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Abstract

Background

Accurate quantitative assessment of infection with soil transmitted helminths and protozoa

is key to the interpretation of epidemiologic studies of these parasites, as well as for moni-

toring large scale treatment efficacy and effectiveness studies. As morbidity and transmis-

sion of helminth infections are directly related to both the prevalence and intensity of

infection, there is particular need for improved techniques for assessment of infection inten-

sity for both purposes. The current study aimed to evaluate two multiplex PCR assays to

determine prevalence and intensity of intestinal parasite infections, and compare them to

standard microscopy.

Methodology/Principal Findings

Faecal samples were collected from a total of 680 people, originating from rural communi-

ties in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from

stool samples and subject to two multiplex real-time PCR reactions the first targeting: Neca-

tor americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second

Entamoeba histolytica, Cryptosporidium spp.,Giardia. duodenalis, and Strongyloides ster-

coralis. Samples were also subject to sodium nitrate flotation for identification and quantifi-

cation of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan
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parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9

times higher, Ascaris 1.2,Giardia 1.6, along with superior polyparasitism detection with this

effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two:

30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive sam-

ples were low intensity infections by microscopy as defined by WHO guidelines the DNA-

load detected by multiplex PCR suggested higher intensity infections.

Conclusions/Significance

Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of

infection intensity for Ascaris, hookworms andGiardia compared to microscopy, especially

in samples exhibiting polyparasitism. The superior performance of multiplex PCR to detect

polyparasitism and more accurately determine infection intensity suggests that it is a more

appropriate technique for use in epidemiologic studies and for monitoring large-scale inter-

vention trials.

Author Summary

Gastrointestinal parasites including soil-transmitted helminths cause considerable mor-

bidity worldwide, especially in resource-poor communities. Large-scale epidemiologic and

treatment efficacy studies are regularly undertaken to determine the optimum ways to

reduce or eliminate parasites from endemic communities, thereby reducing the burden of

disease. Accurate and sensitive tests for detection of soil transmitted helminths and proto-

zoa are of great importance to the success of such trials. Increasingly recognised is the

importance of accurately determine the infection intensity, as morbidity and transmission

pressure of helminth infections are directly related this and not just to prevalence. A vast

majority of studies use standard microscopy methods which, although well accepted, may

not be as accurate as more recently developed molecular techniques such as multiplex

PCR. Therefore, there is need for further evaluation of multiplex PCR techniques and their

ability to detect infections and provide infection intensity data. In the current study real-

time PCR showed a higher sensitivity for the detection of intestinal helminths and proto-

zoa especially in cases of mixed infections as well as more accurate determination of infec-

tion intensity compared to microscopy.

Introduction

Gastrointestinal parasites including soil-transmitted helminths (STH) cause considerable mor-

bidity worldwide, especially in resource-poor communities. The chronic effects on health are

predominately attributed to the burden of disease rather than mortality [1]. The majority of

the global burden is considered due to the five main STH–Ascaris lumbricoides, hookworms

(Necator americanus and Ancylostoma spp.), Trichuris trichiura and Strongyloides stercoralis

[2–4]; with a significant burden also due to protozoan infections. Polyparasitism is especially

widespread, and the impact of this is likely to be more severe than single parasite infections [5–

7]. Reliable diagnostic techniques suitable for accurate and sensitive identification of parasites

in terms of infection intensity are essential in order to determine effectiveness of disease

Multiplex PCR for Intestinal Parasite Detection

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004380 January 28, 2016 2 / 19



control programs. This is because morbidity and transmission pressure of helminth infections

are directly related to both the prevalence and intensity of infection [8,9].

