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Application of a Robin boundary
condition to surface waves

Kai Håkon Christensen1,2*† and Jan Erik Hobæk Weber2†

1Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway,
2Department of Geosciences, University of Oslo, Oslo, Norway
Surface effects on deep-water gravity waves are investigated theoretically by the

application of a Robin boundary condition with a complex Robin parameter, R =

Rr + iRi. The Robin condition combines the shear stress and the horizontal

velocity at the ocean surface. We show that this condition describes wave

damping related to surface phenomena like elastic films or thin viscous fluid

layers. It may also model wave generation by oscillating surface stresses

depending on the signs and magnitudes of Rr and Ri.
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1 Introduction

We study surface gravity waves in a homogeneous ocean where the depth is very much

larger than the wavelength. These waves are affected by the physical conditions at the sea

surface, most notably by the presence of thin flexible covers like biogenic films, which may

cover large areas of the ocean surface (Gade et al., 2006). In addition to these natural films,

we find pollutant slicks from petroleum spills or municipal effluents, which change the

surface conditions. In cold regions, the surface cover is usually related to the presence of ice,

for example, grease ice (Martin and Kauffman, 1981; Sutherland et al., 2019), or densely

packed ice rubble in the marginal ice zone (Squire, 1984). Another example is the seasonal

accumulation of Sargassum mats in the Tropical Atlantic (Marsh et al., 2022).

It is practically impossible to formulate a unified mathematical theory for explaining

the effect on surface waves of floating material like oil, grease ice, or vegetation. We

therefore intend to model this interaction by introducing a freely varying parameter R,

which can be adapted to the problem in question. This parameter appears in a very general

condition at the ocean surface. The condition is called a Robin condition (Gustafson, 1998;

Akin, 2005) and R is the Robin parameter. Traditionally, the Robin condition is a relation

between a quantity T (temperature, velocity, etc.) and its derivative ∂T= ∂ xn, where xn
is directed normal to the boundary. The homogeneous Robin condition can be written

∂T= ∂ xn + RT = 0 at the boundary (sometimes R̂ ∂T= ∂ xn + T = 0 is used). In this way,

the Robin condition becomes a weighted combination of Dirichlet and Neumann boundary

conditions. It is common in many branches of physics; see, for example, Hahn and Ozisk

(2012) for applications to heat conduction, Tyvand and Nøland (2019) for convection in a

porous medium, and Weber and Børve (2021) in the case of continental shelf waves with a
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permeable coastline. The relevance for oceanographic purposes is

the role of the fluctuating tangential stress at the surface, which is

typically small compared to the fluctuating normal stress (form

stress) for uncontaminated surfaces, but can be large when the

surface is covered by sea slicks, oil spills, sea ice, and other materials

(e.g., Dorrestein, 1951). The framework presented here is mostly

relevant for waves in deep water since the bottom friction and wave

radiation stresses will typically dominate in shallow water. We will

therefore only discuss waves for which kH ≫ 1, where k is the wave

number and H is the local water depth. We will also ignore

rotational effects; hence, we assume that w ≫ f , where w   is the

angular frequency of the waves and f is the Coriolis parameter.

In Figure 1, we have depicted a general configuration relevant to

the discussion here. The x-axis is horizontal and placed along the

undisturbed sea surface, while the z-axis is positive upwards. The x-

direction is, without loss of generality, in the direction of wave

propagation. In the presence of waves, the sea surface is given by

z = h(x, y, t).
We shall here use the Robin formalism to describe the

tangential conditions at the surface. Thus, we write

∂ u= ∂ z + ∂w= ∂ x + Ru = 0,       z = h(x, y, t Þ; (1)

where u and w are the horizontal and vertical velocity

components. In Equation 1, R is generally complex, i.e.,

R = Rr + iRi: (2)

We note from Equation 1 that when R = 0, the viscous shear

stress at the surface vanishes, defining a free surface. At the other

extreme, when R ! ∞, the horizontal motion is zero at the surface,

which models a flexible, but horizontally inextensible top layer

(Lamb, 1932). The application of Equation 1 as a general model for

the physical conditions at the surface appears to be novel. We will

relate the Robin parameter to the rate of growth and decay in the

waves, using known examples for elastic monolayers and thin layers

of viscous fluids to aid the physical interpretation of our results.

