
Journal of Computer Science 1 (1): 19-23, 2005

ISSN 1549-3636

© Science Publications, 2005

19

Application of a New Network-enabled Solver for the Assignment

Problem in Computer-aided Education

Andreou Dimitrios, Paparrizos Konstantinos, Samaras Nikolaos and Sifaleras Angelo

Department of Applied Informatics, University of Macedonia

156 Egnatia Str., 54006 Thessaloniki, Greece

Abstract: This study present a new learning tool developed for the visualization of an algorithm for

the assignment problem. We show how the teaching of an algorithm can be greatly enhanced and the

tutor’s effort decreased with a visualization tool that provides an interactive and animated view of the

subject being taught to the students. This tool makes use of the Java technology, therefore it is platform

independed and can be used efficiently in Distance Education. The “Achatz, Kleinschmidt and

Paparrizos” algorithm features significant tree modifications and furthermore, it is the first time that

this visualization is being made. This tool has a friendly user interface, thus enabling the user - student

to familiarize quickly. It can be used efficiently in courses like Graph Theory or Network

Optimization. Benefits and drawbacks are thoroughly described in order to support the significance of

this tool in computer-aided education.

Key words: Computer-Aided Education, Learning Technology, Visualization, Assignment Problem

INTRODUCTION

It is well known that teaching can be vastly amplified

when it is not done purely theoretically, but visually

and interactively instead. This way, students can obtain

a deeper understanding of the subject being taught,

rather than a merely theoretical knowledge.

Algorithmic visualization is based on the basic graphic

capabilities of a personal computer to demonstrate

using animation of the algorithmic functionality, [1].

Teaching network algorithms is no exception and even

lends itself to such approaches. Vertices and edges that

compose a graph are intuitively depicted and are easily

interpreted by the user - student. We present a

visualization tool for teaching a specific graph

algorithm [2] for the assignment problem, which

provides visual and animated representation of the

algorithm’s execution and its details. From now on this

specific algorithm, it will be referenced simply as

“algorithm”.

Related Work: One might ask why we implemented

visualization for this specific algorithm, while there are

more wide - spread algorithms for the same problem,

like the Hungarian method and the primal simplex

algorithm. These can be found on almost all textbooks

about Analysis of Algorithms [3, 4]. It is very important

to emphasize that, to our knowledge; this specific

algorithm hasn’t ever been visualized in the past.

The most difficult part of this animation is the fact that

this algorithm features significant tree modifications.

This difficulty is due to the complex movements of the

nodes. Teaching these algorithms up to the point that

the student understands their logic is only a small

proposion of the effort needed to elaborately describe

these algorithms detailed enough so they can actually

be programmed. For once, tree structures cannot be

avoided in the implementation, although that part is not

obvious at these algorithm’s general descriptions. Some

general statements in these descriptions, understandable

by humans, for example “draw crosses on the matrix

till all cells are spammed”, is not at all obvious how

they will be translated into such instructions, that the

computer can understand.

A short description of the algorithm, for the assignment

problem is discussed. The tree structures which are

needed are well-defined, while statements like “cut this

part of the tree and put it there” are also accompanied

by detailed instructions, of how this can be done, so the

algorithm can be programmed in straight-forward

fashion.

Algorithm: An assignment problem consist of two set

of nodes and one set of directed weighted edges from

the first set towards the second. Given such a bipartite

graph, (Fig. 1), the problem is to find a set of edges,

which will contain every node of the second set once

only and minimize (or maximize) the total weights of

the edges chosen.

Note that this example defines a sparse assignment

problem, as not all possible edges from the first set to

the second exist. The problem to be solved is making

the best matching of suppliers and (equal in number)

demands. Each supplier makes an offer for every

demand, at a specified cost. The “best matching” means

that every demand must be met, at the lowest total cost.

A specific node represents each supplier and demand.

There are n supplier nodes and n demand nodes. There

J. Comp., Sci., 1 (1): 19-23, 2005

 20

Fig. 1: A Bipartite Graph that Defines an Assignment

Problem

is also a neutral node. Each supplier node has an edge

to the neutral node and each demand node has an edge

from the neutral. The whole combination of those is the

dual tree with which the algorithm starts.