Several microscopy-based techniques are available and widely used for the identification

and quantification of STH eggs. The Kato-Katz (KK) thick smear technique, originally devel-

oped for diagnosis of schistosomiasis [10], is currently the most widely used microscopic tech-

nique, and is considered the gold standard by the World Health Organization (WHO) for

assessing both prevalence and intensity of infection in helminth control programmes [11]. A

major drawback of the KK is that multiple samples with multiple slides per sample are required

to be examined over several days to reach high levels of sensitivity and quantitative accuracy,

especially in light infections [12]. Moreover, immediate and skilled processing is required to

reduce chance of false-negative results, particularly for hookworms, due to fast clearance on

slides [7,13]. Alternative methods for microscopic diagnosis of STH include using concentra-

tion steps, such as formalin-ether sedimentation and flotation techniques such as McMaster

[14], simple sodium nitrate methods [15], FLOTAC [16] or mini-FLOTAC [17]. These have

some advantages including increased sensitivity over KK. For example, in a recent study

sodium nitrate methods proved superior for detecting low egg burdens in samples compared to

quadruple KK smears and resulted in higher EPG [15]. Comparisons of KK to FLOTAC also

showed equivalent [18,19] or superior [20,21] sensitivity of FLOTAC techniques. These flota-

tion based techniques have drawbacks in terms of being labour intensive, having poor repro-

ducibility owing to operator error, and for most tests requiring centrifugation steps [16,19]. In

addition, microscopic-based techniques lack the ability to assign species-level identification of

helminth eggs (e.g. those of hookworms, and Ascaris). Diagnosis of S. stercoralis is particularly

challenging, as only a small number of larvae are released in stool regardless of infection inten-

sity, with Baermann sedimentation or agar plate culture methods thought to provide greatest

specificity and sensitivity [22,23]. Serological diagnostic methods are available for STH but

their use is limited due to poor specificity in endemic areas [24].

Stained faecal smears and faecal concentration methods allow for diagnosis of protozoa.

However, these too have their limitations with regards to poor sensitivity and the inability to

differentiate protozoan parasite stages to a species level. For example, diagnosis of E. histolytica

infections by microscopy misses 40% of infections [25]; and it is not possible to visually differ-

entiate pathogenic E. histolytica from non-pathogenic Entamoeba dispar. Thus, only E. histoly-

tica specific stool antigen detection tests are approved for diagnostic use by the WHO [26],

although shown to have poor sensitivity compared to PCR-based methods [27,28]. More effi-

cient coproantigen capture enzyme linked immunosorbent assay (ELISA) based assays can be

used for diagnosis of Cryptosporidium and Giardia, however there have been reports of false-

positive and false-negative results [29].

Polymerase chain reaction (PCR)-based techniques are assuming a dominant place in mod-

ern diagnostic microbiology. For STH diagnostics they have been shown to be more sensitive

than microscopy, particularly at low infection intensities [11,30]. For detection of protozoal

infections, PCR-based techniques have shown significantly higher sensitivity compared to

microscopy and/or immunodiagnostic techniques [31–37]. Adapting PCR assays to multiplex

real-time platforms enables simultaneous detection of multiple parasites, thereby minimizing

reagent costs and processing time [12,30,38]. In addition, such assays can be adapted to be

quantitative, which is a significant advantage in STH infections where parasite burden rather

than presence or absence of infection is a key determinant of morbidity. Multiplex real-time

PCR methods for the diagnosis of intestinal parasites [39] have been applied in epidemiological

surveys in parasite endemic areas of Ghana, Togo [13], Bangladesh, and recently in the Philip-

pines [40] as well as in hospital samples from symptomatic patients in the Netherlands [38],

and Malaysia [41,42]. Despite numerous studies incorporating multiplex PCR methods, very
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limited data has been published to date with thorough quantitative comparisons between this

method and microscopy-based techniques.

The aim of the current study was to evaluate the use of two multiplex PCRs for the detection

and quantification of intestinal protozoa and helminths as tools to support large scale epidemi-

ologic and treatment efficacy studies. This method was compared with results obtained with

sodium nitrate flotation and zinc sulphate centrifugation for determining prevalence and

intensity of intestinal parasite infections in villages in Timor-Leste and Cambodia. A specific

aim was to evaluate qPCR as a method for determining infection intensity, an important

parameter in both epidemiologic and anthelmintic efficacy studies.

