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Normal mode approaches for calculating viscoelastic responses of self-gravitating10

and compressible spherical earth models have an intrinsic problem of deter-11

mining the roots of the secular equation and the associated residues in the12

Laplace domain. To by-pass this problem, a method based on numerical in-13

verse Laplace integration was developed by Tanaka et al. [2006, 2007] for com-14

putations of viscoelastic deformation caused by an internal dislocation. The15

advantage of this approach is that the root-finding problem is avoided with-16

out imposing any additional constraints on the governing equations and earth17

models. In this study, we apply the same algorithm to computations of vis-18

coelastic responses to a surface load, and show that results obtained by this19

approach agree well with those obtained by a time-domain approach that20
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does not need determinations of the normal modes in the Laplace domain.21

Using an elastic earth model PREM and a convex viscosity profile, we cal-22

culate viscoelastic load Love numbers (h, l, k) for compressible and incom-23

pressible models. Comparisons between the results show that effects due to24

compressibility are consistent with results obtained by previous studies, and25

the rate differences between the two models can amount to 10-40%. This method26

will serve as an independent method to confirm results by time-domain ap-27

proaches, and will be useful to increase reliability for modeling postglacial28

rebound.29
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1. Introduction

Peltier [1974]’s normal-mode method provided us with the basic framework in theo-30

retical studies of postglacial rebound assuming viscoelasticity of the earth mantle [e.g.31

Wu and Peltier, 1982]. It has, however, been known that the classical normal mode ap-32

proach has suffered from the intrinsic difficulties which arise when compressibility and33

self-gravitation are considered simultaneously in the governing equations [Wu and Peltier,34

1982; Wolf, 1985b; Han and Wahr, 1995; Plag and Jüttner, 1995; Vermeersen et al., 1996].35

To circumvent these difficulties, initial value approaches in the time-domain [e.g. Hanyk36

et al., 1995] have been used. In this paper, after a short review of previous studies, we37

introduce an alternative method to compute surface loading of spherically symmetric, self-38

gravitating and compressible earth models with continuously varying viscoelastic profiles39

by applying a numerical inverse Laplace integration method developed for computations40

of global post-seismic deformation [Tanaka et al., 2006, 2007]. Moreover, we investigate41

the influence of compressibility for a finely layered earth model.42

2. The intrinsic numerical difficulties

2.1. The root finding problem

In the normal mode theory, the governing equations (quasi-static equation of motion,43

equation of continuity and Poisson’s equation [e.g. Dahlen, 1974] and a viscoelastic consti-44

tutive equation [e.g. Peltier, 1974]) are transformed into those for the corresponding elastic45

medium in the Laplace domain, and inverse relaxation times and associated relaxation46

modes are determined by solving the characteristic equation numerically [e.g. Wu and47

Peltier, 1982]. In contrast to incompressible models, where the solutions are represented48
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by a sum of discrete relaxation modes [Wu and Peltier, 1982; Wolf, 1985a; Wu and Ni,49

1996; Boschi et al., 1999], a denumerably infinite number of modes (= dilatation modes50

[Vermeersen et al., 1996]) exists in the presence of compressibility and self-gravitation.51

The numerical root finding algorithms do not work for identifying these roots associated52

with dilatation modes [Han and Wahr, 1995]. (In addition, a difficult identification of53

roots can be observed also for incompressible models that include a viscoelastic litho-54

sphere [Spada and Boschi, 2006].)55

2.2. The instability modes

In addition to the root finding problem, if the density and the elastic structure in the56

earth models does not satisfy the Adams-Williamson equation [Bullen, 1975], unstable57

modes with positive relaxation times appear [Plag and Jüttner, 1995]. The elastic earth58

model PREM [Dziewonski and Anderson, 1981] is not consistent with this relation, since59

there are density inversions in the upper mantle with depths shallower than 220 km,60

which cause Rayleigh-Taylor instabilities [Plag and Jüttner, 1995]. Hanyk et al. [1999]61

found that the characteristic times of unstable modes for earth models with a few number62

of discrete layers are on the order of ten thousand years and cannot be neglected in63