The rest of this paper is organized as follows: In Section 2, we

calculate the wave attenuation/growth by applying the Robin

condition, and in Section 3, we discuss the solution when the

Robin parameter is purely real. The case of a complex Robin

parameter is considered in Section 4. Energy considerations due

to dilational waves excited in the surface layer is discussed in

Section 5. Finally, Section 6 contains some concluding remarks.
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2 Mathematical analysis

We here consider two-dimensional wave motion in a viscous

ocean. For a fluid with viscosity n, the two-dimensional velocity

field can be separated into two parts: one potential part j and one

vorticity part y ; see Lamb (1932), such that

u = − ∂j= ∂ x − ∂y= ∂ z; (3)

w = − ∂j= ∂ z + ∂y= ∂ x: (4)

Inserting into the governing equations, we then obtain for the

linear part of the wave field

∂2 j= ∂ x2 + ∂2 j= ∂ z2 = 0; (5)

∂y= ∂ t − n( ∂2 y= ∂ x2 + ∂2 y= ∂ z2) = 0; (6)

p=r = ∂j= ∂ t − gz: (7)

Assuming that j,y ! 0,   z ! −∞, the normalized linear

solutions can be written

j = exp (k z) exp i(kx − nt Þ; (8)

y = C exp (mz) exp i(kx − nt Þ; (9)

where C is a constant. In Equations 8 and 9, the complex wave

number and frequency are defined by

k = k + ia , (10)

n = w − ib: (11)

Here a ,   b are the real (and small) spatial and temporal

damping rates. From Equation 6, we obtain that m2 = k 2 − in=n  .

If we now assume that the wavelength is much larger than the

thickness of the oscillatory viscous boundary layer, and that the

wave growth/damping is slow compared to the wave period, we

have jmj ≫ jk j and jw ≫ jbj. Then, we have to leading order that

m = (1 − i)g ; (12)

where g is defined by

g = w1=2=(2n)1=2: (13)

Here, the quantity g −1 represents the thin viscous boundary-

layer thickness at the surface. To obtain Equation 12, we thus

assume that k=g ≪ 1: From Equation 1, we find that

C = −ik (2k + R)=(m2 +mR + k 2 Þ: (14)

Finally, assuming no fluctuating normal stress at the water

surface, the dynamic boundary condition in the z-direction

becomes

p=r = 2n ∂w= ∂ z; z = h: (15)

It is worth noting at this point that capillary waves can be

included in the analysis by adding the normal stress due to the

equilibrium value of the surface tension in Equation 15; see, for
FIGURE 1

A diagram of spatially damped surface waves. The surface can be
free or covered by a flexible layer, depending on the problem in
question.
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example, Lucassen (1968). The main conclusions in the present

study will not change, however, and we ignore capillary waves in

our examples here since their inclusion complicates the

mathematical expressions without contributing to the physical

interpretation of our results. From Equation 15, we find that

h = (1=g)½( − in + 2nk 2)j − 2ikmy �,  z = 0 (16)

Inserting from Equations 8 and 9 into Equation 16, we obtain

the dispersion relation for this problem:

n2 + 2ink 2n − gk + iM = 0; (17)

where

M = −k 2(ig + 2nmn)(2k + R)=(m2 +mR + k 2 Þ: (18)

Utilizing Equations 10–12, we obtain from the real part of

Equation 17 to lowest order the obvious result w2 = gk. The

imaginary part yields to lowest order that

b + cga = wk2=(2g 2) +ℜ(M)=(2w); (19)

where now cg = w=(2k) is the usual deep-water wave group

velocity. Here, ℜ denotes the real part of a complex quantity. We

define a nondimensional Robin parameter by

A = Rr=g ,  B = Ri=g (20)

and we scale b in Equation 19 by binex = wk=(4g ), which is the

temporal damping coefficient for an inextensible surface film

(Lamb, 1932). Furthermore, we define b̂ = b=binex and the

nondimensional spatial damping rate by â = 4ga=k2. Using that

k=g ≪ 1,   b=w ≪ 1, and a=k ≪ 1, we obtain from Equation 19

that

b̂ +
1
2
â = (2k=g )P + Q; (21)

where

P = 1 + 2=½A2 + B2 + 2A − 2B + 2 �; (22)