Methods

Sample Collection

Samples were sourced from two separate parasitic surveys. Single faecal samples from 467 indi-

viduals enrolled in the WASH for WORMS interventional trial in Timor-Leste (Registered

with the Australian New Zealand Clinical Trials Registry; Trial registration:

ACTRN12614000680662)[43] and from a separate study of 213 individuals enrolled in a cross

sectional study of intestinal parasites in northern Cambodia [44]. A single faecal sample per

individual was collected within a maximum of 12 hours of defecation and divided into two ali-

quots and stored separately. One sample in 5% w/v potassium dichromate solution for PCR

analysis, and the other sample in 10% formalin for microscopy. Samples from Timor were

transported at room temperature to Queensland Berghofer Institute of Medical Research for

extraction (QIMRBerghofer) and PCR and Timor-Leste National Lab for microscopy. Cambo-

dian samples were transported at room temperature to the University of Queensland (UQ)

Gatton campus for microscopy and DNA extraction, and DNA transported on ice to QIMR

Berghofer for PCR.

Microscopy

All faecal samples were examined microscopically and enumerated for Ascaris, hookworms,

and Trichuris eggs using a simple sodium nitrate flotation as previously described [45]; and for

the presence of protozoa cysts and oocysts using zinc sulphate centrifugal flotation [35]. Full

methods available in S1 Methods. Specific parasitologic diagnosis of S. stercoralis infection was

not undertaken due to resource limitations that precluded agar plate culture.

DNA Extraction

Samples stored in 5% potassium dichromate were first subject to centrifugation at 2,000 g for 3

min, followed by removal of the preservative supernatant. Samples were re-suspended to 50 ml

with phosphate buffered saline (1 X PBS) and the centrifugation repeated. Supernatant was

again decanted off, and the sample pellet was subsequently stored at 4°C for up to a month.

DNA extraction was performed using the Powersoil DNA Isolation Kit (Mo Bio, Carlsbad,

CA USA). Minor modifications were made to the manufacturer’s protocol following optimiza-

tion with Trichuris vulpis eggs. Prior to extraction, samples were spiked with a known quantity

of a positive control PCR target, namely a plasmid containing equine herpes virus (EHV) insert

from the glycoprotein B gene [46]. Full DNA extraction protocol is available in S1 Methods.

Multiplex PCR

Extracted DNA was run in two pentaplex real-time PCR reactions. The first was a quantitative

assay for N. americanus, Ancylostoma spp. (A. duodenale, A. ceylanicum), Ascaris spp., T.
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Trichiura and EHV; the second was a semi-quantitative assay for E. histolytica, Cryptosporid-

ium spp., G. duodenalis, S. stercoralis and EHV [12,13,24,34,42,47]. Details of the primers and

probes are listed in Tables 1 and 2. However an alternate S. stercoralis forward primer was used

after optimization of this assay with S. stercoralis positive DNA samples from the Northern

Territory (Australia) (Deborah Holt—Personal communication). The Rotor-Gene 6000 (Qia-

gen, Melbourne, VIC AUS) was used for all PCR assays, with reactions set up for both PCR

reactions as previously described [30] with minor modifications. Assay protocol, optimisation

and preparation of PCR controls is available in S1 Methods. A sample processing summary is

displayed in Fig 1.

Controls

A Ct cut-off of 31 for Ascaris was established based on the limit of detection on a previously

published conventional PCR, to ensure reproducibility of results [48]. The limit of detection of

all other assays in terms of the maximum Ct-value considered to be positive was set at 35. All

PCR assays were validated at independent laboratories (Queensland Medical Laboratory, Aus-

tralia; The Task Force for Global Health, USA; St. Vincent’s Hospital, Sydney), and additional

positive E. histolytica (n = 2) and E. dispar (n = 1) control samples tested to ensure PCR speci-

ficity for the pathogenic species, E. histolytica. Further confirmation of Entamoeba spp. pres-

ence in all controls was provided by a genus specific conventional PCR [49].

PCR Ct to EPG Conversion—Seeding Experiments

To produce a calibration curve to interpolate EPG values from PCR Ct-values a series of seed-

ing experiments were conducted for Ascaris spp. and N. americanus infections. Ascaris suum

eggs were purchased from Excelsior Sentinel Inc. (Ithaca, NY), supplied in unembryonated

form and stored in 5% potassium dichromate at room temperature for shipping. Hookworm

Table 1. Quantitative multiplex PCR set up overview.