applications to postglacial rebound. Vermeersen and Mitrovica [2000] later showed that64

the characteristic times of unstable modes become much longer for finely layered earth65

models, such as PREM, with relatively smaller density contrasts at internal boundaries66

and their contributions are negligible on geological time scales. Most likely, these density67

inversions do not occur in the real Earth on larger time scales, as convective motions68
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would wipe them out. Further details on this can be found at the end of the introduction69

in Vermeersen and Mitrovica [2000].70

3. Previous methods

In order to by-pass the above two difficulties, several methods have been proposed. A71

first approach is to modify the governing equations and to express compressibility and self-72

gravitation approximately [Wolf, 1985b, 1997; Purcell, 1998; Wolf and Kaufmann, 2000;73

Martinec et al., 2001; Wolf and Li, 2002; Klemann et al., 2003]. A detailed classification74

for the various incremental field equations and their physical meanings can be found in75

Wolf [1997] and Klemann et al. [2003]. Using these formulations, dilatation modes and76

unstable modes vanish and consequently one can obtain closed-form solutions.77

A second approach is an approximate evaluation of dilatation modes without modifying78

the governing equations. Vermeersen et al. [1996] devised an approximate formula, which79

was later corrected by Hanyk et al. [1999] to find the roots of the dilatation modes in80

homogeneous and two-layer earth models. This method, however, has not been applied81

to finely layered earth models.82

A third possibility are numerical approaches, which include those based on the Laplace83

transformation and those implemented in the time-domain. For incompressible models,84

both have been developed [e.g. Fang and Hager, 1994, 1995; Martinec, 2000; Zhong et al.,85

2003; Spada and Boschi, 2006]. For compressible models, only time-domain approaches86

[e.g. Hanyk et al., 1995; Steffen et al., 2006] have been used. Since the governing equations87

are solved in the time domain, effects of all modes including dilatation modes are evaluated88

without finding the roots.89
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Therefore, for compressible and finely stratified earth models, only time-domain ap-90

proaches have been employed without imposing additional constraints.91

4. Proposed method

4.1. Governing equations and load Love numbers

The equations of equilibrium for a self-gravitating, spherically symmetric and com-92

pressible sphere initially in hydrostatic equilibrium can be reduced to a set of ordinary93

differential equations of first order in the Laplace domain [e.g. Wu and Peltier, 1982]:94

dỹn(r; s)

dr
= Ãn(r; s)ỹn(r; s) (1)95

where r is the radial distance and ỹn(r; s) the radial functions associated with displace-96

ment, stress and gravity potential of the spheroidal mode. n, s and the tilde represent97

the spherical harmonic degree, the Laplace variable and Laplace transform, respectively.98

Viscoelasticity is considered in Eq. (1), and the coefficient matrix Ãn(r; s) for a Maxwell99

rheology is explicitly given in Wu and Peltier [1982]. Integrating Eq. (1) with the boundary100

conditions appropriate for surface load [Wu and Peltier, 1982] applying the Runge-Kutta-101

Gill method [e.g. Press et al., 1992], we obtain load love numbers ((h̃n, l̃n, k̃n)(s)) corre-102

sponding to the vertical and horizontal displacements and the gravity potential change at103

the surface in the Laplace domain [Wu and Peltier, 1982]. Then, the load Love numbers104

in the time domain are105

(hn, ln, kn)(t) =
1

2πi

∫ c+i∞

c−i∞
(h̃n, l̃n, k̃n)(s)

est

s
ds (2)106

where s in the denominator shows that Heaviside loading is applied and a Bromwich path107

is assumed, and c is a real constant larger than the largest root.108
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4.2. Numerical inverse Laplace transformation

