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A quantum mechanical theory of photoinduced electron transfer, based on the Redfield theory 

of relaxation, is developed and applied to the standard two state-one mode system interacting 

with a thermal bath. Quantum mechanical treatment of the reaction coordinate allows 

incorporation of both finite vibrational dephasing and energy flow rates into the description of 

electron transfer dynamics. The field-matter interaction is treated explicitly to properly 

incorporate the total energy and magnitude of the vibrational coherence present in the initially 

prepared state. Calculation of the reduced density matrix of the system is carried out in a 

vibronic basis that diagonalizes the electron exchange coupling so that the method is valid for 

arbitrarily large coupling strength. For weak electronic coupling, we demonstrate the 

equivalence between the results from Redfield theory and those obtained from the standard 

perturbative expression (golden rule) for nonadiabatic electron transfer. We then discuss 

quantitatively the breakdown of the Fermi golden rule with increasing electronic coupling 

strength. The failure of the golden rule is seen to result from either slow energy equilibration in 

the reactant or product well or from quantum interference effects resulting from finite 

dephasing rates. For cases where the reorganization energy is large compared to the frequency 

of reactive motion, such that we may ignore nuclear tunneling, results from the theory show 

good agreement with those from the semiclassical Landau-Zener theory when motion of the 

reaction coordinate through the surface crossing region can be considered to be ballistic. 

Finally results are shown in the weak damping (coherent) limit that demonstrate interference 

effects between phase coherences involving states in both wells. 

I. INTRODUCTION 

The theoretical description of electron transfer (ET) 

processes in condensed phases continues to be of interest in 

the chemical physics, biophysics, and condensed matter 

communities. I
-

2 The standard picture of photoinduced ET 

involves the coupling of two electronically excited states, a 

neutral state and a charge transfer state, to a single nuclear 

degree of freedom, i.e., the reaction coordinate. This coordi­

nate may be collective in nature, such as the solvent polariza­

tion, or correspond to a specific vibrational motion of a pro­

tein or lattice. The electronic interaction gives rise to a 

splitting of the energy levels in the region where the neutral 

and charge transfer potential energy surfaces intersect. The 

diabatic and adiabatic surfaces for the standard model are 

shown in Fig. 1. These one-dimensional surfaces represent a 

reduced picture for the ET process in which the reaction 

coordinate, which experiences strong vibronic coupling, is 

treated explicitly while the vast majority of nuclear degrees 

of freedom, which are only weakly coupled to the electronic 

states, constitute a thermal bath. The coupling between the 

system and bath degrees of freedom introduces dissipation 

into the system. 

processes in the system and the intrinsic time scale of the 

electron tunneling process, given by the inverse of the elec­

tronic coupling matrix element. It is useful to distinguish 

two types of dissipation, energy flow between the reaction 

coordinate and the bath and the destruction of phase coher­

ences between quantum states. These two processes have dif­

ferent physical origins and manifest themselves in different 

ways experimentally. The former arises from inelastic inter­

actions with the bath and results in vibrational population 

relaxation on a timescale denoted by T 1• The latter process, 

pure dephasing, arises from quasielastic interactions that 

leave the state of the system unchanged but lead to a change 

in phase of the wave function. The timescale of this process is 

denoted by T!. Both processes contribute to the total de­

phasing rate for any pair of quantum levels. Numerous time­

and frequency-domain techniques have been devised in re­

cent years to provide information about vibrational and elec­

tronic dephasing rates for molecules in condensed phase en­

vironments. 13
•
14 For moderate to large molecules these 

range from subpicosecond to several picoseconds and gener­

ally depend strongly on temperature. 

Standard theoretical treatments of ET assume that a 

separation of timescales exists between the fast dissipative 

The complete loss of phase coherence on a sufficiently 

short timescale allows the ET process to be treated by classi­

cal or semiclassical methods such as those of Marcus3 and 
Landau and Zener. I

,IS-17 The semiclassical Landau-Zener 
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theory, or surface "hopping" approach, treats the nuclear 

motion classically. Quantum mechanics enters only at the 

configuration where the diabatic potential surfaces cross. At 

this point, the probability of the electron tunneling to the 

product surface is computed via the Schr6dinger equation. 

For cases where phase coherence is unimportant, two 
important limiting cases for the dynamics can be discerned. 

If the electronic coupling is weak, the probability of hopping 

to the product surface at the crossing point is small, and the 

crossing region will be sampled many times before an elec­

tronic state change will occur. The rate constant for electron 

transfer in this case depends on the magnitUde of the elec­

tronic coupling and the process is said to be nonadiabatic. In 

the limit of very weak coupling, the golden rule of perturba­

tion theory provides a connection between quantum me­

chanics and chemical rate processes. This approach forms 

the basis of radiationless transition theories and has been 

extended to nonadiabatic electron transfer by Jortner and 

others. 18
•
19 In the other extreme, the adiabatic limit, the 

splitting between surfaces is large in the crossing region, the 

probability of the electron tunneling to the product state at 

the crossing point approaches unity, and nuclear motion be­

comes rate limiting. In this limit classical models based on 

the escape of a particle over a potential barrier subject to 
frictional forces are applicable. 7.20 

When the dephasing rates in the reactant and product 

manifolds become comparable to the time scale associated 

with electron tunneling, the semiclassical description is no 

longer valid and the nuclear motion must be treated quan­

tum mechanically. In this regime, the initially excited neu­

tral state does not equilibrate before reaction occurs and we 

must take into account the nature of the optically prepared 

state. Optical excitation, in addition to creating popUlation 

in one or more vibrational levels, can result in the creation of 

phase coherences involving vibronic levels in both the 

ground and excited states. Coherences between ground and 

excited state levels (Le., optical coherences) generally decay 

on an exceedingly rapid timescale, which for large molecules 

in solution can be as short as sub-lOO fs. If the excitation 

pulse is sufficiently short, the large spectral bandwidth can 

lead to coherent excitation of several vibrational states with-

J 
I 

FIG. 1. Diabatic (- - -) and adiabatic (-) potential energy surfaces for 

electron transfer. 

in the excited state manifold resulting in a vibrational coher­

ence that will oscillate at the well frequency. When the de­

struction of this coherence occurs on a sufficiently long 

timescale, the ET process can no longer be considered a rate 

process, and quantum effects arising from the preservation 

of phase relationships between different quantum states can 

give rise to complicated dynamical behavior that contains a 

wealth of information on the nature and strength of the var­

ious types of coupling present in the system. 

The importance of electron transfer in many biological­

ly and technologically important areas has lead to intense 

experimental activity in recent years. Much of this attention 

has been focused on fundamental events in photosynthe­

siS.21
-

25 Ultrafast spectroscopic studies have shown that the 

transfer of an electron in the primary step occurs on a picose­

cond or sUbpicoseond timescale depending on the tempera­

ture. Simple theoretical estimates of electronic coupling 

strengths between neighboring pigments in various photo­

synthetic systems based on x-ray crystal structures have 

yielded interaction energies in the 10-200 cm - 1 range.26 The 

timescales associated with coupling strengths this large are 

comparable to those associated with dephasing in large mol­

ecules which suggests that quantum phase effects may play 

an important role in the dynamics of these processes, par­

ticularly at low temperatures where dephasing times can be 

long. 
The interpretation of experiments on ultrafast electron 

transfer and other photophysical processes, such as excita­

tion transfer, requires a theoretical approach that is capable 

of treating the reactive processes and dissipative processes 

explicitly. In the present work we develop a density operator 

approach based on the Redfield theory of relaxation which 

has found wide application in the field of magnetic reso­
nance/7

•
28 and, to a lesser extent, optical spectroscopy. 29 

Though the method is applicable to a number of photo­

chemical and photophysical processes, we develop the for­

malism in the context of photoinduced electron transfer. 

This work derives, at least in part, from the work of Werth­
eimer and Silbey30 on the dynamics of triplet states in naph­

thalene dimers. The theory is based on a microscopic model 

for the interaction between system and bath degrees of free­

dom and is nonperturbative in the electronic coupling allow­

ing us to interpolate between various limits involving slow 

and fast dissipation. Those nuclear degrees of freedom that 

experience strong vibronic interactions are treated quantum 
mechanically which allows proper incorporation of vibra­

tional relaxation and dephasing processes. A great deal of 

work has appeared in the past ten or fifteen years devoted to 

developing a firm microscopic understanding of dephasing 

processes in large molecules in solids and solutions at infinite 

dilution. Very little, however, has been done to incorporate 

these ideas into a quantum theory of condensed phase reac­

tion dynamics. The multilevel Redfield theory described 

here should be seen as our iriitial attempt in this direction. 