Target Oligonucletide Sequence 5'—3' Product
Size

Gene
Target

Final
Conc. nM

GenBank
Accession #

Source

Necator

americanus

Forward CTGTTTGTCGAACGGTACTTGC 101bp ITS2 200 AJ001599.1 [22]

Reverse ATAACAGCGTGCACATGTTGC 200

Probe FAM- CTGTACTACGCATTGTATAC—MGBNFQ 100

Ancylostoma

spp.
Forward GAATGACAGCAAACTCGTTGTTG 71bp ITS1 100 EU344797.1 [22]

Reverse ATACTAGCCACTGCCGAAACGT 100

Probe VIC- ATCGTTTACCGACTTTAG—MGBNFQ 100

Ascaris spp. Forward GTAATAGCAGTCGGCGGTTTCTT 88bp ITS1 60 AB571301.1 [49]

Reverse GCCCAACATGCCACCTATTC 60

Probe ROX -TTGGCGGACAATTGCATGCGAT- IBRQ 100

Trichuris trichuria Forward TCCGAACGGCGGATCA 56bp ITS1 60 FM991956.1 [21]

Reverse CTCGAGTGTCACGTCGTCCTT 60

Probe CY5.5 -TTGGCTCGTAGGTCGTT- BHQ-2 100

Equine Herpes
Virus

Forward GATGACACTAGCGACTTCGA 81bp gB 40 M26171.1 [48]

Reverse CAGGGCAGAAACCATAGACA 40

Probe CY5/FAM—TTTCGCGTGCCTCCTCCAG—

IBRQ/ IBFQ
100

doi:10.1371/journal.pntd.0004380.t001
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eggs were freshly isolated from three N. americanus infected stool samples, kindly provided by

Alex Loukas (James Cook University). Ascaris and hookworm eggs were purified separately

[50], and multiple 10 μL aliquots counted under a microscope following staining with Lugol’s

iodine solution to determine the concentration of eggs in each sample. Purified eggs were

pooled and suspended in a total of 5 ml PBS and diluted to produce a range of concentrations

of eggs. Ascaris eggs were prepared in triplicate in 2 ml screw top tubes in concentrations rang-

ing from 200,000 EPG to 5 EPG, with an additional 200 mg negative control faecal sample

added to each sample. Hookworm eggs were similarly prepared but concentrations ranged

from 6,000 EPG to 250 EPG, and were only performed in duplicate due to a smaller number of

available egg numbers. Both Ascaris and hookworm eggs at each of the concentrations were

subject to DNA extraction and multiplex PCR as stated previously. PCR Ct-values were con-

verted to intensities based on assumed 100% reaction run efficiency, provided by the Rotorgene

Q software (Multiplex PCR Intensity = 10−0.298�Ct +9.81). This allowed the interpolation of the

relation between the log transformed EPG and log transformed PCR intensity to determine a

relationship between Ct-values and EPG.

Statistical Analysis

Kappa statistics were used for comparison of multiplex PCR and microscopy determined prev-

alence. Analysis was performed using SPSS (IBM Corp.), Excel 2008 (Microsoft), and Graph-

Pad Prism version 6.0 (GraphPad Software Inc).

Table 2. Semi-quantitative multiplex PCR set up overview.

Target Oligonucletide Sequence 5'—3' Product
Size

Gene
Target

Final
Conc. nM

GenBank
Accession #

Source

Entamoeba

histolytica

Forward AACAGTAATAGTTTCTTTGGTTAGTAAAA 135bp SSU
rRNA

200 X75434.1 [37]

Reverse CTTAGAATGTCATTTCTCAATTCAT 200

Probe ROX—ATTAGTACAAAATGGCCAATTCATTCA—
IBRQ

80

Giardia duodenalis Forward GACGGCTCAGGACAACGGTT 63bp SSU
rRNA

200 M54878.1 [45]

Reverse TTGCCAGCGGTGTCCG 200

Probe CY5—CCCGCGGCGGTCCCTGCTAG—IBRQ 100

Cryptosporidium

spp.
Forward CAAATTGATACCGTTTGTCCTTCTG 150bp COWP 300 AF248743.1 [35]