In order to evaluate the Laplace inversion, we can replace the integration path in Eq. (2)109

by a rectangular path around the real axis of s, since the roots of the secular equation are110

real numbers [Tanaka et al., 2006]. A root finding algorithm is used only for searching for111

the largest and smallest roots. By setting an appropriate path enclosing these two roots,112

contributions from all roots, including those of the dilatation modes and positive roots,113

are calculated simultaneously [Tanaka et al., 2006]. This method was already applied114

in Tanaka et al. [2006] in order to solve Eq. (1) for another set of boundary conditions,115

namely an internal dislocation and the free surface. The numerical Laplace integration116

is carried out with the Romberg integration method combined with ordinary polynomial117

interpolation [Press et al., 1992]. The integrands are continuous and vary smoothly along118

the employed path, and the principal branch for the elastic response at t = 0 agrees with119

the result obtained by an independent method [Tanaka et al., 2006, 2007]. The stability120

of the integration and the detailed process to determine the integration path are described121

in these papers.122

For the earth model based on the PREM that we use in the following, positive roots123

tending to instability exist. Their consideration causes negligible errors in estimating124

viscoelastic responses up to time scales shorter than a few million years on which the125

linearized viscoelastic theory holds [Plag and Jüttner, 1995; Vermeersen and Mitrovica,126

2000]. Excluding these modes from the integration path would lead to discrepancies in127

the elastic deformation if compared to results computed with theory of elastic deforma-128
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tion, since in our model the upper mantle density inversions are retained also for elastic129

calculations.130

To validate our method, we compare the viscoelastic load Love numbers obtained by this131

method with results published in previous studies. Figure 1 (top) displays a comparison132

with results by Hanyk et al. [1995] for a continuously varying viscosity profile (Eq. (9) in133

their paper) in conjunction with the PREM. We see that both viscoelastic responses agree134

well with each other. In order to compute responses for an incompressible earth model,135

the Lamé’s constant λ is set to a large value (= 100µ) without setting up the differential136

equation system for the incompressible case [Wu and Peltier, 1982]. Figure 1 (bottom)137

shows a good agreement between the result for the 200-layer PREM model of Spada and138

Boschi [2006] and that for the same model obtained by the presented approach.139

5. Effects of compressibility

Taking into account effects due to compressibility in viscoelastic modeling is important140

not only regarding theoretical aspects but also for geophysical applications. Vermeersen141

et al. [1996] showed that differences between true polar wander computed with a com-142

pressible two-layer model and that computed with the corresponding incompressible one143

can amount to 30%. The formulations based on incompressibility [Wolf and Li, 2002],144

on the other hand, give an excellent approximation to the compressible response near the145

long times. However, differences in the shorter-term response have not been examined yet.146

In this section, we calculate differences between compressible and incompressible models147

and investigate if major effects due to compressibility are seen in a finely layered model148

including a lithosphere.149
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5.1. Earth model

We employ PREM with liquid outer and solid inner core. The viscosity is 1040 Pa s150

down to the depth of 120 km, which accounts for the elastic lithosphere. The viscosity151

in the mantle (3480 km < r < 6251 km) is shown in Figure 2, which is obtained by a152

polynomial interpolation of the convex viscosity profile [Ricard and Wuming, 1991] used153

in previous studies [e.g. Hanyk et al., 1995; Vermeersen and Sabadini, 1997; Spada and154

Boschi, 2006]. In the solid core, the viscosity is 1025 Pa s, which effectively behaves as an155

elastic body.156

The physical process of surface loading is governed by the flexural rigidity, rather than157

the elastic rigidity [Turcotte and Schubert, 1982]. To correctly consider effects due to158

compressibility on surface loading, we construct the corresponding incompressible model159

by replacing the elastic rigidity in the above model µcmp(r) by µinc(r) = 0.5µcmp/(1−νcmp),160

which satisfies the following scaling law associated with the flexural rigidity, De [Lambeck161

and Nakiboglu, 1980]:162

dDe

dr
=

2µcmp(r)L
2

1 − νcmp(r)
=

2µinc(r)L
2

1 − νinc(r)
, (3)163

where νcmp(r) = λcmp(r)
2(λcmp(r)+µcmp(r))

is the Poisson’s ratio, νinc(r) = 100µ

2(100µ+µ)
≃ 0.5, and L164

is the lithospheric thickness. In the incompressible model of Vermeersen et al. [1996], the165

elastic rigidity is the same as for the compressible model, since the flexural rigidity cannot166

