observing System for Meteorology, Ionosphere and Climate; (d)-(f) ANN-
TDD, artificial neural network-based three-dimensional density; (g)-(i) IRI, International Reference Ionosphere.
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poleward/downward direction. The downward diffusion direction driven by the equatorial fountain pro-

cess is same as the direction produced by the thermospheric neutral winds. Therefore, the asymmetrical 

structure of the EIA is determined by the relative contributions from the equatorial fountain process and 

thermospheric neutral winds. For example, in Figure 9, the trans-equatorial neutral winds are dominant 

in the morning, and they drive the plasmas from the summer hemisphere to the winter hemisphere along 

the magnetic field line, which causes the north crest in the winter hemisphere to be stronger than the south 

crest during the morning hours. However, the equatorial fountain process reaches its maximum strength at 

noon; this process is dominant over the thermospheric neutral winds and weakens the magnitude of sum-

mer-to-winter plasma transportation. Hence, interhemispheric transportation of plasma driven by neutral 

winds is minimized in the afternoon; this is the reason that the south crest in the summer hemisphere is 

stronger than the north crest at noon, which is consistent with the asymmetry of the EIA in Figure 9.

3.5. Prominent Regional Ionospheric Anomalies

Sections  3.2–3.4 have demonstrated that the ANN-TDD model has a powerful ability to predict global 

high-accuracy electron density under high-low level solar activities. Usually, solar radiation is the main 

energy source for the ionization and combination processes of the ionosphere, but ionospheric convection 

is also controlled by other factors, including the eastern electrical field, neutral winds, particle precipita-

tion, etc. These driving forces also contribute to some prominent regional ionospheric patterns, such as the 

EIA, Weddell Sea anomaly, Mid-latitude summer nighttime anomaly and winter anomaly. It is believed 

that a perfect ionospheric model should not only have a strong capability to predict high-accuracy ioniza-

tion processes but should also successfully capture the global or regional ionospheric dynamic features, 

including diurnal and seasonal variation, the EIA, the Weddell Sea anomaly, etc. Therefore, two prominent 

regional ionospheric patterns are simulated to validate the ANN-TDD's capability in capturing large-scale 

ionospheric dynamic characteristics.

3.5.1. Weddell Sea Anomaly

The Weddell Sea anomaly is characterized by fact that the plasma density over the Weddell Sea at night is 

larger than during the day. The phenomenon can be observed in the spring, autumn and winter. This anom-

aly was first detected by the Falkland Ionosonde (60°W, 52°S) near the Weddell Sea in 1957 (Bellchambers & 

Piggott, 1958). In this study, the ANN-TDD model simulates the hourly global electron density maps and the 

vertical structure of the Weddell Sea anomaly on December 22, 2013, and the results are shown in Figure 10.

The left panels in Figure 10 show the hourly variations of global electron density maps from LT19:00, De-

cember 22, 2013, to LT06:00, December 23, 2013; it should be noted that the time system is in local time 

(LT). In December, the southern hemisphere is the summer hemisphere, and the electron density in the 

summer hemisphere is much higher than that in the winter hemisphere because of the stronger photoioni-

zation effect, as shown in Figures 10a and 10b. In the daytime, the value of the electron density is inversely 

proportional to the latitude. Large numbers of electrons gather around the magnetic equator, with a max-

imum value of 1 × 106 el/cm3, which is about 5 times larger than that in the polar regions. After sunset, 

the electron density around the magnetic equator depletes, while the electron density over the Weddell Sea 

enhances from LT20:00. At midnight, the electron density over the Weddell Sea reaches a peak value of 

6.5 × 105 el/cm3. After that, the Weddell Sea enhancement gradually weakens and disappears at dawn. In 

brief, the duration of the Weddell Sea anomaly phenomenon is about 10 hours, and its magnitude is 2–3 

times larger than the daytime value.