Reverse GGCATGTCGATTCTAATTCAGCT 300

Probe HEX—
TGCCATACATTGTTGTCCTGACAAATTGAAT—
IBFQ

75

Strongyloides spp. Forward GGGCCGGACACTATAAGGAT* 471bp SSU
rRNA

100 AF279916.2 [29]

Reverse TGCCTCTGGATATTGCTCAGTTC 100

Probe CY5.5—ACACACCGGCCGTCGCTGC—BHQ-2 100

Equine Herpes
Virus

Forward GATGACACTAGCGACTTCGA 81bp gB 40 M26171.1 [48]

Reverse CAGGGCAGAAACCATAGACA 40

Probe CY5/FAM—TTTCGCGTGCCTCCTCCAG—IBRQ/
IBFQ

100

*Altered from the original published primer [29]

doi:10.1371/journal.pntd.0004380.t002
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Ethical Considerations

TheWASH for WORMS interventional trial in Timor-Leste complies with the provisions con-

tained in the National Statement on Ethical Conduct in Human Research and was approved by

the University of Queensland Medical Research Ethics Committee (#2011000734), the ANU

Human Research Ethics Committee (protocol: 2014/311), and the Timor-Leste Ethics Com-

mittee of the Ministry of Health (reference 2011/51). The Cambodia sample collection study

protocol [44] was approved by the National Ethics Committee for Health Research, Ministry of

Health, Cambodia (NECHR, #192,) Ethics Committee of the Cantons of Basel-Stadt and Basel-

land (EKBB, #18/12). Written informed consent was obtained for all participants.

Results

Multiplex PCR Optimisation

Optimized oligonucleotide concentrations used throughout testing are listed in Table 1. Exper-

imental comparisons of plasmid control dilutions series’ were undertaken between singleplex

and multiplex PCR reactions (Fig 2). No or minimal effect on sensitivity and efficiency of one

PCR on another was found in each multiplex PCR. Example data of standard EHV Ct-values

results is shown in S1 Fig. Field samples excluded due to inhibition of the EHV control were

subject to repeat analysis.

Fig 1. Flow chart of sample processing for multiplex PCR detection of intestinal parasites.

doi:10.1371/journal.pntd.0004380.g001
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Fig 2. Multiplex to singleplex PCR Ct comparison. Assay optimization to determine effects of multiplex PCR set up on sensitivity and efficiency of PCRs
compared to singleplex PCR using plasmid standard curve controls containing all PCR products.

doi:10.1371/journal.pntd.0004380.g002
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Detection of Single Infections—Diagnostic Performance of PCR vs
Microscopy

Comparison of the prevalence of parasite infection between multiplex PCR and microscopy

was made individually for each data set (Fig 3; Table 2; S1 Dataset). The observed multiplex

PCR prevalence was consistently higher across nearly all target organisms in both regions stud-

ied. Multiplex PCR detected almost three times (2.9, 435/151) the number of hookworm infec-

tions, 1.2 (260/219) times more Ascaris infections and 1.6 (115/70) times more Giardia

infections than microscopy at both study sites. S. stercoralis was however detected in four of

the Cambodia microscopy samples, which tested negative in multiplex PCR. The number of

samples that tested negative in microscopy was twofold (2.34) higher than the number testing

negative in multiplex PCR, indicating that a large proportion of infections were missed by

microscopy.

Direct comparisons between diagnostic techniques on individual samples from all regions

were undertaken using Kappa agreement statistics (Table 3). Results show good, moderate and

fair agreement for Ascaris, Giardia, and hookworms, respectively. Only target organisms with

Fig 3. Overall parasite prevalence comparison betweenmultiplex PCR andmicroscopy. Data
presented combined for all 680 study participants, as well as individually for Timor-Leste (467 participants)
and Cambodia (213 participants), showing higher recorded percentage prevalence across all target
organisms by Multiplex PCR.

doi:10.1371/journal.pntd.0004380.g003
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over 20% prevalence were analysed. For all parasites analysed, multiplex PCR identified a large

number of positive samples not detected by microscopy (Ascaris 68, Hookworm 299, Giardia

69), whilst a small number of microscopy positive samples were not identified as positive by

multiplex PCR (Ascaris 27, Hookworm 15, Giardia 24).