The rest of this paper is organized as follows: In Sec. II 

we provide a detailed description of the formalism and pres­

ent the strategy for numerical solution of the Redfield equa­

tions of motion for the elements of the reduced density ma­

trix for the system. In Sec. III we demonstrate the 
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equivalence of our approach and the golden rule and semi­

classical theories in the appropriate limits. In addition we 

present a quantitative discussion of the breakdown of the 

golden rule formula starting from the diabatic representa­

tion for the system electronic states. We conclude this sec­

tion by showing simulation results in the weak damping limit 

where coherence effects are important. Concluding remarks 

are contained in Sec. IV. 

II. THEORY 

A. System Hamiltonian 

In this section we develop the formal aspects of a multi­

level Redfield theory in the context of a simple model for 

photoinduced electron transfer. The model consists of a 

ground state and two excited manifolds, a neutral (N) state 

and a charge transfer (CT) state, coupled to a single nuclear 

coordinate, which is in tum weakly coupled to a large num­

ber of nuclear degrees of freedom that constitute a thermal 

bath. We include a system-field interaction that couples the 

ground and N states via the radiation field. The inclusion of 

the ground state and field interaction is in contrast to pre­

vious treatments of electron transfer; however, we shall see 

that in cases where the electronic process competes effective­

ly with vibrational relaxation processes, the nature of the 

initial optically excited state will influence the subsequent 

dynamical behavior. The vibronic population distribution in 

the initially excited state as well as the magnitude of the 

initial vibrational coherence is determined by the displace­

ment of the excited state potential surface relative to that of 

the ground state (i.e., through the Franck-Condon princi­

ple) and the spectral and temporal properties of the excita­

tion source. 
We distinguish between the system nuclear coordinate, 

which experiences strong vibronic coupling, and the remain­

ing modes that form the bath. We denote the former by Q 

and the latter by q. For now we neglect the ground state and 

system-field Hamiltonians and develop the form of the 

Hamiltonian for the Nand CT manifolds. In terms of the 

diabatic (site) states Nand CT, the Hamiltonian can be writ­

ten as 

.7t"; = .7t"N(q,Q) IN)(NI +.7t" CT (q,Q) ICT) (CTI 

+f(q,Q){IN)(CTI + ICT)(NI}· (1) 

The electronic degrees of freedom have been written in 

terms of projection operators for the diabatic states. f (q,Q) 

is the electronic coupling (exchange) term that describes the 

electronic tunneling process between reactant and product 

states. The vibrational Hamiltonians, .7t"; (q,Q), are multidi­

mensional operators that describe the static and dynamic 

properties of the uncoupled diabatic states. We can formally 

reduce these to one-dimensional effective Hamiltonians by 

defining a new set of operators that represent canonical aver­

ages over the bath modes. Let 

H; (Q) = (.7t"; (q,Q», 

J(Q) = (f(q,Q». 

(2a) 

(2b) 

In terms of these bath-averaged operators, the Hamilto­

nian for the electronically excited states is 

He = [HN(Q) + VN(q,Q)]IN)(NI 

+ [HCT(Q) + VCT(q,Q)] ICT) (CTI 

+ [J(Q) + VN,CT(q,Q)]{IN)(CTI + ICT)(NI}, 

(3) 

where V, (q,Q) =.JY; (q,Q) - H; (Q) and V N,CT (q,Q) 

= f(q,Q) - J(Q) represent fluctuations of these opera­

tors from their canonical averages. From here on we neglect 

fluctuations that are off-diagonal in the electronic index and 

concentrate on the site fluctuations, which give rise to dissi­

pation within a diabatic state. 

The total Hamiltonian can be expressed as a sum of sys­

tem, bath, system-bath, and system-field terms. 

H=Hs +HB +HSB +HSF (4) 

with 

Hs =HG +He =HG(Q)IG)(GI +HN(Q)IN)(NI 

+ HCT (Q) ICT) (CTI 

+J(Q){IN)(CTI + ICT)(NI}, (5a) 

HSB = VN(q,Q)IN)(NI + VCT (q,Q) ICT) (CTI, (5b) 

HSF(t) = -PG,N{IG)(NI + IN)(GI}'E(t), (Sc) 
A 

where PG,N = (G IpIN) is the transition dipole matrix ele-
ment for the G -+ N transition and E(t) is the time-dependent 

electric field. 

We have chosen the reaction coordinate Q such that its 

origin corresponds to the equilibrium position of the ground 

state surface. In dimensionless units 

(Q = ~ mwlfzQ ',P = (~ mfzw) -lp';Q' is the actual coordi­

nate and P' its conjugate momentum), the ground state vi­
brational Hamiltonian is 

(6) 

We assume the excited state surfaces differ by only lin­

ear displacements from the ground state. Then 

HN(Q) = fzwp 2/2 + 1I2fzw(Q-Il.N )2 + EN' (7a) 

HCT (Q) = fzwp 2/2 + 1I2fzw(Q -Il.CT)2 + ECT , (7b) 

where Il.; is the position of the minimum of excited state i and 

E; is the zeroth-order energy separation between the ith ex­

cited state surface and the ground state surface. Inclusion of 

higher order terms (frequency shifts, anharmonicities) is 

straightforward, however truncation at the linear term is in 

accord with previous treatments of the double well prob­

lem.3l 

Further progress is facilitated by transforming the 

Hamiltonian to the occupation number representation. 

Making the replacement Q-+ (a + at)//i and 

P-+ - i(a - at)//i where at,a are the usual boson opera­

tors and defining the zero of energy to be the bottom of the 

ground state well, the system Hamiltonian becomes 

Hs = (ata+ 1I2)fzwIG)(GI + [EN + (ata+ 1I2)fzw 

+ gN(a + at)] IN)(NI 

+ [ECT + (ata + 1I2)fzw + gCT (a + at)] 

XICT)(CTI +J(Q)[IN)(CTI + ICT)(NI], (8) 
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where the g; are linear coupling parameters 

(g; = - tl;wl..[2). The 0--0 transition for the G--i elec­

tronic transition is given by E~- 0 = £; - ~/(i). For the elec­

tron transfer process, the reorganization energy associated 

with the reaction coordinate is given by 

Er = (gN -gCT)2/w, (9a) 

and the energy bias between the states (i.e., free energy of 

reaction) is 

(9b) 

For the remainder of this paper we assume the Condon ap­

proximation is valid, that is the exchange coupling matrix 

element J is independent of the nuclear coordinate Q. Inclu­
sion of non-Condon effects, however, poses no difficulty. 

In the next section we develop the form of the operator 

that introduces vibrational relaxation processes into our pic­

ture. The various interactions with the bath will turn out to 

be level specific, thus it is convenient to express the system 

Hamiltonian in terms of vibronic operators that expose this 

level dependence. Adopting a direct product basis for the 

vibronic states with greek letters denoting vibrational quan­

tum number, the vibronic operators are of the form 

& ;ajp = li,a) (j,/JI· ( 10) 

The system Hamiltonian becomes 

Hs = L L £;aJP& ;ajp, (11) 
ij 1)13 

where £;aJp are matrix elements of the excited state Hamilto­
nian in the ground state basis. 

B. Derivation of the fluctuation operator 

In the previous section we discussed an effective Hamil­

tonian for the static properties of the system. If the system is 

prepared initially in one of the diabatic states, the electron 

exchange interaction will give rise to coherent (reversible) 

electron transfer between states. To introduce irreversibility 

into this picture we need to take into account the fluctuating 
terms in the Hamiltonian. The system-bath interaction for 

diabatic state Ii) was shown in the previous section to be 

Vi (q,Q) = JIr'; (q,Q) - (JIr'; (q,Q) )b8th' Expanding this to 
second order in the system coordinate about the equilibrium 

position of state i( tl;) gives 

V; (q,Q) = Vi (q,tl;) + (oV;(q,Q)/OQ)A,(Q- tl;) 

+ lI2(o2V;(q,Q)/oQ2)A,(Q- tly. 