The algorithm’s execution will be best understood

using an example. An n x n matrix containing numbers,

which correspond to the bids of the suppliers for each

demand must be provided by the user. The set of

suppliers’ nodes at the left side of the tree is called Fs

and the set of demands’ nodes at the right side of the

tree is called Fd. At each iteration, the minimum

number from the matrix, which at the same time

belongs to Fs and Fd, is picked. The tree is modified in

two ways: by inserting an edge, which corresponds to

the position of the number picked and removing

another, according to certain principles, without

producing cycles. This implies that a sub - tree changes

position at every step, i.e. connects to the rest of the tree

through a different connection. We will refer to this sub

- tree as “T*”. Also, at every step of the algorithm,

some rows and/or columns of the matrix must be

updated, i.e. added with some number [5, 6].

Implementation Issues: The tool is fully implemented

in Java, since object - orientation really lends itself for

network - producing tools, like this in particular. Due to

the nature of the language, Java is widely used for the

implementation of algorithmic teaching purposes [7, 8].

It is far more intuitive to imagine a node which

“knows” its name, position, shape, etc and an edge that

knows the two nodes it connects, etc, rather than to

have plain global arrays for each of these attributes.

Also, Java provides convenient drawing functions and

primitives, as is Bezier curve [9], of which the usage in

the tool is shown below and a multi-threaded

environment with the appropriate synchronization

features, which are necessary for step-by-step execution

of the algorithm.

Finally, the tool, as a Java program, can run not only as

an applet, but also as a stand-alone mode, for the most

popular platforms like Linux, Windows and Mac,

making it easily available for the students. However, it

is the fact that it can be ran as an applet, that makes it

possible for many people to ran it from any remote

place (e.g. their home). This way any student can

benefit from this tool, as long he / she has access to the

Internet.

The tree’s structure, its modifications, the “T*”

movement and the matrix updates are the key points of

the algorithm that the tutor has to point out to the

students. The tool can vastly facilitate the tutor in this

task. As the tool makes it very straight - forward to

illustrate examples of the algorithm, we will use

examples using it to show its functionality. First of all,

the user has to enter the data of the problem. A 4 x 4

input example is shown in Fig. 2.

Fig. 2: A 4 x 4 Input Example

In the next step, a dual tree is being constructed, as

described above. An example of an initial tree is

depicted in Fig. 3.

Fig. 3: A 4 x 4 Problem Initial Tree

Obviously, this is the starting tree for any 4 x 4
problem. One can easily observe the dual nature of the
tree. The nodes are drawn with different shapes, so to
distinguish the difference of row -and column- nodes
(round and square shaped, respectively). First of all, the
two sets Fs and Fd are indicated to the user using
different colors, (Fig. 4).
According to the algorithm, the chosen cell of the
matrix specifies a row - node and a column - node.
These two nodes, say “N - start” and “N - end”, define
the incoming edge. An example of the above
calculations follows in Fig. 5, while the incoming edge
is pointed out in Fig. 6.

J. Comp., Sci., 1 (1): 19-23, 2005

 21

Fig. 4: The Fs (Pink) and Fd (Blue) Sets

Fig. 5: The Minimum Value of the Matrix. It Defines

the Edge from “1” Row-node to “4” Column-

node

Fig. 6: The Incoming Edge as Pointed out by the Tool

The incoming edge is drawn using a Bezier curve, [10,

11] with end - points the positions of these two nodes

and a single control point which is positioned at a small

distance from the center of the “N - start” and “N - end”

line. As can be easily imagined, if the incoming edge

was simply drawn as a line, the depiction in many cases

would be confusing, as the line could intersect many

nodes before reaching “N - end”. This is especially true

for the starting position.

The next step is to choose the outgoing edge and also

update the matrix; which means modifying the values

of specific rows and / or columns by adding or

subtracting a specific number. The selection of the

outgoing edge depends on the in - degree of the

incoming edge’s destination node, as well as the matrix

modification, which can occur in two different ways. In

Fig. 7, the outgoing edge is depicted.