Detection of Multiple Infections

Along with a higher detection rate of all individual target organisms, the multiplex PCR

approach was also superior in terms of sensitivity in detecting samples with multiple infections

(Fig 4).

Increased polyparasitism was detected in multiplex PCR in comparison to microscopy, as

similar levels of single parasite infections were detected but more than double (2.4 times) the

number of dual parasite infections. This trend is further compounded with three parasites,

with PCR detecting over 17-fold (17.3) the number of infections than microscopy. An addi-

tional three samples were found to harbour four parasites (Ascaris, N. americanus, Ancylos-

toma spp., and Giardia), only detected using multiplex PCR. Coinfection with the two genera

of hookworms, N. americanus and Ancylostoma spp. that was detected in the multiplex PCR

resulted as well in an increased prevalence of polyparasitism.

Quantitative Results

Infection intensities as determined by microscopy data for nematodes with greatest prevalence

is presented in Fig 5. According to WHO guidelines all infections from both study regions for

both hookworm and Ascaris would be classified as low intensity infections (Ascaris< 5,000

EPG; hookworm< 2,000 EPG). The infection intensity frequency distribution of parasites

with at least 20% prevalence for Timor-Leste and Cambodia is shown in Fig 6. This Multiplex

PCR Ct frequency distribution graph shows the majority of infected individuals harbouring

high relative infection burdens (low Ct-values).

The infection intensity of G. duodenale was similar in both Timor-Leste (Average Ct 24.5;

range 16.2–34.3), and Cambodia (Average Ct 23.2; range 16.0–32.0). The few positive Crypto-

sporidium sp. samples in Timor-Leste were all of similar infection intensities (Average Ct 30.9;

range 29.0–33.0), whilst the four positive T. trichiura Cambodian samples all were of low infec-

tion intensities (Average Ct 32.7; range 31.5–33.7).

A comparison of quantitative results from both microscopy and multiplex PCR was

attempted. However, data are not presented as no statistically relevant relationship was found

for either Ascaris or hookworms from both study regions. Similarly, no statistical correlation

Table 3. Multiplex PCR andmicroscopy parasite prevalence agreement statistics.

PCR Microscopy Total Agreement (%) Kappa* SE of Kappa

POS NEG

Ascaris POS 192 68 585(86.0) 0.695 0.029

NEG 27 393

Hookworm POS 136 299 366(53.8) 0.201 0.024

NEG 15 230

Giardia POS 46 69 587 (86.3) 0.424 0.049

NEG 24 541

*Kappa Agreement Level: K <0.20 Poor; 0.21–0.40 Fair; 0.41–0.60 Moderate; 0.61–0.80 Good; 0.81–1.00 Very Good

doi:10.1371/journal.pntd.0004380.t003
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was found between PCR-determined positive samples with low infectivity levels and negative

microscopy results, or vice versa.

Standard curves obtained from well-defined controls presenting relationship between PCR

determined Ct-values (converted to infection intensity) as a measure of EPG derived from

standard microscopy practices are shown in Fig 7. The interpolation of Ct-value to EPG

derived from this experimental data is also presented within Fig 7, along with the Ct-value

range in which this can be reliably used to estimate EPG from multiplex PCR data. A prelimi-

nary example of the use of the resulting calibration curve is shown using Timor-Leste field data

in S2 Fig.

Discussion

The present study further demonstrates and validates the suitability of multiplex PCR for

detection and quantification of Ascaris, hookworms and Giardia in stools obtained in large

scale surveys. The two multiplex PCRs in Ascaris, hookworm and Giardia endemic regions of

Fig 4. Polyparasitism. Diagrams depict polyparisitism observed in the 680 combined Timor-Leste and Cambodia samples in both (A) Microscopy and (B)
Multiplex PCR. Pie graph depicts total number of parasites per sample and the venn diagram details the specific division of STH coinfections for Microscopy
(259 Ascaris and/or hookworm positive samples) and multiplex PCR (504 Ascaris and/or hookworm positive samples). *Microscopy unable to differentiate Hookworm

species N. americanus and Ancylostoma spp. -considered only as ‘hookworms’ for polyparasitism comparison.