Figure 10m shows the vertical structure of the Weddell Sea anomaly at the layers spanning from 200 to 

450 km with an interval of 50 km on the winter solstice, 2013. The structure of the Weddell Sea anomaly is 

consistent with the EIA. The Weddell Sea nighttime enhancement appears starting in the 250 km layer and 

reaches a peak value of 8 × 105 el/cm3 at the 350 km layer. Besides, the nighttime enhanced densities aren't 

limited to appearing over the Weddell Sea; the phenomenon covers the scope of 120°W–30°W, 60°S–90°S, 

which is consistent with the observational map of TOPEX/Poseidon radar altimeter (Horvath, 2006). The 

results in Figure 10 demonstrate that the ANN-TDD model successfully captures this ionospheric dynamic 

feature over the aurora zone.
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The eastward magnetic declination at the Weddell Sea and the southward offset of the magnetic equator 

are supposed to be major reasons for the enhanced electron density after sunset (C-H Lin et al., 2009). The 

geomagnetic pole is seriously offset from the geographic pole in Antarctica, which causes the longitudinal 

asymmetry of the geomagnetic field in the southern hemisphere. In the 30°–120°W longitudinal sector, 

the geographic latitude is higher than the geomagnetic latitude in the middle latitudes of the southern 

hemisphere. For example, the geographic latitude of the Weddell Sea is 68°S, while the corresponding geo-

magnetic latitude is 60°S. Therefore, the southward offset of the magnetic equator makes the southern crest 

of the EIA move to the Weddell Sea. Besides, the eastward wind, affected by eastward magnetic declina-

tion, will generate a northward/equatorward component along the geomagnetic field line, and the strong 

equatorward wind can uplift the ionospheric layers to a higher altitude. The magnetic declination in the 

corresponding region of the Weddell Sea in the eastern hemisphere is much smaller than the angle in the 

Weddell Sea; thus, the equatorward wind in this region need not be considered. In addition to the south-

ward excursion of the magnetic equator and the uplifted process caused by the equatorward wind, both 

the plasma diffused downward from the topside ionosphere in the nighttime and the photoionization at 

the Weddell Sea provide fresh plasma to enhance the anomaly (Burns et al., 2008). It is noted that particle 

precipitation and photoionization also occur in the eastern hemisphere, but the larger inclination angle 

and weaker equatorward wind in this region make the fresh plasma diffuse to lower altitude quickly, which 

results in less plasma accumulation. Therefore, the nighttime enhanced anomaly is not observed in other 

longitudinal sectors, except the Weddell Sea.

3.5.2. Mid-latitude Summer Nighttime Anomaly

The mid-latitude summer nighttime anomaly (MSNA) is characterized by the fact that the nighttime elec-

tron density is larger than it is in the daytime over the middle latitudes of the summer hemisphere. In the 

southern hemisphere, the MSNA is called the Weddell Sea anomaly; the phenomenon was first observed in 

the 1950s. With the development of the GNSS RO technique, the nighttime enhanced plasma was also ob-

served in the middle latitudes of the northern hemisphere. In this study, the horizontal and vertical electron 

density variations on June 22, 2019 are simulated by the ANN-TDD to evaluate the model's performance 

over middle latitudes in the northern hemisphere. The results are shown in Figure 11.

LI ET AL.

10.1029/2020SW002605

14 of 19

Figure 10. Horizontal-vertical structures of Weddell Sea anomaly on December 22, 2013, (a)-(l) show the hourly variations of global electron density maps at 
the altitude of 300 km layer, (m) shows the vertical structures of Weddell Sea anomaly at the layers span from 200 to 450 km with an interval of 50 km.
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Previous studies in the literature reported that the nighttime enhanced electron densities usually appear 

over the regions of Central-East Asia and Siberia (Thampi et al., 2009; Xiong & Lühr, 2014). In Figure 11, 

the regions of Central-East Asia and Siberia are marked by red circles. The panels in the left column of Fig-

ure 11 show the hourly variations of electron density over Europe and Asia on the summer solstice, 2019, 

during the period of UT04 to UT10 (for BJT, the local time is 12–18). The interesting area is located in the 

sunlit hemisphere, and the averaged amplitude of electron density is about 1.4 × 105 el/cm3. After BJT18:00 

(Figure 11f), the regions in red circles move into the dusk sector, while the magnitude of the electron densi-

ty gradually increases and reaches a maximum value of 1.9 × 105 el/cm3 at BJT22 (UT14).

The panels in the right column of Figure 11 show the vertical structure of the MSNA in the layers spanning 

from 200 to 450 km with an interval of 50 km at BJT22 (UT14). It is found that the electron density is in-

versely proportional to the geomagnetic latitude, and the magnitude of the electron density over the equator 

is 2–3 times higher than that over the Polar Regions. At BJT22, the subsolar region is the North Africa-India 

sector, and high-concentration electron densities gather at the sections of North Africa and India; the max-

imum amplitude exceeds 4 × 105 el/cm3. At the 200 km layer, the electron densities in the middle latitudes 

of the nighttime hemisphere, including Central-East Asia and Siberia, are smaller than that in the same 