(12) 

The zeroth-order terms do not depend on Q and are thus 

included in the bath Hamiltonian. We can simplify this 
expression by making the following substitutions . 

f)I)(q) = (oV;(q,Q)/OQ)A" (13a) 

f)2)(q) = 112(o2V;(q,Q)/oQ 2h,. (13b) 

These are fluctuation operators for the site states and depend 
only on the bath degrees of freedom. 

The vibrational relaxation processes we are interested in 

occur in the excited state manifolds, so it is most convenient 

to express the operators that give rise to these processes in 

terms of the vibrational states belonging to the particular 

electronic state Ii). These are states that diagonalize the lin­

ear coupling terms, g;, in the Hamiltonian. These displaced 

oscillator states will be denoted by greek letters with a prime. 

In terms of the displaced oscillator states, the operator 

describing the system-bath interaction becomes 

(14) 

where </l<;'~, = (a'lVi(q,Q) 1/3') are elements of the fluctu­

ation matrix for the diabatic state Ii). The matrix elements 

are easily calculated using the properties of the boson cre­

ation and annihilation operators. 

A, (i) f(l) 7F' 5: 'I'a'p' = ; vP Ua',P'_1 

+ fP),flJ'+Toa',p' + I + f)2)/3'oa',p'· (15) 

The first two terms gives rise to one quantum vibrational 

energy relaxation while the third term connects a state with 

itself and describes a pure dephasing process. We will neglect 

two-phonon relaxation processes. 

C. Vibrational relaxation and pure de phasing in the site 

representation 

With the bath described by the diagonal if)2» and off­

diagonal if) I» fluctuation operators, it is a simple matter to 

calculate the various relaxation rates which represent conve­

nient parameters to use in formulating a picture of ET in 

systems that experience strong electronic coupling. The ad­

vantage of expressing these parameters in the uncoupled 
(diabatic) representation is that they can be easily related to 

experimental measurements on uncoupled donor and accep­

tor species. 

Assuming the coupling between the reaction coordinate 

and the bath is sufficiently weak, the rate constant, r a'p' , for 

population relaxation from vibrational state a' to /3' can be 

written as a Fourier transform of the autocorrelation func­
tion of the appropriate fluctuation matrix elements32

,33 

r<;.~, = lITI = h -2 f-+ ",,"" dt /0>"'(3.1 (</l~~~, (t)</lJPa' (0», 

(16) 

where </la'P' (I) = exp(iHBt)</la'p' (O)exp( - iHBt). Only 
the off-diagonal fluctuations contribute to this process, so, in 

terms of thef) I) 

r~~~, = h -21 (a'IQ 1/3')12 f-+ ",,00 dt /0>"'(3'1 <Jil)(t)fil)(O». 

(17) 

The correlation function appearing in Eq. (17) involves only 

the bath variables and is assumed to decay exponentially 

with a time constant 7 e , the bath correlation time. In the 

motionally narrowed limit, <J)2»7e < 1, the rate constant 

for the process a' --/3' in site state i is thus 

(18) 

which scales linearly with the vibrational quantum number. 

Detailed balance requires that the ratio of the two rates be 

given by the corresponding Boltzmann factor. Thus to en-
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sure that the system relax to a Boltzmann distribution at 

long times, we force the rates to obey the detailed balance 

condition. The rate constant for the reverse process, transfer 

from /3' to a' is then 

rp'a' = exp( - wa'p,/knra,p" (19) 

Coherent excitation of two (or more) vibrational levels 

in the initially excited electronic state results in a phase co­

herence between the states which gives rise to a macroscopic 

vibrational amplitude. This amplitude can be written as 

(Q(t» = Tr{p(t)Q}, (20) 

where p(t) is the time-dependent density matrix for the vi­

brational states. For a two-level system, 

(21) 

In the absence of population relaxation, the phase coherence 

described by Pa'p' (t) will, in the Bloch approximation, de­

cay exponentially with time constant Tr, Again, perturba­

tion theory gives the result 

r * - I/Ta'P'* p'a' - 2 

J
+ 00 

= h -2/2 _ 00 dt «¢a'a' (t) - ¢P'P' (t» 

X (¢a'a' (0) - ¢P'P' (0»). (22) 

The total dephasing rate between two levels is given by 

r a'p' = L r a'r' + L r P'r' + rt'a" (23) 
r' r' 

where the summations denote the sum of all the T, processes 

originating in states a' and /3'. 

D. System-field interaction 

In conventional electron transfer theories for excited 

states, the assumption offast dissipation results in dynamics 

that are insensitive to the nature of the optically prepared 

state. For cases where either population relaxation and/or 

pure dephasing occurs on a timescale comparable to the elec­

tron transfer, this is not necessarily true. In these cases we 

must explicitly take into account the frequency and tempo­

ral properties of the excitation pulse and the Franck-Con­

don factors for the relevant optical transitions. The interac­

tion between the system and an incoming laser pulse is given 
by 

(24) 

where fL is the transition dipole operator and E(t) is the 

time-dependent electric field, which can be written as 

E(t) = Eo(t){exp(ilULt) + exp( - ilULt)}, (25) 

where Eo(t) is the temporal profile of the pulse and lUL the 

center frequency. Assuming the excitation pulse is a trans­

form limited pulse from a mode-locked laser, the spectral 

width is determined by the Fourier transform of Eo(t). 

We assume only the neutral state is optically accessible 

from the ground state, so that the transition dipole operator 
has the form 

fL = rfLNa',Ga{IN,a') (G,al + IG,a) (N,a'I}, (26) 
aa' 

where a and a' refer to vibrational levels associated with the 

ground (G) and nuetral (N) excited states, respectively. 

The matrix elements of the transition dipole operator have 

the form 

fLNa',Ga = (N IPIG) (a'ia). (27) 

Without loss of generality, we set the electronic matrix ele­

ment equal to one. The vibrational overlaps, (a'ia), depend 

on the relative displacement of the G and N states. 

E. Density operator for the system 

We can summarize the previous sections by writing 

down the full Hamiltonian in terms of the vibronic opera­

tors. 

+ LfLNa',Ga {& Ga,Na' + & Na',Ga}'E(t) + H B , 

ad 

(28) 

where €iaJP is a matrix element of the excited state Hamilto­

nian in the ground state basis. The matrix elements of the 

fluctuation operator in the ground state vibrational basis are 

given by 

(30) 

where C~ = (ylr'). 
To properly treat both the coherent motion and relaxa­

tion processes, we must solve for the reduced density matrix 

of the system p, which represents a canonical average over 
the bath degrees of freedom. 

(31) 

where PB is the density matrix for the bath. Terms diagonal 

in both the electronic and vibrational indices correspond to 

populations of site vibrational states. Vibrational coherences 

are described by terms that are off-diagonal in the vibration­

al index. Terms that are off-diagonal in the electronic index 

correspond to electronic coherences between vibronic states 

in different wells. 

The time dependence of the reduced density matrix for 

the excited states is governed by the quantum Liouville equa­

tion 

p(t) = - i[He,p(t)] + R·p(t). (32) 

The terms that give rise to dissipation are contained in the 

Redfield tensor R. Before discussing the form of the R ten­

sor, it is convenient to transform to a representation in which 

the electronically excited Hamiltonian is diagonal and devel­

op the relaxation equations in this basis. 

F. Transformation to the eigenstate representation 

Theoretical treatments based on perturbation theory are 

valid for treating electron transfer between site states when 

the electronic coupling term J is small. In order to develop a 

theoretical method that interpolates between the strong and 

weak coupling limits, it is convenient to work in a basis in 

which the electronic coupling is diagonal. The excited state 
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Hamiltonian in the ground state representation is given by 

He = [EN + (ata + 1!2)kv + gN(a + at)] IN)(NI 

+ [ECT + (ata + 1!2)kv + geT (a + at)] 

x ICT)(CTI +J[IN)(CTI + ICT)(NI]· (33) 

The matrix representation of this operator in the ground 

state representation is given by the E matrix. If Ueg is the 

eigenvector matrix of He' then we can write 

U!gEUeg = E, (34a) 

U!gpUeg = p, (34b) 

where E is the diagonal matrix ofthe system energies and p is 

the reduced density matrix in the eigenstate representation. 

Ueg is the transformation matrix for the ground and eigen­

state represenations. We must also transform the fluctuation 

matrix <p to the eigenstate representation, however, care 

must be taken because, as mentioned above, the fluctuation 

matrix was originally set up in the representation that dia­

gonalizes the excited state Hamiltonian in the absence of the 

electronic coupling, but with the vibronic parametersgN and 

gCT turned on. Thus the transformation of <p to the eigenstate 

representation can be written 

(34c) 

where Ugd denotes the transformation matrix between the 

ground state and diplaced oscillator representations. 