doi:10.1371/journal.pntd.0004380.g004
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Timor-Leste and Cambodia resulted in significantly higher levels of prevalence compared to

microscopy alone [30] [13,36] [51]. Multiplex PCR also showed a greater ability for detection

of co-infections, and provided more accurate and reliable infection intensity data; both of key

importance to the assessment of disease burden due to the elevated risk of morbidity [52],

A large disparity in the prevalence rates between techniques was noted for the detection of

hookworm, Ascaris and Giardia when compared on a per sample basis. Multiplex PCR in par-

ticular detected a large number of positive samples not detected in microscopy; a possible result

of the failure of microscopy to detect polyparasitism, present in nearly half (49.1%) of all posi-

tives samples by multiplex PCR. A small number of samples were also deemed positive by

microscopy but negative in multiplex PCR. This may be due to variation in the dispersion of lar-

vae, eggs and oocytes within the subsamples taken, due to the nonhomogeneous nature of the

stool [53], as well as the non-uniform nature of their excretion in stool [30,54], causing variation

in both techniques. Differences between techniques may also be due to errors leading to false

positive results. Such errors are less likely in multiplex PCR due to rigorous controls, whilst lim-

ited controls can be implemented with microscopy, which relies heavily on the technical exper-

tise of the user. This is potentially the case of the four Strongyloides positive samples detected

only by microscopy, as larvae resemble hatched hookworm larvae. Alternatively further PCR

optimization may be required as there have been previous reports of PCR sensitivity issues for

detection of Strongyloides, as only low levels of larvae are present even in heavy infections [55].

Microscopy sensitivity issues of parasite detection, particularly in samples exhibiting poly-

parasitism suggest further compounding issues in accurately determining infection intensity

levels. Data comparing PCR Ct-values to microscopy determined EPG values have been previ-

ously been reported, showing a broad range of Ct-values for each microscopy EPG value; espe-

cially for microscopy negative samples [13]. This inability to link the quantitative field data

using different techniques despite statistically sound prevalence agreements suggests that mul-

tiplex PCR is superior for use in diagnostic testing of STH for survey work where accurate

intensity data is required.

This focus on infection intensity is a major strength of the present study when considering

disease burden, as STH infection prevalence alone does not provide a measure of potential

morbidity, which is related directly to infection intensity [9]. Despite this, the majority of

Fig 5. Intensity of infection for Ascaris spp. and hookworm positive samples as determined by sodium nitrate flotation. Timor-Leste microscopy
produced 219 Ascaris positive samples (200 EPG average), 97 hookworm positive samples (40 EPG average). Cambodia microscopy produced 54
hookworm positive samples (60 EPG average).

doi:10.1371/journal.pntd.0004380.g005
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studies have focused on direct prevalence comparisons between techniques, with limited

reports on the quantitative abilities of the techniques [30], although some correlation data has

been provided [13]. The WHO currently considers prevalence the main measure in STH con-

trol programmes, with suggestion of including intensity data only if available, with treatment

aims to target medium to heavy STH infections [56]. Providing this more accurate infection

intensity data using the multiplex PCR technique may produce data required to establish more

effective STH control programmes. The WHO infection intensity estimates may also require

re-evaluation with improved intensity data to be useful in PCR-parasite intensity surveys.

These estimates were established based using the KK technique, and suggest only low intensity

infections when applied to the current study microscopy data (53), whilst multiplex PCR data

indicated high intensity infections (low Ct-values) in the majority of individuals.

In the present study, the full relationship between Ct-values and EPG was assessed using

standard curves obtained from well-defined controls, with carefully prepared measurements.