latitudes (e.g., Europe) of the sunlit hemisphere. However, above 250 km altitude, a significant poleward 

electron density enhancement appears in the middle latitudes of the nighttime sector, as shown in the red 

circles. For example, the nighttime electron densities (UT14, 22 for BJT) over northeast Asia and Siberia 

are higher than the daytime electron densities (UT14) over Europe within the altitudes of 250–400 km. The 

nighttime poleward electron density enhancement is most prominent at an altitude of 300 km. In this layer, 

the averaged electron density in the red circle is about 2 × 105 el/cm3, which is 0.8 × 105 el/cm3 larger than 

that over Europe. Above 450 km, the MSNA phenomenon cannot be observed. The results are consistent 
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Figure 11. Horizontal-vertical electron density distribution on June 22, 2019. (a)-(l) show the hourly variation of global ionospheric electron density in 
universal time (UT) and Beijing time (BJT), BJT = UT+8. (m) shows the electron density at the layers span from 200 to 450 km with an interval of 50 km, the 
black line is the magnetic equator.
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with these works (Chen et al., 2012; C-H Lin et al., 2010). Figure 11 demonstrates that the ANN-TDD model 

has a powerful capability in capturing ionospheric dynamic features in middle latitudes.

The physical mechanism of the MSNA is similar to the Weddell Sea anomaly: the northern crest of the EIA 

moves poleward to higher latitudes controlled by the E × B drift. Because of the later sunset time, the fresh 

plasmas ionized by the additional photoionization diffuse to the northward crest, which creates a new elec-

tron density crest in the 30°–60°N latitudinal zone. Besides, the equatorward wind in the middle latitudes 

of the northern hemisphere could uplift the ionospheric layer to a higher altitude, which slows down the 

recombination of ions and electrons and reduces the particle loss rate.

4. Discussion and Conclusion

This study is a further extension of the ANN algorithm proposed by Li, Zhao, He, et al., (2020). Based on 

the success of the ANN model in predicting ionospheric peak parameters foF2 and hmF2, this study uses 

the profiles obtained from multiple RO systems (COSMIC-1, FY-3C) and the observations of global Di-

gisondes to develop a completely global three-dimensional electron density model with an artificial neural 

network, namely ANN-TDD. In the training stage, the correlation coefficients of the datasets all exceed 

0.96 in training, validation and test sections, and the RMSE of the predicted residuals of the ANN-TDD is 

7.8 × 104 el/cm3, which reveals that the ANN-TDD model has perfect performance in learning ionospheric 

nonlinear characteristics and a strong capability in predicting the electron density with high accuracy. The 

predicted capability of the ANN-TDD is thoroughly validated with the profiles derived from the Millstone 

Hill and Jicamarca ISR under high-low level solar activities and severe geomagnetic storms, alongside the 

well-established empirical model IRI-2016. The comparative results indicate that the predicted densities 

of the ANN-TDD are consistent with the profiles measured by the Millstone Hill ISR at middle latitudes. 

The minimum RMSEs of the ANN-TDD model in the solar maximum year and solar minimum year are 

9.65 × 104 and 4.89 × 104 el/cm3; these RMSEs are 30%–50% smaller than the IRI-2016 predictions. Besides, 

the performances of the ANN-TDD in summer and autumn are better than those in spring and winter. This 

phenomenon is also observed over the Jicamarca ISR, located in a near-equator region. Gowtam et al. (2019) 

used long-term ionospheric observations from ground-based Digisondes, satellite-based topside sounders 

and RO measurements to build an ANN-based three-dimensional ionospheric model (ANNIM-3D). In the 

0°–30° and 30–60° dip latitudes, the RMSEs of the predicted residuals of ANNIM-3D were 3.9 × 105 and 

1.6 × 105 el/cm3 compared with satellite in situ observations by CHAMP, and the predicted residuals of 

the ANNIM-3D are larger than the ANN-TDD model. The different predicted capabilities may be associ-

ated with the strategies used in developing ANN models. In Gowtam et al.'s study, the globally distributed 

electron densities derived from multiple missions were divided into 840 small spatial grids, and the vertical 

profiles in each grid were trained to generate a regional ANN-based model. Unlike Gowtam et al.'s study, in 

the training stage of the ANN-TDD, the entire multi-source ionospheric profiles are trained to establish an 

ANN-based ionospheric model using a mini-batch strategy.

