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Abstract

Background: The nonstationary property of electromyography (EMG) signals usually makes the pattern recognition

(PR) based methods ineffective after some time in practical application for multinational prosthesis. The conventional

EMG PR, which is accomplished in two separate steps: training and testing, ignores the mismatch between training

and testing conditions and often discards the useful information in testing dataset.

Method: This paper presents a novel self-enhancing approach to improve the classification performance of the

electromyography (EMG) pattern recognition (PR). The proposed self-enhancing method incorporates the knowledge

beyond the training condition to the classifiers from the testing data. The widely-used linear discriminant analysis

(LDA) and quadratic discriminant analysis (QDA) are extended to self-enhancing LDA (SELDA) and self-enhancing QDA

(SEQDA) by continuously updating their model parameters such as the class mean vectors, the class covariances and

the pooled covariance. Autoregressive (AR) and Fourier-derived cepstral (FC) features are adopted. Experimental data

in two different protocols are used to evaluate performance of the proposed methods in short-term and long-term

application respectively.

Results: In protocol of short-term EMG, based on AR and FC, the recognition accuracy of SEQDA and SELDA is 2.2%

and 1.6% higher than conventional that of QDA and LDA respectively. The mean results of SEQDA(C) and SEQDA (M)

are improved by 2.2% and 0.75% for AR, and 1.99% and 1.1% for FC respectively when compared to QDA. The mean

results of SELDA(C) and SELDA (M) are improved by 0.48% and 1.55% for AR, and 0.67% and 1.22% for FC when

compared to LDA. In protocol of long-term EMG, the mean result of SEQDA is 3.15% better than that of QDA.

Conclusion: The experimental results show that the self-enhancing classifiers significantly outperform the original

versions using both AR and FC coefficient feature sets. The performance of SEQDA is superior to SELDA. In addition,

preliminary study on long-term EMG data is conducted to verify the performance of SEQDA.
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Introduction
Surface electromyogram (EMG) signal is a noninvasive

measurement and contains rich information associated

with the muscle electrical activities. It is considered to be

an important input for the control of electrically powered

prostheses, referred to as myoelectric control [1]. Conven-

tional myoelectric control systems enable the amputees

to operate a single device such as a hand or a wrist [2],

simply based on amplitude decoding of the EMG sig-

nal recorded from the separable forearm muscles. The

early myoelectric controllers can only operate in an on-off

mode to control electrically powered hands with open-

close functions [3]. Controlling a multi-degree prosthetic

hand requires more sophisticated technique for decoding

of different muscle states from the recorded EMG [4].

To increase the number of motion classes, much atten-

tion has been drawn to a pattern-recognition (PR)-based

approach to the myoelectric control of multifunctional

prostheses in last two decades. Unlike the conventional

EMG decoding method that assigns each function to a

specific control muscle, the PR-based approach extracts

useful information from several EMG channels to form

a feature vector and maps it to a motion class, maximiz-

ing the separability between each motion. Several types of

EMG PR systems are introduced to fulfill the multifunc-

tional prothesis control [2,5-10].

The feature extraction and classifier design are the

major components of PR-based control strategy. The per-

formance of EMG PR is mainly evaluated by the classi-

fication accuracy. Various EMG feature sets have been

employed to extract the most discriminant information

for improving the classification accuracy. The feature

extraction methods include autoregressive (AR) model

[11], multivariate AR model [12], time domain statistics

[2,13], root mean square (RMS) [14], higher-order statis-

tics [15], cepstral coefficients [16], time-frequency rep-

resentation [17,18] and EMG preprocessing method, e.g.

the individual principal component analysis (iPCA) [8].

To achieve a high classification accuracy, researchers have

extensively explored different types of classifiers, such as

MLP [2], LDA [7,19], Gaussian Mixture Model [9], hid-

denMarkovmodel [6], support vector machine [10], fuzzy

logic [20], K-nearest neighbor classifier [21] and unsuper-

vised clustering [22]. In addition, due to the large number

of EMG channels [23] and high dimensionality of feature

set, feature selection and feature projection methods such

as sequential feedforward selection [8,23], PCA [17] and

uncorrelated linear discriminant analysis [24] are used

to transform the EMG features to a lower dimensional

subspace.