be defined for the two-layer core-mantle model excluding a lithosphere.167

5.2. Comparison in load Love numbers

5.2.1. Love number h168
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Figure 3 (a) displays the computed viscoelastic load Love numbers hcmp
n (t) for the com-169

pressible and hinc
n (t) for the incompressible models for selected harmonic degrees. First,170

we examine differences between hcmp
n (t) and hinc

n (t) at t = 0.1 kyr which approximates the171

elastic limit. The signature of hn is negative for both models, indicating that subsidence172

occurs in the vicinity of the applied load. For n ≤ 10, the vertical deformation is larger173

for the compressible model, and the differences decrease with n (30% for n = 2 and 5% for174

n = 10). This agrees with the previous result that compressibility enhances the elastic de-175

formation [Wolf, 1985b; Vermeersen et al., 1996], although we already assumed a reduced176

shear modulus for the incompressible model. For n ≥ 25, however, the vertical deforma-177

tion is larger for the incompressible model, and the differences increase with n (up to 10%178

for n = 150). This results from the different definition of the incompressible model, since179

the initial deformation for the compressible model is larger for all the degrees, when we use180

the incompressible model with the same elastic rigidity as the compressible model (Figure181

3 (b)). We also note from the figure that by using the incompressible model satisfying the182

scaling law, the differences between the incompressible and compressible models become183

smaller. Next, the vertical deformation at t = 1, 000 kyrs is larger for the compressible184

model up to degree 25, but becomes smaller for higher degrees. The relative difference in185

the vertical deformation between t=0.1 and 1,000 kyr is the largest for n = 70.186

To discuss effects due to compressibility on vertical deformation for transient periods,187

Figure 4 (a) shows the time derivative of hn(t) for the compressible and incompressible188

models. We see that up to degree 25, the deformation rates for the compressible model189

are larger for all time instants and the difference in the rates becomes smaller with time.190
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The relative increase in the rate is the largest for n = 2 (approximately 20% with respect191

to the incompressible case for t=1-3 kyrs) and gradually decreases with n. For n ≥ 35,192

the rate for the compressible model is larger for short time scales and turns to be smaller193

for longer time scales. The relative difference after t = 1 kyrs is approximately 10% and194

does not change with n very much.195

The above effects due to compressibility are inconsistent with the results of previous196

studies [Vermeersen et al., 1996; Hanyk et al., 1995]. This results from adopting the197

different definition for the incompressible model. When we employ the incompressible198

model with the same elastic rigidity as the compressible model, the deformation rate for199

n = 2 decreases by approximately 15% by considering compressibility (Figure 3 (b)), which200

is qualitatively consistent with the deceleration seen in Vermeersen et al. [1996], although201

the change is smaller than their result. The acceleration in the vertical displacement rate202

for higher degrees (Figure 3 (b)) is also consistent with Hanyk et al. [1995]’s finding.203

5.2.2. Love number l204

Figure 3 (c) displays the computed viscoelastic load Love numbers lcmp
n and linc

n in the205

same manner. We see that larger offsets occur in the horizontal deformation over all time206

scales, compared to the vertical deformation. The signature of ln at t = 0.1 kyr in the207

compressible case is positive for all degrees, corresponding to a compression in the vicinity208

of the load (and vice versa for the incompressible model). The relative differences in the209

horizontal deformation at t = 0.1 and 1,000 kyrs are larger for lower and higher degrees,210

which makes a contrast to the case for the vertical displacement where the difference211

between the compressible and incompressible models is the largest for n = 70.212
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Figure 4 (b) shows the time derivative of ln for the compressible and incompressible213

models. In contrast to the vertical deformation rate, the horizontal deformation rate for214

lower degrees becomes slower for the compressible model. The relative decrease in the215

rate amounts to approximately 40 %, for example, around t =70 kyrs for n = 2 and t = 5216

kyrs for n = 35. The relative difference in the rates is the largest at n = 35 and is smaller217

with lower and higher degrees.218

For incompressible models, it already has been shown that effects of fine layering are219

larger on the horizontal motion than the vertical one [e.g. Vermeersen and Sabadini,220