We have thus transformed the problem of two mani­

folds undergoing relaxation in the presence of coherent elec­

tron exchange between localized states to a problem involv­

ing relaxation and dephasing processes involving a single 

manifold of states that are delocalized over the donor and 

acceptor. 

G. Dynamical calculations 

1. Redfield equations 

In the eigenstate representation, the site states are 

strongly mixed and it is convenient to use a notation in which 

only one index denotes a vibronic state. Assuming the total 

density matrix at t = 0 can be written u(O) = P(O)PB' 

where the bath density operator is given by 

PB = expC-f3HB/Tr(-f3HB», the density matrix elements 

in the eigenstate representation obey the equations of mo­

tion34 

PNM(t) = -iUJNMPNM(t) - LRNM.PQPPQ(t), (35) 
PQ 

where UJNM = (EN - EM )/fz is the frequency of oscillation 

of the coherence between eigenstates Nand M. The Redfield 

approximation involves treating the fluctuations tP to second 

order. The R tensor elements have the following form:34 

- 8 QM L (tPNS(t)tPSp)exp( - iUJspt) 
s 

-8PN +(tPQStPSMU»eXp( -iUJQst)]. 

(36a) 

The correlation functions appearing in the above expression 

are assumed to decay exponentially with a correlation time 

Tc' If we assume that the bath correlation time is much 

shorter than any time scale on which the system evolves, we 

can replace the resulting Redfield tensor elements with their 

values at zero frequency. Carrying out the integration gives 

RNM.PQ = h -2Tc [ 2( tPQMtPNP) 

-8QM L (tPNStPSP) -8PN L (tPQStPSM)]' 
s S 

(36b) 

Elements of the Redfield tensor can thus be constructed 

from products of pairs of matrix elements of the fluctuation 

matrix in the eigenstate representation. In terms of our fluc­

tuation parameters for the two wells,fi I) andfi 2
), a matrix 

element of tP can be written as 

tPNM = L L L C'!'a,NCi(3,NC<';~,C~J~) [fil){~ 8a ',(3'-1 

i a(3 a'(3' 

(37) 

where C,?;-,p and C~ are elements of the transformation 

matrices, Uge and Ugd , respectively. In Eq. (37) we have 

incorporated the correlation time into the definition of our 

fluctuation parameters! That is, we have made the replace­

ment J: -+J: (Tc) 1/2. Once again, as discussed in Sec. II C, 

invoking the Markov approximation (Tc -+0) leads to a Red­

field tensor that does not satisfy detailed balance. Thus, to 

ensure that the system relaxes to a Boltzmann distribution, 

we introduce the detailed balance condition in an ad hoc 

manner. Elements of the R tensor are, in general, complex, 

with the imaginary terms leading to a renormalization of the 

system frequencies. Note, however, that replacing the fre­

quency-dependent R tensor with its value at zero frequency 

leads to a tensor that is real. The elements of the Redfield 

tensor have a straightforward interpretation. R NM,PQ is a 

rate constant for the process PPQ -+PNM' If P = Nand 

Q = M, this is a dephasing rate for the coherence P PQ' If 

P = Q and N = M, then the term represents a population 

relaxation rate between eigenstates P and N. Other terms 

describe the coupling between populations and coherences 

and coherence transfer. The latter process will be important 

whenever the frequency mismatch UJN - UJM - UJp + UJQ is 
within the width of the states, 27,35 

We rewrite Eq, (35) in a more compact form by defin­

ing the complex matrix L, whose tensor elements are of the 

form 

LNM,PQ = 8NP8MQUJNM - iRNM,PQ' (38) 

The equation of motion for the density matrix then becomes 

pet) = lLp(t) , 

which has the solution 

pCt) = e'L~(O). 

(39) 

(40) 
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2. Optical preparation of the initial state 

For simplicity, we will assume there is no dissipation in 

the system during the excitation pulse. The validity of this 

approximation for any given pulse duration will obviously 

depend on the magnitude of the fluctuations. In the absence 

of dissipation, the dynamics of the density matrix is gov­

erned by the quantum mechanical Liouville equation 

p(t) = - i/h [Hs + HSF(t),p(t)], (41) 

where HSF(t) = - WE(t). Assuming the system-field in­

teraction is weak, Eq. (38) can be solved perturbatively. The 

density operator, in the interaction representation, after an 

excitation pulse of duration 7, is found, through second or­

der, to be 

p( 7) = p(O) - i/fz iT dt [H ~F(t)'P(t)] 

- iHf-iT dt f dt' [H ~F(t), [H ~F(t '),p(t')] ], 

(42) 

where H~F(t) is HSF(t) in the interaction representation. 

Using the form of the transition dipole operator, Eq. (26), 

along with Eq. (42), and assuming the initial density opera­

tor is given by p(O) = ~Pa IGa) (Gal, wherepa is the Boltz­
mann factor, the density matrix elements (in the Schro­

dinger representation) for the vibronic states belonging to 

the N manifold initially after the pulse is turned off are given 

by 

Pa'p' (r) = LPaE(CtJaa· )E(CtJap') 
a 

X exp(iCtJa·p· 7) (ala') (alP '), (43) 

where E(CtJ) is the amplitude of the field at frequency CtJ. In 
addition to creating vibrational populations in the N mani­

fold (a' = .0'), two types of coherences arise from ths sec­

ond-order treatment. The first involves electronic coher­

ences between the ground and neutral excited states. This 

optical coherence will be assumed to decay rapidly and will 

not be treated explicitly. The second type of coherence 

comes from the simultaneous excitation of two or more vi­
brationallevels in N(a'f:.p'). This is possible only if the 

pulse width is short compared to the period of vibrational 

motion in the reactant well. Note that although we neglect 

dissipative effects while the field is turned on, we do allow for 

free motion of the system due to Hs. Note also that the de­

tails of the pulse shape do not matter in our approximation, 

only the pulse area. For the simulations discussed in the next 

section, we choose the pulse to have a Gaussian temporal 

profile (and, hence, a Gaussian spectral profile) with a full 

width half-maximum given by 1/7. We choose the density 

matrix after excitation to be normalized i.e., Trp( 7) = 1. 

For convenience we choose to generate the initial condition 

using the displaced oscillator states since we assumed that 

only the N state is coupled to the radiation field. The initial 

condition (i.e., after the pulse is turned off) in the eigenstate 

representation can then be generated using the same trans­

formation as in Eq. (34c), 

p(7) = U~UgdPd(7)U~Uge' (44) 

where d denotes the displaced oscillator representation. 

3. Numerical solution of the Redfield equations 

We take the number of vibrational states in each well to 

be N. The total number of excited vibronic states in our mod­

el is thus 2N. The number of states used in a dynamical cal­

culation depends on the strength of the vibronic coupling 

parameters (g;), the electronic coupling strength (J), and 

the temperature. We reformulate Eq. (40) such that p is a 

vector oflength (2N)2 whose elements contain the popula­

tions of and coherences between the system eigenstates. In 

this notation, Lis (4N 2 X 4N 2
) matrix. Solution of the cou­

pled Redfield equations can then be obtained through nu­

merical matrix diagonalization. We write the solution in the 

form 

p(t) = M exp[A.(t - 7) jMt'p(r), (45) 

wherep( r) is the density matrix initially afterthe excitation 

pulse. M is the eigenvector matrix of the matrix L, and A. is 
the diagonal matrix of complex-valued eigenvalues. The 

structure of L is such that the real part of A. is negative. 

We are interested in the populations of the Nand CT 

states as a function of time. Thus at each time point we trans­

form back to the displaced oscillator representation to give 

the density matrix Pd (t). 

(46) 

The total population Pi in site state i is obtained by perform­

ing a partial trace over only those vibrational states belong­

ing to state i. 

(47) 

To summarize, we transform, using the appropriate uni­

tary matrices, the system states and the fluctuation matrix 

elements to the eigenstate representation. We next construct 

the Redfield tensor from the fluctuation matrix elements and 

solve for the dynamics via numerical diagonalization of the 

systems Green's function. Finally we transform back to the 

representation of displaced site states to calculate the popu­

lation dynamics. This procedure provides a convenient 

method for simultaneously treating both the coherent pro­

cesses arising from the optical preparation of the initially 

excited state and the coupling between the Nand CT states. 