Usually, a successful classifier of EMG PR method is

accomplished by two separate parts: (1) training step that

aims to train the classification model from the knowl-

edge of training data and (2) testing step that simulates

the situation in real-world application and evaluates the

classification performance using the testing data. How-

ever, the training EMG data are normally acquired at one

time during a short period, and the contained informa-

tion is limited, so they cannot be representative to the data

of whole temporal span in application period including

testing step. In real-world application, if an EMG classi-

fier is trained well for a specific amputee, the amputee

can control the prothetic hand well at the early stage, but

the performance is degraded as the time moves on. This

phenomenon is very common, and it is mainly because

of the nonstationary property of EMG signals. The possi-

ble EMG variation is contributed to these factors such as

electrodes condition, muscle fatigue, sweating and so on

[25-27]. It is a big problem hindering the commercializa-

tion of advanced myoelectric controlled prosthetic hand

that was developed in laboratory environment. Therefore,

we plan to make further exploration in the testing stage

since it simulates the real application situation, and expect

to develop a kind of robust or adaptive classifier. In previ-

ous research, the training and testing steps are two inde-

pendent processes. When there exists mismatch between

training and testing conditions, the performance of the

EMG PR might deteriorate, i.e. the classification accuracy

decreases. Enlarging the EMG recordings in training step

that contain more information may be a possible solution,

but it is a time-consuming task and can give additional

burden to the users. So we are inspired to retrain the

classifier with the testing data in addition to the training

data, which perhaps can alleviate the mismatch problem.

In previous research, the parameters of original classi-

fiers, e.g. the mean vector and pooled covariance in LDA,

are estimated from the training set only. We believe using

more available data to train classifiers can lead to more

accurate and stable parameter estimation that is close to

the true sampling distribution. Exploiting information in

testing dataset is a possible way to enlarge the data pool

for training and further increases the recognition accuracy

of classifiers.

In order to guarantee the stable performance of the con-

tinuous EMG PR in view of above remarks, the idea of

self-enhancing classifiers is presented in this paper. As

far as we have known, few previous works in myoelec-

tric pattern recognition focus on the classifier adaptation,

especially in designing an adaptation procedure for the

continuous classification.

In this paper, we extend the LDA and quadratic discrim-

inant (QDA) classifiers to self-enhancing versions since

LDA is a popular classifier used widely in many previous

studies. It is easy to use and its classification performance

is not inferior to other complicated classifiers [28]. The

remainders of the paper are organized as follows. Section

‘Method’ explains the methods applied in the EMG

signal classification process, including data acquisition,
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feature extraction, and proposed self-enhancing LDA

and QDA (SELDA and SEQDA) classifiers. Section

‘Experiment results’ provides the experimental results.

Section ‘Discussion’ is the discussion. Finally, conclusions

are presented in Section ‘Conclusion’.

Method
The traditional process of EMG PRmethod generally con-

tains segmentation, feature extraction, and classification.

The decision streams are finally generated for the motion

controller. A self-enhancing mechanism is added to the

traditional process in this work, and Figure 1 illustrates

the flowchart. The key components will be expounded in

the following parts.

Segmentation

The N-sample analysis window, which is used to esti-

mate the feature, segments the raw EMG signal and slides

with m-sample window increment. The procedures of

the feature extraction and classification are completed in

the window-increment intervals. The continuous classi-

fier sequentially produces a stream of prediction decision

for each analysis window. The self-enhance classifier is ini-

tiated by training set and then updated its model using the

classified continuous EMG data. The self-enhancing step

works as a feedback process to the classifier when assess-

ing the classifier in testing step or applying it in real-world

application. To easily fit the manner of continuous EMG

PR, the self-enhancing algorithm adopts an incremental

mode (updating window by window). The parameters of

classifiers are continuously adjusted to each new-coming

testing data. The data is then thrown away after com-

pleting the classifier updating. Namely, the incremental

self-enhancing method has the advantage of the small

storage requirements. In order to completely evaluate the

proposed methods, two protocols are designed for EMG

data recording. One is the conventional case, testing data

is collected adjacently after the training data measure-

ment. The other case is to let the testing data be collected

about 7 hours later after the training data measurement.

Generally the EMG data used are collected during a short

period (2∼3 hours) in previous research, i.e. the data are

short-term. Towards the practical application in future,

long-term EMG data are more meaningful.

EMG feature extraction

The surface EMG signal detected during the voluntary

contraction resembles stochastic noise due to the variabil-

ity of MUs (Motor Units) firing rate and recruiting rate.

Although EMG signal recording from different motions

is a non-stationary process, it has demonstrated that the

signal can be assumed to be wide-sense stationary under

the 0.5 s analysis windows if the contractions are iso-

tonic and isometric[29]. For the continuous EMG PR, it

has no advantages to use the time-scale methods, such

as wavelet and wavelet pack [7], to extract EMG features

from steady-state signals. Time and frequency analyses

are selected to extract the useful features of EMG sig-

nal in terms of classification accuracy. Previous studies

have shown that the feature set AR + RMS, which respec-

tively describes the amplitude and spectral information

of EMG, presents better classification performance than

other features [10,28].