Q = (A2 + B2 + 2A)=½A2 + B2 + 2A − 2B + 2 �: (23)

In Equations 22 and 23, A,B ∈ ð−∞,∞Þ, and it is easily seen

that both P and Q are of order unity. When A = B = 0, we have

P = 2 and Q = 0. Then Equation 21, in dimensional form, reduces

to b + cga = wk2=g 2, as first obtained in Jenkins (1986) for a free

surface. For larger values of A, B, we find that (2k=g )P becomes

negligible in Equation 20. A general form of Equation 19 for

damped waves has been derived in Weber (2022), relating the

right-hand side to the dissipation in the wave motion.
3 Real Robin parameter

It is natural to start our discussion for the case when R is purely

real, i.e., when B = 0 in Equations 22 and 23. In Figure 2, we have

plotted the attenuation rate Q vs. A = Rr=g in this case. We will

assume that the waves are already present; hence, we ignore the
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generation mechanism and focus on the transient development of

the existing wave field. In our analysis here, it is the fluctuating part

of the tangential surface stress that is of interest, and hence, we will

neglect the slowly varying wind stress that contributes to the upper

ocean Ekman response, which is a second-order effect in the

theoretical framework we apply here (e.g., Weber, 1983).

We note from Figure 2 that the depicted line tends to unity as A

becomes infinitely large. Physically, this means that the horizontal

velocity becomes zero at the contact with the surface cover, which is

often referred to as the inextensible layer limit. Overall, real R is

related to wave damping (Q > 0). However, it is interesting to note

that Q < 0 (wave growth) occurs when − 2 ≤ A ≤ 0. This may be

explained in terms of the wave energy balance. From Equation 1, we

may write at the surface that

rn( ∂ u= ∂ z + ∂w= ∂ x) = t = −rnRu; (24)

where t is the horizontal shear stress at the surface. Hence, by

multiplying with the real u and average over the wave cycle

(denoted by an over-bar), we find for the work per unit time of

the shear stress on the fluid that

tu = −rnRu2,         z = 0: (25)

We note that the work is proportional to the square of the

horizontal velocity component and independent of the vertical

velocity. This is a general result that holds for any value of the

Robin parameter. From Equation 25, we realize that to have a

positive energy input, we must have R < 0: Furthermore, to have

wave growth, this input must be larger than the viscous dissipation

D in the fluid. Here,

D = rn
Z
−∞

0 �
∇u ·∇u +∇w ·∇w)dz (26)
FIGURE 2

Nondimensional attenuation rate Q from (22) for deep-water waves
as a function of the nondimensional real Robin parameter A = Rr=g .
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Due to the strong gradients near the surface, ( ∂ u= ∂ z)2 will

dominate in Equation 26. We derive real velocities from Equations 2,

3, 8, 9, and 14, and use that k=g ≪ 1. In Figure 3, we have plotted the

dimensionless quantities f1 = 2tu=(rnk2g ) and f2 = 2D=(rnk2g ) as
functions of A.

We note that in a small window, − 2 ≤ A ≤ 0, the work by the

surface stress is larger than the dissipation, so here we have wave

growth. The maximum growth occurs for A = −1. At A = −2, the

two effects balance, so here the growth rate is zero. These results

confirm the findings for the attenuation rates depicted in Figure 2.

Jenkins and Jacobs (1997) studied the wave damping by a thin

layer of viscous fluid on top of an infinitely deep fluid of a different

viscosity. For a thin, very viscous film of thickness d, they showed

that the dynamic boundary condition in the horizontal direction

between the two immiscible fluids could be written as

∂ u= ∂ z + ∂w= ∂ x + (4dk2ms=m)u = 0,       z = 0 (27)

where ms and m are the dynamic viscosities of the thin upper

surface layer and the infinitely deep bottom layer, respectively.