1997]. The above results indicate that effects due to compressibility are also larger on221

the horizontal motion than on the vertical motion for a multi-layer model including a222

lithosphere.223

It is interesting to note that there is a negative correlation between the rate difference224

in the h Love number and that in the l Love number. In other words, when the difference225

in ḣ is positive/negative, the difference in l̇ is negative/positive (Figure 4 (d)). This226

indicates that considering compressibility generates differences in the surface deformation227

illustrated in Figure 5. The spatial variation similar to dilatation might imply that the228

condition of divergence free imposes a geometrical constraint on the deformation rate229

for the incompressible model, when compared to the compressible model. Identifying230

a plausible mechanism to explain this relationship, however, is very hard from surface231

deformation only. A comparison in the internal deformation and stress field will be needed232

to reveal it. The code used in this study cannot calculate internal deformation, since the233

numerical inverse Laplace integration in Eq. (2) must be carried out at each depth,234
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which is computationally expensive. We will modify the code to compute the internal235

deformation more effectively.236

5.2.3. Love number k237

Figure 3 (d) displays the computed viscoelastic load Love numbers k in the same manner.238

We see that for n ≤ 10, the effects enhance the total differences in the potential field239

between t = 0.1 and 1,000 kyrs. The relative differences to the incompressible case240

amount to 10% (n = 2) to 40% (n = 4, 10). For n ≥ 25, the absolute values of k for241

the compressible model are always smaller than those for the incompressible model, and242

the relative offsets increase with n. Figures 4 (c) and (d) show the rates for kn and the243

difference in the rates, respectively. The effect due to compressibility on k̇n is similar to244

that on the vertical deformation (Figure 4 (a)). The relative rate difference is the largest245

for n = 2 (approximately 25% for t =1-5 kyrs), and decrease with n as in the case for the246

Love number hn.247

5.3. Effects on postglacial rebound models and sensitivity by GRACE

Wahr and Velicogna [2003] estimated present-day secular variations in the geoid due248

to postglacial rebound (PGR), using several plausible models based on the PREM and249

ICE3G [Tushingham and Peltier, 1991]. The secular variations predicted for these models250

were approximately 0.1 mm/yr for degrees n < 30 and their deviations caused by em-251

ploying different viscosity profiles and elastic structures amount to approximately 10%.252

These differences in the lower-degree gravity potential coefficients were detectable with253

the GRACE (Gravity Recovery and Climate Experiment) satellites (Figure 1 of Wahr and254

Velicogna [2003]).255
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According to our computations in the previous section, the rate difference in the k256

Love number is 10-25% between the compressible and incompressible models for n < 30257

and t =1-10 kyrs (Figure 4 (c)). We may consider roughly that these rate differences258

will produce differences of the same order of magnitude in the estimate of the present-259

day secular changes due to PGR, although the spatial distribution and time history of260

ice sheets are neglected in the Love number based on a point mass load. Effects due261

to compressibility are comparable to those caused by employing different earth model262

parameters, hence sensible by GRACE.263

6. Conclusions

We have presented the validity of the method based on Tanaka et al. [2006, 2007] to264

compute surface loading of a radially symmetric self-gravitating viscoelastic earth model.265

This method does not modify the governing equations of Dahlen [1974] and Wu and Peltier266

[1982] for a compressible earth model and imposes no additional constraints on the density267

and viscoelastic profiles. We just carry out the numerical inverse Laplace integration along268

a rectangular path including all roots. The results computed with our method agree with269

those obtained by independent methods in both compressible and incompressible cases.270

Using this method, we computed load Love numbers for an earth model based on the271

PREM and a convex viscosity profile. We compared our results with those for the incom-272

pressible material by setting not only the Poisson ratio to 0.5, but in addition we scaled273

the shear modulus to 0.5µcmp/(1 − νcmp). Also for this parameterization, we confirmed274

that major differences occur between the compressible and incompressible models. For275

the Love numbers h and k, the rate differences with respect to the incompressible case276

D R A F T April 16, 2008, 9:22pm D R A F T



,

are the largest for lower harmonic degrees n = 2 − 10, which amount to increases of 10-277