Generally, the ANN-TDD model has a weaker predicted capability under severe geomagnetic storms com-

pared to the IRI-2016 with the STORM option activated. At middle latitudes, both of the predicted profiles 

of the ANN-TDD and IRI-2016 agree well with the measurements obtained from the Millstone Hill ISR at 

the bottom-side ionosphere, but neither of the two models successfully capture the sharp electron density 

enhancement at the topside ionosphere. The RMSE and STD of the predicted residuals of the ANN-TDD 

are worse than those of the IRI-2016. At the near-equator region, the predicted accuracy of the ANN-TDD 

is also slightly lower than the IRI-2016 at the Jicamarca ISR. However, the prediction stability of the ANN-

TDD is significantly superior to the IRI-2016. The weaker predicted capability under severe geomagnetic 

conditions is believed to be associated with insufficient observations. Compared to the profiles in quiet con-

ditions, the observations under severe geomagnetic conditions are about 5% of the total measurements. In 

the training process, the disturbed electron density profiles can easily be regarded as “noisy” values. There-

fore, the ANN technique has difficultly capturing the nonlinear relationships between ionospheric evolu-

tions and violent space weather parameters. The success of the IRI-2016 indicates to us that it is necessary 

to develop a STORM option for the ANN-TDD model. The authors will continue to improve the predicted 

capability for severe space weather in this respect in further studies.

LI ET AL.

10.1029/2020SW002605

16 of 19



Space Weather

To further validate the ANN-TDD's capability in capturing large-scale ionospheric dynamic characteris-

tics, the RO observations obtained from the FORMOSAT/COSMIC-2 constellation during December 2019 

and March 2020 are used to reconstruct global ionosphere electron density maps at altitudes from 200 

to 400  km. The ANN-TDD model successfully reproduced the global ionospheric dynamic features and 

the interhemispheric asymmetries during the winter solstice (Figure  9). Furthermore, some prominent 

regional ionospheric anomalies are well represented by the ANN-TDD model, such as the EIA, Weddell Sea 

anomaly, MSNA, etc. The new model successfully captures the vertical structures and diurnal evolution of 

the EIA, Weddell Sea anomaly and MSNA. The results demonstrate that the ANN-TDD model successful-

ly captures global ionospheric spatial-temporal characteristics and reconstructs the dynamic structures of 

prominent regional anomalies over the magnetic equator (Figures 8 and 9), middle latitudes (Figure 11) and 

polar regions (Figure 10), which can play an important role in reducing the ionospheric delay effect and in 

discovering the physical mechanisms responsible for ionospheric dynamic transportation and convection.

Furthermore, the ANN-TDD model usually underestimates the electron density compared to the RO pro-

files derived from the COSMIC-1 and COSMIC-2 constellations; this can be seen from the validation re-

sults in Figures 7–9. In the retrieval of vertical electron density profiles by the Abel method, the spherical 

structures are usually assumed to be uniform. However, this assumption is often violated in the low-middle 

latitude areas, especially around the crests where the horizontal density gradients are larger. Therefore, the 

systematic errors produced in the retrieval process of the Abel method are also introduced into the ANN-

TDD model. (Ram et al., 2016) have proposed a self-contained global ionospheric map (GIM)-aided Abel 

retrieval method that can account for spherical inhomogeneity. This method is available to retrieve more 

accurate RO profiles in near real-time. Therefore, an improvement of the retrieval quality of GNSS RO pro-

files by a new Abel method will be conducted in our further studies.

Finally, the low-latitude equatorial ionization region is the most complex in the world. The variability of 

the low-latitude ionosphere is controlled by large-scale electrodynamics associated with the equatorial elec-

trojet (EEJ), equatorial winds, temperature anomaly, equatorial ionization anomaly, plasma fountain, etc. 

However, due to the quantitative limitation of ionospheric observations, it is still a great challenge to fully 

monitor the ionospheric horizontal-vertical electrodynamic conventions over low latitudes. With the full 

deployment of the COSMIC-2 constellation, formed from six satellites in different orbital planes, this con-

stellation could provide 4,000+ electron density profiles that are 3–4 times larger than the daily observa-

tions of the COSMIC-1 mission over the low latitudes. This large data volume will improve the accuracies 

of weather forecasts remarkably, and it has been already used to develop a numerical weather prediction 

model by several major weather organizations around the world. Therefore, the electron density products 

retrieved from the new COSMIC mission will be utilized to further develop the ANN-TDD model to improve 

its predicted performance in the complex latitude zone.

Data Availability Statement

The COSMIC data available in UCAR community programs. The Ionosonde data available from the Lowell 

GIRO Data Center and the solar-magnetic indices available in GSFC.
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