Fig. 7: The Outgoing Edge is Shown together with the

Incoming One

The tool distinguishes these two cases for the student.

The student also needs to understand what rows and/or

columns are modified and with which row or column

the modification starts. All these are highlighted

effectively by the tool as depicted in the following

examples. Note that for every edge between row - and

column - nodes, at the corresponding cell there is no

number but the symbol “[]” instead. A series of

sequential matrix updates can be seen in Fig. 8.

Since this study is focused in the educational value of

this tool, it is rather preferred not to explain thoroughly

how the matrix updates at each step. After all, the user

may read the pseudo code from his / her textbook. After

the incoming edge has been selected and the matrix has

been updated, the tool highlights a very important entity

for the algorithm: The “T*” tree which will change

position and possibly root and structure. An example of

one possible transition that can happen follows in

Fig. 9.

Fig. 8: A Series of Matrix Updates

J. Comp., Sci., 1 (1): 19-23, 2005

 22

Fig. 9: A Series of Animation Frames

The tool provides a smooth view of the whole transition

of the tree. We report a short explanation of how this

animation works. It has been developed a simple and

effective algorithm to display a tree structure (with no

intersecting edge), the presentation of which is not

important to the user. It is sufficient to point out that

every leaf of the tree structure will get equal width

space after this algorithm finishes. The tree drawing

algorithm is used to display every tree shown in the

tool. Before the modification of the dual tree, the tool

calculates with this algorithm the position of every node

after the change takes place. So, every node at that

point has a starting point and a destination point.

Twenty frames are shown, with small pauses between

them and at each step every node moves the 1/20 of the

distance to its destination point. At the twentieth frame,

every node has gone to their final positions. This simple

approach to the problem, using linear node - movement,

can be used by other researchers to implement

visualization support for network simplex algorithms,

[12] and hopefully for an even wider spectrum.

During this animation, the “T*” may turn upside down,

change root, along with the consequence (for its

appearance) that these changes have. This simple

animation mechanism addresses most if not all the

difficulties that the tutor encounters when it comes to

explain what happens when the “T*” is cut from the

dual tree and reconnected to it in another place. Surely

it is cumbersome enough to endeavor to show what

node goes where, for every node, on a blackboard. This

same approach may be also implemented in similar

algorithms, which need a sub - tree movement.

Estimating the Educational Value of the Tool: As

was demonstrated, the tool does not concentrate to

some specific part of the algorithm, like the “T*”

animation, but for completeness’ sake it handles all the

details of the algorithm and provides the user, with the

graph and the arithmetic data of the algorithm’s

execution, simultaneously. So, the user does not have to

be distracted or use study to make notes or calculations,

as he / she can find all the relevant information of the

algorithm’s execution integrated in the tool.

This educational tool (applet in Java programming

terms), due to the Java Technology is platform

independed. Therefore every student who wishes to

learn the specific algorithm may use it from his home.

It doesn’t matter what is his / her operating system, or

which browser. It only requires that the Java Virtual

Machine is installed into his / her system. Moreover, it

is our belief that such applets can prove to be helpful to

all the people, in general, who cannot attend a course in

a University.

Should we want to find the educational value of our

tool; then a good idea might be to put a questionnaire

online, in the same web - page with the tool. It is very

interesting to learn from the students who used it, their

opinions. It is more important to find how the remote

J. Comp., Sci., 1 (1): 19-23, 2005

 23

users - students, (probably from their home), make use

of this specific software, rather than just explaining to

them what might be the potential benefits, [13, 14].

Other researches show how to use algorithm animations

in learning environments, [15]. This is the best way for

measuring the efficiency of any software dealing with

Algorithm Visualization, described by [16] as a

subclass of software visualization, concerned with

illustrating computer algorithms in terms of their high-

level operations, usually for the purpose of enhancing

computer science students’ understanding of the

algorithms’ procedural behaviour.

To end with, this technology seems to be very

promishing for the Distance Learning. However, we

shouldn’t forget the fact that there have been conducted

researches which support that pedagogical advantages

can be only partially attributed to Algorithm

Visualization Technology, [17].