The feasibility of such an approach has been shown and further indicates that PCR quantifica-

tion is likely to be more accurate and that additional detailed studies should be undertaken in

the future. At this stage insufficient experimental data are available to be able to produce

Fig 6. Multiplex PCR Ct-value frequency distribution for hookworm and Ascaris spp. positive samples.Graphs show the infection intensity
distribution, with lower Ct-values indicating higher infection intensities, presented for Timor-Leste hookworm (353) and Ascaris (259), as well as Cambodia
Hookworm (80) positive samples. As Ct-values are expressed in a continuous format, values were rounded up to the nearest integer to produce categorical
data for frequency analysis.

doi:10.1371/journal.pntd.0004380.g006
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accurate predictions across the whole range of possible Ct-values as the current interpolation is

limited to within the microscopy determined EPG range in which it was tested. Additional vali-

dation of the Ascaris EPG interpolation is required and at higher infection intensities before it

can be reliably used with field samples and significant further testing of hookworm samples is

essential to produce accurate predictions of EPG. Determining this mathematical relationship

between Ct-values, EPG, and by corollary adult worm burden, and assuring its accuracy repre-

sents a goal in future research, vital to progress PCR methodologies as the gold standard of

intestinal nematode detection. The potential shown here to convert this PCR data to the more

widely understood “EPG” format may allow this technique to provide more widely accepted

and reportable STH surveillance. However, attempting to enumerate egg counts by PCR with-

out a truly quantitative gold standard for comparison does however, represent a limitation of

this work.

Despite proving successful in parasite diagnosis and providing valuable information on

infection intensity, there are limitations of multiplex PCR as a diagnostic tool. The use of PCR

preservatives such as potassium dichromate and ethanol temporarily arrests further egg devel-

opment, and are thought to allow accurate quantitative data after many months of storage.

However extensive testing into the effect of such preservatives on the genome copy numbers

for the target nematodes has not been performed but is crucial for accurate interpolation to an

egg count. Further compounding the issue is the ability to relate nematode egg counts to DNA

intensity, when copies of DNA increase once eggs have embryonated. Literature does indicate

that once embryonated the ITS1 gene target of the PCR assays remains at a constant level [57],

suggesting that accurate quantification is possible.

Further testing on preservation methods is essential in terms of the effect on the quantitative

accuracy over time, both those for microscopy and multiplex PCR techniques. The maximum

storage time in potassium dichromate is currently undetermined, however reports have sug-

gested a one month storage period in potassium dichromate for Giardia for optimal detection

[33]. Recent reports on formalin preserved samples suggest a 15 day storage window in which

microscopy can be completed to gain accurate quantitative hookworm data, with additional

Fig 7. Relationship between EPG and intensity converted PCR Ct-values.Graph shows strong linear relationship (P<0.001) between sodium nitrate
flotation determined EPG and Multiplex PCR Intensity upon universal log10 transformation. (95% Confidence Intervals: Ascaris- slope 1.028 to 1.089; Y-
intercept 0.6405 to -0.4333; X-intercept 0.4205 to 0.5895. Necator—slope 0.3151 to .7344; Y- intercept -0.6150 to 0.7130; X-intercept -2.253 to 0.8413). *
PCR Intensity = 10–0.298*Ct +9.81.

doi:10.1371/journal.pntd.0004380.g007
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decline in the ability to detect parasites after one month [52]. Microscopy on samples in this

study was not reliably performed within this optimum time period; potentially resulting in the

lower prevalence and intensity data for hookworms.

The main limitation of multiplex PCR in national control programmes is the capacity to

implement it in parasite endemic low-resource settings, with the current need to send samples

to well equipped labs for analysis. Microscopy based techniques can however, be undertaken

with less resources and more affordable equipment. The material cost of processing samples

and running both multiplex PCRs was estimated as AU$12.37 per sample (AU$6.05 per extrac-

tion; AU$3.16 per multiplex PCR). This also represents a limitation when compared to flota-

tion based microscopy, costing just AU$1 per sample (labour not included). The trade off of

the additional costs and the inability for onsite analysis compared to the higher sensitivity and

ability to detect multiple infections as well as the more accurate intensity data is an issue for

consideration in design of epidemiologic studies and for clinical trials of effectiveness of

interventions.

The use of multiplex real-time PCR for intestinal parasite diagnosis has proved to be more sen-

sitive, and is more likely to detect mixed parasite infections than standard microscopy techniques.

The real benefit of multiplex PCR is in its ability to more accurately determine infection intensity

and the potential to report results in more understandable ‘EPG’ terms, which will prove to be

inherently more useful in determining the success of de-worming and intervention trials.
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