It is interesting to compare the picture of ET that the 

different representations provide. In the localized, displaced 

oscillator representation, a vibronic coherence induced by 

the electronic coupling parameter J involving both the Nand 

CT states appears as coherent transfer of an electron be­

tween the two states. In the delocalized eigenstate represen­

tation, this process is the oscillation of a phase coherence at· 

its Bohr frequency between two states that have projections 

onto both the Nand CT manifold. The dephasing of this 

coherence results in irreversibility of the electron transfer. 

Dynamical simulations discussed in Sec. III were car­

ried out on the Cray Y MP at the National Center for Super­

computing Applications at the University of Illinois. The 

various transformation matrices were obtained from nu­

merical diagonalization of the appropriate Hamiltonian ma­

trices using routines from the I.M.S.L. (Version 10) pack­

age. Typical calculations of the dynamics for a two 

electronic state-one mode model required between 5 and 10 

vibronic states per well to achieve convergence. 
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III. RESULTS AND DISCUSSION 10.,.-------------,......, 

A. Weak electronic coupling 

For sufficiently weak electronic coupling, the multilevel 

theory discussed in the previous section should reproduce 

the golden rule result for the electron transfer rate constant. 

In this regime the coherence time between vibronic levels is 

much shorter than the timescale of electronic tunneling, so 

the process is considered incoherent. Consequently, the 

golden rule rate for a multilevel system can be obtained by 

summing all possible pairwise rates for the different vibronic 

levels. 

kGR =J2~Pa' ~1(a:vI/3~>12LEa. -;:·;~+r;.pJ 
(48) 

where a' and /3' now refer to vibrational levels belonging to 

the Nand CT states, respectively. (Ea' - ElI' ) is the detun­

ing between levels and raP ( = lITz ) is the total dephasing 

rate for levels a' and /3'. The use of the Boltzmann factor in 

the summation over the N manifold assumes that the system 

is in thermal equilibrium. Slow energy relaxation can result 

in "hot" transfer between levels but a rate description is still 

valid. In this case, though, the initial state distribution be­

comes time-dependent and nonexponential kinetics result. 

In this section we wish to investigate the various ways in 

which the golden rule description can break down, which are 

related to the persistence of phase coherence and/or incom­

plete thermalization in the reactant or product well.20 In 

what follows we discuss the validity ofEq. (48) starting with 

the diabatic (site) states, since this represents the starting 

point for most analyses of electron transfer rates.36 

The simplest model we can use to illustrate the equiv­

alence of the Redfield theory and the standard golden rule 

description in a weakly coupled system is a three-level sys­

tem in which the reactant manifold consists of a single level 

with the product containing two levels, corresponding to a 

ground and excited vibrational state. This is illustrated in 

Fig. 2. The surface parameters and excitation condition are 

listed in the figure caption and have been chosen so that the 

three levels shown are the only relevant ones. Here the vibra­

tionally excited state of the product acts as the acceptor level 

and relaxation to the ground level acts as the only dephasing 

mechanism (i.e., there is no pure dephasing). 

IN,O> ____ ~ J.ff~ _--,.--_ ICT,I> 

ICT,O> 

FIG. 2. Schematic diagram of the isolated three-level system described in 

the text. The potential surfaces are not shown. The parameters are (J)/ 
21TC = 600 cm -', gN/21TC = - gcr/21TC = - 400 cm - '. Jerr is the effec­

tive coupling strength, Jerr = J (011). 

8 

6 

4 

2 

500 1000 1500 

J2 (cm-2 ) 

FIG. 3. Electron transfer rate constant as a function of the square of the 
square of the electronic coupling matrix element, J /21TC, for the isolated 

three-level system of Fig. 2. €b'as/21TC = lOOcm-'. T, = O.166ps, Tf = co. 

(-II--l, golden rule; (-O-l, kFP ; (+l, k AVG ' 

In our analyses we show the results for both the average 

rate constant and the rate constant corresponding to the first 

passage time. These are given by 

kayg = [1"0 dtPN(t)]-1 (49a) 

and 

(49b) 

where Tip is defined as the time it takes for the popUlation to 

decay to lie of its initial value. The population P N (t) is 

defined as the population of the N state minus its value at 

equilibrium. In terms of the density matrix in the site repre­

sentation this is given by PN(t) =PNN(t) -PNN(t= 00). 

For a multilevel system, PNN(t) is obtained by tracing over 

the density matrix for the site state N. For nonexponential 

decays, the average time and first passage times will be dif­

ferent. 

In the three-level system when there is perfect resonance 

between the donor and vibrationally excited acceptor level, 

the golden rule predicts the rate should go as kgr~J2/r, 

where r( = lITI ) is the vibrational relaxation rate in the 

present example. Figure 3 shows the results for the electron 

transfer rate for the three-level system as a function of the 

square of the electronic coupling strength from both the 

multilevel Redfield and the golden rule theories for the sys­

tem described in Fig. 2. As expected, for sufficiently small 

values of J, the results are identical. As the electronic cou­

pling is increased, the calculated rate falls off from the gold­

en rule prediction due to coherent effects (vide infra). 

Another prediction from the golden rule result is that 

for cases where there is a detuning between the donor and 

acceptor levels, the rate constant should depend nonmono­

tonically on the dephasing rate r. The reason for this is that 

the fluctuations in the system energy levels induced by the 
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FIG. 4. Electron transfer rate constant as a function of the vibrational relax­

ation rate, liT\! for the isolated three-level system. Tt = 00. J 12rrc = 5.0 

cm -I ( ___ -), golden rule; (-0-), kAVO ' 

system-bath coupling must have a magnitude large enough 

to allow states to achieve resonance so that electron transfer 

can occur. If the magnitude of the energy gap fluctuation is 

comparable to or less than the detuning, the rate at which the 

donor and acceptor levels come into resonance is rate con­

trolling. At higher values of the magnitUde of the fluctu­

ations, sampling of the resonance condition is no longer rate 

limiting and the rate turns over. As discussed in Sec. II C, 

the vibrational relaxation rate is proportional to the magni­

tude of the mean-square amplitude of the off-diagonal fluc­

tuation constant and provides a convenient parameter with 

which to investigate the interplay between coherent transfer 

and energy fluctuations. Figure 4 shows the Redfield and 

golden rule rates as a function of the vibrational relaxation 

rate for the three-level system of Fig. 2 with a detuning of 
8 = 25 cm - 1 and an electronic coupling of J = 5 cm - I. For 

this case the turnover occurs at TI ::::;0.10 ps. 

The examples above serve to show the equivalence of the 

Redfield theory and golden rule results for a simple model 

where the electronic coupling is weak. We now wish to dis­

cuss the various ways in which Eq. (48) can break down in 

both a three-level model and a multilevel system in which 

both donor and acceptor contain many vibrational states. 

The deviation from the golden rule result at large values of J 

seen in Fig. 3 results from the presence of a vibronic phase 

coherence between levels belonging to different site states. 

As stated before, the initial condition was chosen such that 

only the donor site level was populated. In the eigenstate 

representation, this corresponds to a superposition of the 

two delocalized (exciton) states with a definite phase rela­

tionship between their wave functions. The phase factor is 

such that there is perfect constructive interference at the 

donor site and perfect destructive interference at the accep­
tor site. In the absence of any dephasing mechanism this 

phase coherence will oscillate at a frequency of Jeff' where 

I'I.' 

J 
,I III 

--

j 
(1 (It! 

\l (l~ 

! 004 

0.02 +-......... -,.-....--,-...---,---,..---..,---.--.,.J 
0.0 1.0 2.0 3.0 4.0 5.0 

FIG. S. Electron transfer rate constant as a function of the vibrational relax­

ation rate, liT\! for the isolated three-level system. Tt = 0.21 ps, J / 

2rrc = 5.0cm- l
• (----) , golden rule; (-0-), kFP ' The average rate is indis­

tinguishable from the first passage rate. 

Jeff is the bare electron tunneling matrix element dressed by 

the appropriate Franck-Condon factor. In the site represen­

tation this phase rotation will appear as cycling of the popu­

lation between reactant and product and would be detectable 

in an optical experiment as a quantum beat. In a dissipative 

environment, pure dephasing and population relaxation lead 

to destruction of the initial electronic coherence resulting at 

long times in a rate-like description. At sufficiently short 

times, however, the decay of the initial state is not exponen­

tial and the coherent aspect of the motion results in an induc­

tion period, i.e., the initial slope at t = 0 .... 0. Here the inter­

play between coherent motion and relaxation leads to a 

decrease in the actual rate as compared to the golden rule 

prediction. 