The cepstral coefficient is an efficient feature in speech

recognition. The AR-derived cepstral coefficient has been

applied in EMG PR task and presents good classification

performance [16]. Another way of cepstrum coefficients

derivation is based on the Fourier spectrum [30]. The dis-

crete cosine transform (DCT) [31] is used for converting

fourier spectrum to the meaningful cepstral feature since

it can decorrelate the feature and compress spectral infor-

mation. The Fourier-derived cepstral (FC) is well studied

in [32], and it shows better performance compared with

other EMG features. The FC coefficients are achieved by

two steps:

1) calculate the energy spectrum using the discrete

Fourier transform (FT)

X[ k]=

N−1∑

n=0

x[ n] exp−j 2πN nk , k = 0, 1, . . . ,N −1

(1)

Figure 1 Block diagram of the proposed self-enhancing EMG classification scheme. The red line presents the proposed self-enhancing

procedure that works as a feedback to update the classifier.
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2) calculate FC coefficients from the nonlinear

magnitude of the Fourier-spectrum transform

directly using DCT

FCi =

N−1∑

k=0

Yk cos(
(k + 1/2)(i − 1)π

N
), i = 1, 2, . . . ,N

(2)

where x[ n] is the sEMG signal, Yk = f (|X[ k] |)

denotes a nonlinear transformation (e.g., logarithm

of magnitude) of |X[ k] |, |X[ k] | is the magnitude of

Fourier coefficients, and N is the number of FC

coefficients. In addition, it should be noted that the

computation of the FC feature extraction is mainly

dependent on the fast FT (FFT) and DCT algorithms

and it is computationally efficient.

Since AR and FC have shown superior performance in

previous study, they are selected as the EMG feature sets

to evaluate the performance of the self-enhancing classi-

fiers proposed in this paper. More details about AR and

FC can be found in [11,32], respectively.

Classifier design

Our improvement is based on two conventional linear

and nonlinear classificationmethods: LDA andQDA. The

LDA and QDA classifiers are the Gaussian Maximum-

likelihood classification methods based on the Bayes’ rule.

LDA has been demonstrated to be suitable for the EMG

PR. In addition, LDA and QDA classifiers have no manu-

ally specified hyperparameters that significantly affect the

generalization performance, thus eliminating trial-and-

error approaches such as cross-validation, and the whole

classifiers are determined by the training set.

Given an input feature vector x for classifiers, the Bayes

decision rule shows that the minimum error decision is

based on the posterior probability of class membership

p(ωi | x) as [33]

p(ωi | x) = p(ωi)
p(x | ωi)

p(x)
(3)

where p(x | ωi) is the class-conditional probability den-

sity function (PDF), p(ωi) is the prior probability, p(x)

is the unconditional PDF, and ωi denotes the ith class,

i = 1, 2, . . . ,C.

The discriminant function is defined as gi(x) =

log[P(ωi)p(x | ωi)] , i = 1, 2, . . . ,C. The class label of x is

ωi, if gi(x) ≥ gj(x), for all i �= j. The common assumption

is that all class-conditional PDF are the normal distribu-

tion with means μi and covariance matrices �i. The final

decision rule can make use of the following discriminant

function:

gi(x) = log(p(ωi)) −
1

2
(x − μi)

T�−1
i (x − μi) (4)

where the unbiased estimates of μi and �i are defined as

μi =
1

ni

∑

x∈ωi

x (5)

�i =
1

ni − 1

∑

x∈ωi

(x − μi)(x − μi)
T (6)

It is shown that the discriminant function constructs the

pairwise linear decision surface if all covariances �i are

the same as pooled within-class scatter matrix �W :

�W =

c∑

i=1

ni − 1

n − c
�i; (7)

where n is the total number of the EMG patterns. It is

called the LDA classier. If �i is assumed to be differ-

ent, the decision boundaries are the hyperquadric sur-

face and this is the QDA classifier. For sufficient data

condition, QDA is superior to LDA since the specific

covariance estimates accurately characterize the second-

order information in the classification model and has

nonlinear separability for different classes. Otherwise,

LDA using the averaged pooled covariance controls less

parameters and has better performance for small data

condition.

Self-enhancing method for classifiers

We extend the LDA and QDA classifiers to the self-

enhancing versions (SELDA and SEQDA) using addi-

tional knowledge from the classified data in testing set.