25%. For the Love number l, the rate difference can amount to 40% for all degrees. The278

effects due to compressibility are in general larger on the horizontal deformation than on279

the vertical deformation. When the above parameterization is not employed, the effects280

due to compressibility on the Love numbers increase more, and their characteristics are281

consistent with previous results [Hanyk et al., 1995; Vermeersen et al., 1996].282

We have not discussed mechanisms that cause the above differences. The presented283

method cannot separate the contributions from each normal mode or remove a root from284

the integration path as long as it is not an isolated root. Moreover, the present code cannot285

calculate internal deformation effectively. We will modify the code to calculate the radial286

profile of the deformation in a more efficient way to enable us to investigate the effects due287

to compressibility in more detail. The Fortran code used in this study will be implemented288

in the code for computations of co- and post-seismic deformation presented by Okuno et al.289

[2008] (this issue) in the near future. This method will contribute to increase accuracy for290

modeling postglacial rebound using compressible earth models through inter-comparisons291

with results obtained by other numerical approaches.292
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Plag, H.P. and Jüttner, H.U. (1995), Rayleigh-Taylor instabilities of a selfgravitating333

Earth, J. Geodyn., 20, 267-288.334

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992), Numerical335

Recipes in FORTRAN 77: The Art of Scientific Computing, 2nd ed., Vol. 2, 915 pp.,336

Cambridge University Press, London.337

Purcell, A. (1998), The significance of pre-stress advection and internal buoyancy in the338

flat-Earth formulation, in Dynamics of the Ice Age Earth: a Modern Perspective, edited339

by Wu, P., pp. 105-122, Trans. Tech. Publications, Hetikon.340

D R A F T April 16, 2008, 9:22pm D R A F T



,

Ricard, Y. and B. Wuming (1991), Inferring the viscosity and 3-D density structure of341

the mantle from geoid, topography and plate velocities, Geophys. J. Int., 105, 561-571.342

Spada, G. and L. Boschi (2006), Using the Post-Widder formula to compute the Earth’s343

viscoelastic Love numbers, Geophys. J. Int., 166, 309-321.344

Steffen, H., G. Kaufmann and P. Wu (2006), Three-dimensional finite-element modeling345

of the glacial isostatic adjustment in Fennoscandia, Earth and Planetary Science Lett.,346

250, 358-375.347

Tanaka, Y., J. Okuno and S. Okubo (2006), A new method for the computation of global348

viscoelastic post-seismic deformation in a realistic earth model (I) -vertical displacement349

and gravity variation, Geophys. J. Int., 164, 273-289.350

Tanaka, Y., J. Okuno and S. Okubo (2007), A new method for the computation of global351

viscoelastic post-seismic deformation in a realistic earth model (II) -horizontal displace-352

ment, Geophys. J. Int., doi: 10.1111/j.1365-246X.2007.03486.x.353

Tushingham, A.M. and W.R. Peltier (1991), J. Geophys. Res., 96, 4497-4523.354

Turcotte, D. L. and G. Schubert (1982), Geodynamics, John Wiley and Sons, New York,355

450 pp.356

Vermeersen, L.L.A., R. Sabadini and G. Spada (1996), Compressible rotational deforma-357

tion. Geophys. J. Int., 126, 735-761.358

Vermeersen, L.L.A. and R. Sabadini (1997), A new class of stratified viscoelastic models359

by analytical techniques, Geophys. J. Int., 129, 531-570.360

Vermeersen, L.L.A. and J. X. Mitrovica (2000), Gravitational stability of spherical self-361

gravitating relaxation models, Geophys. J. Int., 142(2), 351-360.362

D R A F T April 16, 2008, 9:22pm D R A F T



,

Wahr, J. and I. Velicogna (2003), What Might GRACE Contribute to Studies of Post363

Glacial Rebound? Space Science Reviews, 108, 319-330.364

Wolf, D. (1985a), The normal modes of a layered, incompressible Maxwell half-space, J.365

Geophys., 57, 106-117.366

Wolf, D. (1985b), The normal modes of a uniform, compressible Maxwell half-space, J.367