In our model, the bias between the ground state levels of 

the reactant and product is approximately equal to the vibra­

tional frequency. Such a situation leads to a second cause for 

the breakdown of the golden rule which is due to slow ther­

mal equilibration in the reactant and/or product manifolds. 

To illustrate this quantitatively, we choose the parameters 

such the total dephasing rate is much faster than the electron 

transfer rate and investigate the effects of varying the popu­

lation relaxation rate of the acceptor for the case where there 

is no detuning. The results are shown in Fig. 5. Here the 

diagonal fluctuation constant has been chosen such that the 

pure dephasing time for the relevant levels is approximately 

0.20 ps and the vibrational TI time is varied from infinity to 

::::;0.10 ps. For values of TI less than approximately 1 ps, the 

rate actually decreases with increasing TI in contrast to the 

golden rule prediction based on total dephasing rate. The 
falloff from the golden rule prediction in this case arises from 

incoherent recrossings of the intersection region of the two 

diabatic surfaces. The product manifold can not dump its 

energy to the ground state and "hot" transfer back to the 

reactant state can occur. The important point here is that the 

golden rule theory depends only on the total dephasing rate 
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without regard to how dephasing is partitioned between pop­

ulation relaxation and pure dephasing. Of course, if we were 

to turn off the vibrational relaxation rate (T, = 00) and con­

sider the isolated two-level system (with aG = 8 rather than 

Ebias ), we would get perfect agreement between the Redfield 

and golden rule results due to the rapid pure dephasing. 

The isolated three-level system discussed above served 

to demonstrate the validity ofthe Redfield theory in the limit 

of very weak coupling and explore two ways in which the 

golden rule can break down which are due to coherent and 

incoherent motion of the system through the region where 

the diabatic surfaces cross. In a system with a low frequency 

mode and high temperature, the presence of many vibration­

allevels can lead to complicated dependence of the dynamics 

on the magnitude and various types of coupling and dissipa­

tion in the system. We next examine a series of models de­

signed to explore some of the consequences of the competi­

tion between coherent motion and relaxation in a multilevel 

system. As before we choose the model such that the reac­

tion is exothermic by approximately one quantum of vibra­

tional energy. When the reactant state contains more than 

one vibrational level, a sufficiently short excitation pulse can 

result in a vibrational coherence between two or more vibra­

tionallevels within the reactant manifold. Suqh a coherence 

is reflected in a value of the ensemble-averaged coordinate, 

(Q(t», that differs from the equilibrium value of (Q) corre­

sponding to the photoexcited state (i.e., aN)' In order to 

properly incorporate the magnitUde of this initial coherence 

into our description of the excited state dynamics of our 

model, we must specify both the position of the N diabatic 

surface relative to that of the ground state and the spectral 

width of the excitation pulse. In all cases discussed here, we 

choose the temporal width to be short enough such that we 

can neglect dissipation during the pulse. The spectral width 

is taken to be Gaussian and is obtained from the temporal 

width, also taken to be Gaussian, by the Fourier transform 

relation 1" aOh ::::: 15 cm - " where l' and a(r) L refer to the 

full width at half-maximum of the temporal and spectral pro­

files, respectively. 

The first issue we examine is the effect oflevel detunings 

on the dynamics of ET. Figure 6 shows plots of the rate 

constant for various electronic coupling values for a multile­

vel system in which fwJ~kT. The parameters are chosen so 

that the reaction falls in the Marcus inverted region3 and are 

displayed in the appropriate figure captions. In Fig. 6 (a) the 

reaction is exothermic by precisely one quantum of vibra­

tional energy so that each donor vibronic level is in perfect 

resonance with an acceptor level. In Fig. 6(b), the levels 

have been detuned by one-fourth the vibrational frequency. 

In both cases negative deviations (i.e., slower rates) from the 

golden rule prediction are seen, and, above a critical value of 

J, nonexponential kinetics are observed; however, in the de­

tuned case the first passage time is shorter than the average 

lifetime whereas the opposite relation holds for the case of 

exact resonance. Examples of the population dynamics for 

different values of the electronic coupling are shown for 

these two cases in Fig. 7. These decay curves show that for a 

given value for the total dephasing rate, the onset of coherent 

behavior occurs at lower values of J for the resonance case 

10,-------------------------__ 
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FIG. 6. Electron transfer rate constant as a function of the square of the 
electronic coupling matrix element for a multi-level system with wi 
2rrc= 100 cm-', gN/2rrc= -gcr/2rrc= 50 cm-', f~/2rrc=f~/2rrc 

= l6.0cm-'. (we• c -Eo_ o )/2rrc=25cm-',1'=O.05ps, T=200K (­

.-), golden rule; (-0-), k FP ; (+), kAYG' (a) Eb'as/2rrc = lOOcm-'. (b) 

Eb'as/2rrc= l25cm-'. 

than for the detuned case. In Fig. 6 (b), the decay curves for 

the faster processes are markedly nonexponential due to the 

small energy gap for the reaction (compared to kT) and the 

reversible nature of the process. Simulations using the same 

parameters with a larger energy gap (not shown) yielded 

decays that were single exponential. 
The results above are in agreement with the results seen 

in the isolated three-level system, in which only negative 

deviations from the golden rule were seen. The preservation 

of electronic phase coherence on a sufficiently long time 

scale compared to the reaction time is responsible for the 

overestimation of the golden rule result. We next ask ifthere 

is any circumstance in which we might expect to see positive 

deviations from the golden rule prediction, that is, an en­

hancement of the rate. To answer this, consider the effective 

coupling strength as a function of vibrational quantum num­

ber. In the vicinity of the activationless region, the effective 

coupling strength (Jeff = J,fF; F = Franck-Condon fac-
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FIG. 7. Population dynamics for the initially excited neutral electronic state 

for the multilevel system described in Fig. 6. (a). £bia.l2rrc= 100 em-I. 

(b) £ ..... /2rrc= 125 em-I. (c) (-) £bia.l2rrc= 125 em-I, J/2rrc= 30 

em-I; ( ••• ) E", .. I21TC = 225 em-I, J l21Tc = 42 em-I. 
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FIG. 8. Electron transfer rate constant as a function of the square of the 

electronic coupling matrix element for a multilevel system with w/ 
2rrc= 100 em-I, gN/2rrc= -gcT 12rrc=25 em-I, fi/2rrc=f~/2rrc 

= 16.0 em-', (wcxc - Eo_o )/2rrc = 200 em-I, T= 0.05 ps, T= 150 K. 

( .... -) , golden rule; (-0-), kFP ; (+), kAvo ' (a) €b .. .I2rrc = lOOem- l
• 

(b) €b .. .I2rrc = 125 em-I. 

tor) decreases with increasing vibrational quantum number. 

Thus for a situation in which many donor levels are initially 

populated, slow energy flow between the reaction coordinate 

and the surroundings results in depletion oflower vibration­

allevels of the donor and a slowing of the overall rate. This 

would suggest that in a situation in which ET from higher 

vibrational levels of the donor occured with a faster rate than 

for lower levels, slow energy flow would result in a faster rate 

than that predicted from a donor that was in thermal equilib­

rium. Figure 8 shows just a case. Here, the displacement 

between the reactant and product surfaces is small, and we 

are in the Marcus inverted region. For the case where there is 

an exact resonance between donor and acceptor levels there 

is a slight enhancement of the average rate over the golden 
rule prediction. When the levels are detuned [Fig. 8 (b) ], we 

again see negative deviations from the golden rule. For 

J> 100 cm - I we see that the first passage time is faster than 

the golden rule prediction, however, in this region, recur-
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rences are seen in the population dynamics and direct com­

parison with the golden rule is meaningless. 

The simulation results from these models are not meant 

to suggest universal behavior, rather they serve to illustrate 

some qualitative points concerning the complexities that 

arise when vibrational population dynamics, dephasing and 

ET processes occur on similar timescales. From the exam­

ples above, it was seen that under the right combination of 

circumstances, such as small displacements between reac­

tant and product wells coupled with slow energy exchange 

with the bath, rates exceeding the golden rule prediction 

could be realized. Of course the golden rule formula could be 

modified to include a time-dependent distribution in the 

reactant well. If pure dephasing were rapid, then the decay of 

the population in the reactant well could be calculated by 

solving the full multilevel Pauli master equation using the 

state-to-state rates calculated as in Eq. (48). This presum­

ably would lead to the same results as those from Redfield 

theory. 