Now, by comparison with Equation 1, we see that in this case

Rr = 4dk2ms=m; (28)

Ri = 0: (29)

Since R is purely real, the damping in this case will follow the

curve for A > 0  in Figure 2. Here, we ignore any internal motion in

the film itself since the analysis is only valid for thin films, with

monomolecular films as the limit.
Frontiers in Marine Science 04
4 Damping for a complex Robin
parameter

We now study the case Rr = gA ≥ 0,  Ri = g B ≥ 0. In Figure 4,

we have plotted the attenuation rate Q from Equation 23 as a

function of B for various values of A.

One classic (and striking) result in Figure 4 is that the

maximum nondimensional attenuation rate becomes twice as

large as inextensible limit when A = 0 (blue line), i.e., when the

Robin parameter is purely imaginary and positive. This is related to

the excitation of longitudinal elastic, or dilational, waves at the

surface (i.e., Equation 9). Dilational waves in thin surface films

efficiently dampen short waves—an intriguing phenomenon that

has been the subject of study since antiquity (see, e.g., the historical

review by Scott, 1977). From Miles (1967), generalizing an earlier

result by Dorrestein (1951), we can write in our notation for an

insoluble visco-elastic monolayer at the surface:

∂ u= ∂ z + ∂w= ∂ x + ½(z1 + z2)k
2=(rn) + iE*k

2=(nw)�u
= 0,       z = 0; (30)

where E* is the surface elasticity per unit density, and z1and z2
are the dilatational and shear viscosities of the film; see also Miles

(1991). Comparing with Equation 1, we note that here

Rr = (z1 + z2)k
2=(rn Þ; (31)

Ri = E*k
2=(nw Þ: (32)
FIGURE 3

Work by the dimensionless surface stress (f1) and the dimensionless
dissipation (f2) as functions of the nondimensional real Robin
parameter A = Rr=g .
FIGURE 4

Attenuation rate Q as a function of nondimensional imaginary Robin
parameter B for various values of nondimensional real Robin
parameter A.
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We thus see that the Robin boundary condition (Equation 1),

with Rr ,Ri > 0, is related to the viscoelastic properties of the surface

cover in that the real part of the Robin parameter represents the

viscous effects (as we already have explored), while the imaginary

part captures the elastic properties of the cover. This means that Ri,

and hence B, must be positive since a negative value of the elasticity

is unphysical. Miles (1991) was the first to point out that the

coefficient in Equation 24 was a complex quantity.

In the film problem, we take that the surface viscosities are

negligibly small (Dorrestein, 1951; Lucassen, 1968). Hence, the

Robin parameter is purely imaginary. From Equation 23 we then

have that

Q = B2=(B2 − 2B + 2): (33)

The maximum value is Q = 2 when B = 2, as seen in Figure 4.

Introducing the dimensionless parameter d = g k2E*=w
2

(Dorrestein, 1951), we have from Equation 32 that B ≡ Ri=g = 2d
. Hence, we obtain from Equation 21 for pure temporal damping,

when 2k=g is small, that b̂ max = Qmax = 2 for d = 1, which is

Dorrestein’s classic result.

Since the wave modes are coupled, Equation 21 yields the

damping rate for both the dilational and surface waves.