CONCLUSION

In this study we demonstrated how specialized software

can add to the learning process of graph algorithms

which include difficult – to – verbalize animations and

significant tree modifications. The approaches and

ideas demonstrated here can also be of use and

implemented in many graph algorithms.

The tool was not created merely to visually present a

single algorithm; it is complete enough by including the

more common (but very instructive and educational)

algorithms as Dijkstra, Bellman and Topological

ordering (for shortest path problems), Prim, Kruscal

(for minimum spanning trees) and others. These were

not presented here as they are common in the

international bibliography. Finally, the implementation

of the visualization process for different variations of

the specific algorithm, is an interesting issue.

REFERENCES

1. Stasko, J. T., 1997. Using student-built algorithm

animations as learning aids. ACM SIGCSE

Bulletin, 29: 25-29.

2. Achatz, H., P. Kleinschmidt and K. Paparrizos,

1991. A dual forest algorithm for the assignment

problem. DIMACS Series in Discrete

Mathematics and Theoretical Computer Science,

4: 1-12.

3. Aho, A.V., J.E. Hopcroft and J.D. Ullman, 1974.

The design and Analysis of computer

Algorithms. Addison-Wesley.

4. Cormen, T. H., C.E. Leiserson, R.L. Rivest and

C. Stein, 1999. Introduction to Algorithms 2
nd

Ed., MIT Press.

5. Paparrizos, K., 1988. A non-dual signature

method for assignment problems and a

generalization of the dual simplex method for

transportation problems. RAIRO-Operations

Research, 22: 269-289.

6. Paparrizos, K., 1991. An infeasible (exterior

point) simplex algorithm for assignment

problems. Math. Programming, 51: 45-54.

7. Boroni, C. M., F.W. Goosey, M.T. Grinder and

R.J. Ross, 1998. A paradigm shift! The Internet,

the Web, browsers, Java and the future of

computer science education. ACM SIGCSE

Bulletin, 30: 145-152.

8. Lazaridis, V., N. Samaras and D. Zissopoulos,

2003. Visualization and teaching simplex

algorithm. Proc. of the 3
rd

 IEEE International

Conference on Advanced Learning Technologies

(ICALT03), 09/07–11/07/2003, Athens, Greece,

pp: 270-271.

9. Sun Microsystems, The Java Tutorial, Stroking

and Filling Graphics Primitives,

http://java.sun.com/docs/books/tutorial/2d/displa

y/strokeandfill.html

10. Swinburne University of Technology (a), Bézier

curves, Melbourne, Australia.

http://astronomy.swin.edu.au/~pbourke/curves/b

ezier/

11. Swinburne University of Technology (b),

Melbourne, Australia. Piecewise Cubic Bézier

Curves,

http://astronomy.swin.edu.au/~pbourke/curves/b

ezier/cubicbezier.html

12. Ahuja, K. R., L.T. Magnanti and B.J. Orlin,

1993. Network Flows: Theory, Algorithms and

Applications. Published by Prentice Hall,

Englewood Cliffs, NJ.

13. Hundhausen, D. C., A.S. Douglas and T.J.

Stasko, 2002. A Meta-Study of Algorithm

Visualization Effectiveness. J. Visual Languages

and Computing, 13: 259-290.

14. Lawrence, A. W., A.N. Badre and J.T. Stasko,

1994. Empirically Evaluating the Use of

Animations to Teach Algorithms. Proc. of the

IEEE Symposium on Visual Languages, St.

Louis.

15. Kehoe, C., J.T. Stasko and A. Taylor, 2001.

Rethinking the evaluation of algorithm

animations as learning aids: an observational

study. Int. J. Human-Computer Studies, 54: 265-

284.

16. Price, B.A., R.M. Baecker and I.S. Small, 1993.

A principled taxonomy of software visualization.

J.Visual Languages and Computing, 4: 211-266.

17. Byrne, M.D., R. Catrambone and J.T. Stasko,

1999. Evaluating animations as student’s aids in

learning computer algorithms. Computers and

Education, 33: 253–278.