In the isolated three-level system we found that when 

the electronic coupling matrix element approached the value 

of the population relaxation rate, the short time behavior of 

the population of the initial state was found be coherent [i.e., 

P(t) ~cos( 41TJt)] which resulted in an increase in the first 

passage time and decrease in the average rate constant com­

pared to that predicted by the golden rule. It is not clear, 

however, how this idea translates into the multilevel case 

where each pair of quasiresonant levels in the reactant and 

product has its own effective frequency of oscillation. From 

the limited number of cases we have examined we conclude 

there is no general statement that can be made concerning 

positive or negative deviations from golden rule behavior 

due to coherence effects in a multilevel system. In the cases 

studied here, the fluctuation parameters were identical in 

each well. The results obtained suggest that in these cases, 

strong coherences lead to negative deviations from the gold­

en rule result while slow energy flow between system and 

bath could lead to positive or negative deviations depending 

on how Franck-Condon factors scale with vibrational ener­

gy. 
Another issue is the effect of the initial optical excita­

tion. Whether or not deviations from the golden rule predic­

tion are seen may depend on both the magnitUde of the initial 

vibrational coherence and the amount of excess vibrational 

energy deposited in the reactant well during the excitation 

process. We next examine the role of the nature of the opti­

cally prepared state on the subsequent dynamical behavior 

of the system. The two models we compare differ only in the 

position of the ground state relative to the N state. The essen­

tial difference between the two models is the difference in the 

Franck-Condon factors for the initial excitation process. A 

larger displacement of the N state from the ground state 

results in a greater number ofvibronic states that are initially 

accessible. In addition, we have chosen the excitation condi­

tion such that the center frequency of the excitation pulse is 

approximately in resonance with the 0 -+ 5 transition for the 

case where the displacement of the N state is large. For the 

smaller displacement case, the spectral center of the excita­

tion is in resonance with the 0-1 band. In both cases the 

3~------------------------~ 
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FIG. 9. Electron transfer rate constant as a function of the square of the 

electronic coupling matrix element for a multilevel system with Ebias/2rrc 

= OJ/2rrc = lOOcm-I,fi /2rrc = J.Ocm- I,}1/2rrc = 16.0cm- I, T= 150 

K, l' = 0.05 ps. The solid lines refer to the case wheregN /2rrc = - gcr/2rrc 

= - 4Ocm- 1 and (OJ.xc - Eo_o )/2rrc = 15 em-I. The dashed lines refer 

to the case where gN/2rrc= - 80 em-I, gcr/2rrc=0 em-I, and 

(OJ."" - Eo_o)/2rr= 500 em-I. (-II--, -0-) k FP ; (-+-, +), kAVO' 

temporal width of the excitation pulse was taken to be 0.050 

ps corresponding to a spectral width of approximately 300 

cm - 1. The combination of different displacements and dif­

ferent excitation conditions results in initial conditions 

which are quite different from one another. We now examine 

the dynamics for these two situations in the presence of dif­

ferent dissipative mechanisms. Figure 9 shows the results for 

the two models for the case where there is relatively fast 

vibrational energy equilibration and slow pure dephasing. 

The rate constants obtained for the different initial condi-

3---------------------------, 

100 200 300 

J2(cm.-2 ) 

FIG. 10. Electron transfer rate constant as a function of the square of the 
electronic coupling matrix element for a multilevel system with 
Ebi .. /2rrc=OJ/2rrc=100 cm-t, fi/2rrc=2.85 em-I, }1/2rrc=J.4 

em-I, T= 150 K. 1'=0.05 ps. The solid lines refer to the case where 

gN/2rrc= -gcr/2rrc= -40cm- l and(OJ."" -Eo_o)/2rrc= 15cm- l
. 

The dashed lines refer to the case where gN/2rrc = - 80 em-I, gcr/2rrc 

= 0 em-I and (OJ.xc - Eo-o )/2rrc = 500 em-I. (-II--, -0-) kFP ; C-+-, 

+),kAVO ' 
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tions are different with the difference increasing with in­

creasing values of the electronic coupling strength. A similar 

situation is shown in Fig. 10, however this time the pure 

dephasing rate is chosen to be rapid while the vibrational TI 
time is relatively slow. The discrepancy between first pas­

sage times and between average rates for the two models is 

greater in the case of slow energy equilibration than for fast 

equilibration indicating the effect of hot transfer out of the 

donor state. In addition, the difference between the average 

and first passage rates for both models is substantially 

greater in the case of slow energy flow. 

B. Comparison with semiclassical theory 

When the barrier between the reactant and product sur­

faces is large andlor the temperature is high, nuclear tunnel­

ing has little or no effect on the dynamics and the reaction 

can be described as activated barrier crossing. In this case 

classical or semiclassical treatments are valid. In the semi­

classical Landau-Zener theory, motion of the system along 

the reaction coordinate is treated classically, except at the 

crossing point of the diabatic surfaces where the Schrodinger 

equation is used to solve for the probability for the system to 

"hop" from the reactant diabatic surface to that of the prod­

uct. In its simplest form, Landau-Zener theory treats the 

motion through the crossing point ballistically. The proba­

bility of reaction occurring on a single passage through the 

crossing point is given by 

PLZ = 1 - exp( - 21TJ 2/hvIMI), (50) 

where v is the velocity ofthe system at the crossing and I M I 
is the absolute value of the difference in slopes of the diabatic 

surfaces at the intersection. The ballistic version of Landau­

Zener theory should be most appropriate in the nonadiabatic 

limit. Here the barrier is cusp-like and the assumption of 

ballistic motion near the crossing point would seem to be 

reasonable. The reasoning behind this is due to Frauenfelder 

and Wolynes who discuss the effects offriction in Landau­

Zener theory using length scale arguments. IS The Landau­

Zener length is defined as 

2J 
lLZ = --. (51) 

IMI 
This is essentially the region in which lower adiabatic sur­

face is within an energy 2J of the barrier. A second length 

scale can be defined by replacing 2Jby kT. This is the region 

of the lower adiabatic surface in which the upper surface is 

thermally accessible and is known as the transition state 
length scale. 

ITS =kT[IFNI- I + IFCTI- I
]. (52) 

The final length scale of interest is the mean free path of the 

reaction coordinate which is related to the classical friction 
coefficient, {; by 

(53) 

It turns out that if the Landau-Zener length satisfies the 
relation 

(54) 

then to a good approximation the rate constant is given by 

the transition state theory result times the Landau-Zener 

0.20T""--------------., 

~ 
0.15 

-
J 

0.10 

.a 0.05 
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o 1500 

FIG. 11. Comparison of Redfield and Landau-Zener rates for a multilevel 
system with E"bias!21TC=0 em-I, CtJ!21TC= 100 em-I, 

gN!21TC= -gcr!21TC = 145 em- I,/i!21TC = 2.75 em- I,/i!21TC = 49.0 

em-I, T=298 K, (CtJ •• c -Eo_ o )!21TC=0 em-I, T=0.20 ps. (-CJ-), 

Redfield theory; (+), Landau-Zener theory. 

probability [Eq. (50)]. Thus in the strongly nonadiabatic 

regime, the rate constant for ET is given by 

k= [l-exp( -21TJ
2/hv T IMI)] 

(55) 

where V T is the thermal velocity ( = ~kT l1Tm; m = 1 in 

dimensionless units). As the electronic coupling is in­

creased, the barrier becomes more dome-like, the Landau­

Zener length becomes comparable to, or greater than, the 

mean free path andlor transition state lengths and the mo­

tion in the vicinity of the barrier is diffusive on any relevant 

length scale. 

A systematic comparison of the multilevel Redfield the­

ory with Landau-Zener over a wide range of coupling 

strengths would require forging a connection between the 

concept of friction and the fluctuation parameters of our 

quantum model. This will be discussed in a future work. We 

can skirt this issue by working in the weak coupling limit. 