Jenkins and Jacobs (1997) compare Equations 30 and 27 and

conclude that Equation 30 has exactly the same properties as

Equation 27 regarding wave damping if we replace (z1 + z2)k2=(r
n) + iE*k

2=(nw) in the film case by 4dk2ms=m. However, as shown

here, this is not true since the elastic film case has a dominant

imaginary Robin part yielding increased damping (Figure 4, blue

line), whereas in the viscous layer case, the Robin parameter is real.
5 The energetics of dilational wave
damping

As mentioned, the increased maximum damping for a certain Ri
as seen in Figure 4, is related to the existence of dilational waves

(Lucassen, 1968; Weber and Christensen, 2003). Free dilational

waves are critically damped through viscous dissipation in the

oscillatory boundary layer. For this reason, the linear dispersion

relation differs depending on whether the dilational waves are (i)

damped in time, (ii) damped in space, or (iii) sustained by an

undulating stress at the surface, i.e., forced waves (Weber and

Christensen, 2003). Surface waves provide just such a mechanism

for sustaining the dilational waves, and the dilational wave

frequency relevant here is given by the dispersion relation for

forced waves:

wD = ½k4E2
*=(2n)�

1=3: (34)

In the present problem, where maximum damping occurs for

B = Ri=g = 2, we find from Equation 34), by using Equations 13

and 32, that

wD = w: (35)

Hence, as pointed out in Christensen (2005), maximum

damping occurs when the natural frequency of the forced
Frontiers in Marine Science 05
dilational waves exactly coincides with the natural frequency of

the surface waves. Physically, the dilational waves, which would, in

the absence of surface waves, be nearly critically damped, act as a

sink of energy for short gravity waves. This phenomenon is

sometimes referred to as “negative resonance”. Similar behaviors

appear in more complex setups, for example, the case of finite layer

thickness with two elastic interfaces, for which two damping

maxima are possible (Ermakov and Khazanov, 2022).

We can gain more insight into the role of dilational waves as an

energy sink if we split the horizontal velocity components into two

parts u = ~u + û , representing the surface wave (Equation 8) and the

dilational wave (Equation 9), respectively. The presence of the

dilational wave makes the amplitude of the total horizontal

velocity u dependent on the elasticity parameter. Maximum

damping is associated with a maximum in the horizontal velocity

u, and hence a maximum in the work per unit time done by the

surface stress (Equation 25). The dissipation is primarily due to the

strongly sheared dilational wave motion:

D ≈ D̂ =   rυ
Z 0

−∞
( ∂ û= ∂ z)2dz

= rυ
Z 0

−∞
½∂ = ∂ z½û ( ∂ û= ∂ z)� − û ( ∂2 û= ∂ z2)�dz : (36)

The surface stress is well approximated by t = rυ ∂ û= ∂ z(z =
0). We now define the work per unit time on the oscillatory

boundary layer:

Ŵ = t û = rυû ( ∂ û= ∂ z),           z = 0: (37)

The second term on the right-hand side of Equation 36 is zero

because of û and ∂2 û= ∂ z2 always being 90° out of phase, cf.

Equations 9 and 13. From Equations 36 and 37, we find that Ŵ = D̂

as we would expect for dilational waves (Weber and Christensen,

2003), which means that although the dilational waves are

continuously excited by the surface waves, being coupled through

the surface condition (Equation 1), they are continuously being

dissipated in the oscillatory boundary layer at the same rate.
6 Concluding remarks

To model the various effects that may change the physics of the

ocean surface, and hence affect growth and decay of surface waves,

we have related the shear stress at the water surface and the

horizontal velocity using a Robin condition with a complex Robin

parameter. Using known results for viscous fluid layers and elastic

monolayers, we show how the real part of the Robin parameter is

related to viscous or frictional surface effects, while the imaginary

part is associated with surface elasticity. In many situations of

practical interest, for instance for ice covered waters, large floating

mats of seaweeds, or more complex sea slicks with anisotropic

horizontal distributions of surfactant, the dynamical conditions at

the surface quickly become very complex, and we need to resort to

simplified parameterizations of average behavior, particularly on

the horizontal scales of numerical wave prediction models. Since it

is practically impossible to formulate a unified mathematical theory
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explaining the effect of surface constituents on surface waves, or

even to formulate constitutive relations, we may resort to modeling

the interaction between the surface waves and the floating materials

by applying the Robin condition and adapting the Robin parameter

to the problem in question. Even if a quantitative estimation of the

Robin parameter is not possible, a discussion of the problem for

limiting values of R may still improve our understanding of the

basic physics involved.
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