Geophys., 56, 100-105.368

Wolf, D. (1997), Gravitational Viscoelastodynamics for a Hydrostatic Planet, Series C,369

No. 452, pp. 96, Verlag der Bayerischen Akademie der Wissenschaften, Munchen.370

Wolf, D. and G. Kaufmann (2000), Effects due to compressional and compositional density371

stratification on load-induced Maxwell viscoelastic perturbations, Geophys. J. Int., 140,372

51-62.373

Wolf, D. and G., Li (2002), Compressible viscoelastic earth models based on Darwin’s374

law, in Ice Sheets, Sea Level and the Dynamic Earth, edited by Mitrovica, J.X. and375

Vermeersen, L.L.A., pp. 275-292, American Geophysical Union, Washington.376

Wu, P. and Z. Ni (1996), Some analytical solutions for the viscoelastic gravitational relax-377

ation of a two-layer non-self-gravitating incompressible spherical earth. Geophys.J.Int.,378

126, 413-436.379

Wu, P. and W. R. Peltier (1982), Viscous gravitational relaxation, Geophys. J. R. Astr.380

Soc., 70, 435-485.381

Zhong, S., A. Paulson and J. Wahr (2003), Three-dimensional finite-element modelling382

of Earth’s viscoelastic response: effects of lateral variations in lithospheric thickness.383

Geophys. J. Int., 155, 679-695.384

D R A F T April 16, 2008, 9:22pm D R A F T



,

Figure Captions.385

Figure 1.386

Comparisons of viscoelastic load Love numbers, hn(t), n represents the harmonic degree.387

(top) The white squares are values read from Fig. 3 in Hanyk et al. [1995] and the black388

ones display the result computed by our method for the same earth model. (bottom)389

The white squares are read from Figs. 11 and 12 in Spada and Boschi [2006] and the390

black ones show our result for the same earth model (their PREM L200 model).391

Figure 2.392

The viscosity profile employed for the mantle. The horizontal axis denotes the radial393

distance from the center of the Earth r. For d = a− r in km, where a=6371, log10 η(r) =394

−6.08× 10−13d4 +3.42× 10−9d3 − 6.50× 10−6d2 +5.46× 10−3d+2.00× 101 in Pa s holds.395

The number of the layers is approximately 2,000.396

Figure 3.397

(a) Effects due to compressibility on time series of viscoelastic load Love number hn.398

The horizontal axis denotes time since Heaviside loading was applied. Black and white399

squares represent hn for the compressible and incompressible models, respectively.400

(b) As for (a) but for the incompressible model with the same elastic rigidity as the401

compressible model.402

(c) As for (a) but for the load love number ln.403

(d) As for (a) but for the load love number kn.404

Figure 4.405
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(a) A comparison in the deformation rates of the load Love numbers hn in Figure 3406

(a). Black and white squares represent dhn/dt for the compressible and incompressible407

models, respectively.408

(b) As for (a) but for ln in Figure 3 (c).409

(c) As for (a) but for kn in Figure 3 (d).410

(d) The difference between the rates of the load Love numbers for the compressible411

and the incompressible models. The vertical axes denotes −[(ḣ, l̇, k̇)cmp
n − (ḣ, l̇, k̇)inc

n ],412

respectively. Positive values in the vertical axis indicate that the absolute displacement413

rates for the compressible model are larger.414

Figure 5.415

Differences in the surface deformation rates in the vicinity of the load, caused by con-416

sidering compressibility. ∆ denotes a difference with respect to the incompressible case.417

∆ḣn ≡ ḣcmp
n − ḣinc

n and so forth.418
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Figure 4 (b). As for (a) but for ln in Figure 3 (c).
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Figure 4 (c). As for (a) but for kn in Figure 3 (d).
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Figure 4 (d). The difference between the rates of the load Love numbers for the compressible and the incompressible

models. The vertical axes denotes −[(ḣ, l̇, k̇)cmp
n − (ḣ, l̇, k̇)inc

n ], respectively. Positive values in the vertical axis indicate that
the absolute displacement rates for the compressible model are larger.
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