We choose our fluctuation constants somewhat arbitrarily 

such that the relaxation times are such that Eq. (54) is satis­

fied. In this region the dynamics tum out to be rather insensi­

tive to the exact values for TI and Tt. For higher values of 

the relaxation rates, the assumption of a mean free path for 

the reaction coordinate that is long compared to the Lan­

dau-Zener length would appear to be invalid. A comparison 

of the results for the rate constant from the Redfield and 

Landau-Zener theory in the nonadiabatic limit is shown in 

Fig. 11. The parameters are listed in the caption. The results 

are in good agreement and suggest that the multilevel quan­

tum theory described here will be useful in providing a uni­

fied description ofET over a wide range of temperatures and 

coupling strengths. 

C. Weak damping limit 

As discussed earlier, coherent excitation of the N state 

manifold with a laser pulse satisfying 'T < w - I results in a 
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vibrational phase coherence between several levels. This co­

herence can interfere with the reversible ET process leading 

to complicated dynamical behavior giving rise to quantum 

beats. Dephasing smears out this interference effect and, for 

fast enough dephasing, results in a monotonic, irreversible 

loss of population from the initially excited manifold. In this 

section we show results for multilevel systems in which there 

is little or no dephasing. While this section is meant to illus­

trate the effects of various types of coherences that are creat­

ed in a short pulse experiment, the results will possibly pro­

vide insight into experiments carried out at very low 

temperature where dephasing times can be quite long. Such a 

situation has recently been observed in the short-time dy­

namics following excitation into the primary-donor state of 

the reaction center of the photosynthetic bacterium Rb, 

sphaeroides.37 Quantum beats suggested to originate from a 

vibrational coherence involving the reactive degree of free­

dom were seen in transient absorption experiments over a 

broad temperature range. 

An excellent observable for understanding the interplay 

between various types of coherences in a complicated multi­

level system is the ensemble-averaged value of the reaction 

coordinate operator given by 

(Q(t» = Tr.{p(t)Q}, (56) 

where 

Q= l/~{(a + at - aN)IN)(NI 

+ (a + at - aCT) ICT) (CTll (57) 

The equilibrium value for (Q ) is thus aN when the system is 

in the reactant state and aCT when the system is in the prod­

uct state. In the presence of an electronic coupling between 

the two wells, the equilibrium value is 

(Q(t = 00» = l/~ I exp( - f3Ei )aJI exp( - f3Ei )· 

(58) 

A vibronic coherence between two levels in different mani­

folds will cause (Q(t» to oscillate at a frequency deter­

mined by the effective coupling strength. That part of 

(Q(t» that is due to a vibrational coherence within a single 

manifold will oscillate at the frequency of the well. This can 

give rise to some interesting interference effects depending 

on how the system is prepared. Fig. 12(a) shows results for 

the time dependence of the ensemble-averaged reaction co­

ordinate, obtained from Eq. (56), and the survival probabili­

ty for a system which experiences no dissipation. In Fig. 

12(a), the solid line corresponds to a case where the excita­

tion is high into the absorption band and has a spectral width 

of approximately 800 cm -\ resulting in coherent excitation 

of the entire absorption band. This impulsive excitation re­

sults in a large initial coherence which is clearly seen to oscil­

late at the vibrational frequency. The lower frequency mod­

ulation is due to the coherence between reactant and 

electronic states induced by the electronic coupling. The ini­

tial value is (Q(O» = 0 corresponding to the ground state 

average. The dashed line corresponds to a situation where 

the excitation is centered at approximately the 0-+0 transi­

tion and has a spectral width of only 50 cm - \. The resulting 

vibrational coherence has a substantially smaller magnitUde 
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FIG. 12. (a) Ensemble-averaged trajectory for the reaction coordinate for a 
multilevel system with Ebias /21TC = fJJ/21TC = lOOem-l,J /21TC = 30 em-I, 

gN/21TC= -gcr/21TC= -75 em-I, fi/21TC=f~/21TC=0 em-I, 

T= 150 K. (-) (fJJ.xe - Eo_o)/21Tc = 350 em-I, 1'= 0.02 ps; (-- --) 

(fJJ.xe - Eo _ 0 )/21TC = 350em- l. l' = 0.35 ps. (b) Corresponding popula­

tion dynamics of the initially excited neutral state. 

and the lower frequency electronic coherence can be clearly 

seen. The popUlation dynamics in this case is quite compli­

cated due to the participation of many pairs of levels with 

different effective coupling strengths and is shown in Fig. 

12 (b). Detuning the donor and acceptor levels by a small 

fraction of the well frequency has a noticeable effect on the 

dynamics. Figure 13 shows the results for (Q(t» for the 

same system as shown in Fig. 12 (a) except with a 25 cm - \ 

detuning. Note in Fig. 13 the trajectory at short time ( < 1 

ps) is very similar to that seen in Fig. 12(a). The effect of 

level detuning is seen at longer times after the population has 

made one round trip between surfaces. In the detuned case 

this results in a phase shift and some destructive interference 

after approximately 1 ps. 

Finally we show the effect of increasing the dephasing 

rate on a system with the same parameters as that discussed 

in Fig. 12, however with a smaller value of the electronic 
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FIG. 13. Ensemble-averaged trajectory for the reaction coordinate for the 
multilevel system shown in Fig. 12(a) with Ebi.,,/2rrc = 125 cm-'. 
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coupling. The results are shown in Fig. 14. The interference 

between the electronic and vibrational coherences is clearly 

seen when there is no dephasing. At higher dephasing rates, 

the system loses all phase information rapidly and the ET 

process occurs incoherently. In this case, the time depend­

ence of (Q( t) > tracks exactly that of the popUlations of the 

two states. 

IV. CONCLUSIONS 

We have presented a multilevel Redfield theory for 

treating electron transfer dynamics in a dissipative environ­

ment that is valid for arbitrarily large electronic coupling. 

The major point of this treatment is that by carrying out the 

dynamics in the representation that diagonalizes the elec­

tronic coupling operator we can interpolate between the co­

herent and incoherent limits for the dynamics. In addition 

the formalism allows proper incorporation of finite vibra­

tional energy relaxation and dephasing rates into the de-
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FIG. 14. Ensemble-averaged trajectory for the reaction coordinate for a multilevel system with Eb •• ,,/2rrc = oJ/2rrc = 100 cm -', J /2rrc = 10 cm -', 

gN/2rrr: = - gcr12rrr: = - 75 cm-',f~ /2rrc = fi12rrc = 0 cm -', T = 150 K, (oJm - Eo _ 0 )12rrc = 350 cm-', T = 0.02 ps. (a) f~ 12rrc =f~ /2rrc = 0 

em-I; (bl/l/2rrc =/l12rrc = 1.0cm- 1
; (c)/;/2rrc=/i!2rrc = 24.0cm- 1

; (d)/~12rrc=/i12rrc= 1O.0cm-'. 
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scription of the transfer dynamics. 

Comparison of results from a two state-one mode mod­

el using a variety of parameter sets demonstrated the equiv­

alence of our method and approaches based on the golden 

rule of perturbation theory, in cases where nuclear tunneling 

is important, and the semiclassical Landau-Zener theory in 

the nonadiabatic limit when electron transfer can be consid­

ered a barrier crossing process. The breakdown of the golden 

rule description due to both finite dephasing rates and slow 

thermal equilibration in the reactant or product well was 

investigated in a quantitative manner. Coherence effects 

were seen to lead to a slower rate than predicted by the gold­

en rule, while slow energy flow between the reaction coordi­

nate and the surroundings were shown to cause positive or 

negative deviations from the golden rule depending on both 

the excitation conditions and Franck-Condon effects. 
Finally, dynamical simulations of a coupled system in 

the coherent or weak-damping limit yielded quantum trajec­

tories of the reaction coordinate which were shown to con­

tain information on both electronic and vibrational coher­

ences. 
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interaction. Of course in the actual computations using Redfield theory, 

we do work in a representation where the only coupling terms are those 

between the system eigenstates and the bath, which are considered to be 
sufficiently weak that second-order perturbation theory (i.e., golden rule) 

can be used. In this representation, however, coherences still exist initial­

ly. 

37M. H. Vos, 1.-C. Lambry, S. J. Robles, D. C. Youvan, J. Breton, and J.-L. 

Martin, Proc. Nat!. Acad. Sci. U.S.A. 88, 8885 (1991). 

J. Chem. Phys., Vol. 96, No.8, 15 April 1992 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.32.208.2 On: Thu, 29 May 2014 18:38:40