The parameters of the original classifiers are adjusted by

updating the mean vector and covariance matrix. Suppose

that there are N patterns used for training the classifier,

and the new-coming testing EMG feature patterns are

acquired as xN+1, xN+2, xN+3, . . .. To illustrate the pro-

posed self-enhancing procedure, we make the case of the

first testing xN+1 pattern updating as an example. Let the

pattern xN+1 be z and labeled as the kth class by the orig-

inal classifier, there are original ncj patterns for each class

before updating, where j = 1, 2, . . . ,C . After the z pattern

updating, the number of patterns in kth class becomes

nc′k = nck + 1.

The updated mean vector μ̃k for the kth class is

μ̃k =
nck ∗ μk + z

nck + 1
(8)

Denote Sk =
∑nck

i=1(xi − μk)(xi − μk)
T and S̃k =∑nck+1

i=1 (xi − μ̃k)(xi − μ̃k)
T .

∑nck
i=1(xi − μk) = 0. The

relation between Sk and S̃k for the kth class is
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S̃k =

nck+1∑

i=1

(xi − μ̃k)(xi − μ̃k)
T

=

nck∑

i=1

(xi − μ̃k)(xi − μ̃k)
T + (z − μ̃k)(z − μ̃k)

T

=

nck∑

i=1

(xi −
nck ∗ μk + z

nck + 1
)(xi −

nck ∗ μk + z

nck + 1
)T

+ (z −
nck ∗ μk + z

nck + 1
)(z −

nck ∗ μk + z

nck + 1
)T

= Sk +
nck

(nck + 1)2
(z − μk)(z − μk)

T

+
nc2k

(nck + 1)2
(z − μk)(z − μk)

T

= Sk +
nck

(nck + 1)
(z − μk)(z − μk)

T

(9)

The parameters of other classes are unchanged for the z

pattern updating. Then, letCk =
nk

(nck+1) (z−μk)(z−μk)
T ,

S̃k = Sk + Ck (10)

For the SEQDA classifier, the class covariance matrix �̃k

is updated by

�̃k =
1

nck + 1
S̃k

=
1

nck + 1
Sk +

1

nck + 1
Ck

=
nck

nck + 1
�k +

1

nck + 1
Ck

(11)

For the SELDA classifier, the pooled covariance matrix

�̃W is updated by

�̃W =

c∑

j=1

nc′j

N + 1
�̃j

=

c∑

j=1,j �=k

ncj

N + 1
�j +

nck + 1

N + 1
�̃k

=

c∑

j=1

ncj

N + 1
�j +

1

N + 1
Ck

=
N

N + 1
�W +

1

N + 1
Ck

(12)

The entire procedure of self-enhancing classifier works

in two steps. First, the parameters of original classifier are

initiated by the training set. Second, the trained classifier

is evaluated by the testing set. The continuous classi-

fier receives the EMG feature data and predicts the class

labels for them. The proposed incremental self-enhancing

method updates the parameters of the discriminant clas-

sifier immediately by above equations (9), (11) and (12)

when the current EMG feature is classified to one out-

put of the possible motions. Therefore, the information

of testing data is continuously incorporated into the clas-

sification model. This sequential parameter updating is

suitable for the continuous EMG PR in the real-world

application. In addition, the self-enhancing automati-

cally proceeds through the testing stage without manual

operations.

EMG data acquisition

The experiment included ten classes of hand and wrist

motions, which are pronation, supination, hand closing,

hand opening, radial flexion, ulnar flexion, flexion, exten-

sion, palmar and cylinder grasp. We collected the EMG

data using a portable EMG system (ME6000, Mega Elec-

tronics Ltd, Kuopio, Finland) with a band-pass filter of

bandwidth 8–500 Hz and a 14 bit A/D converter. CMRR is

Typ. 110 dB. The 1000 Hz sampling frequency was satis-

factory for obtaining sufficient information on the surface

EMG signal, as the most relevant information is con-

tained in the range of 20–500 Hz. Two surface Ag/AgCl

disc electrodes of one bipolar-electrode pair were placed

2 cm apart, after first rubbing the skin with alcohol.

Four channels of surface EMG signals were used for the

data acquisition, placed on palmaris longus, flexor carpi

ulnaris, flexor digitorum supercifialis, extensor digitorum

(shown in Figure 2). All recruited subjects have signed the

informed consent. The procedures conformed to the Dec-

laration of Helsinki. Ethical approval was obtained from

the Bioethics Committee, School of Biomedical Engineer-

ing, Shanghai Jiao Tong University.

The EMG measurement was designed in two protocols

as shown in Figure 3. In first protocol, the testing data

and training data are collected at one time, i.e. there is

no break between testing data measurement and training

data measurement. This is the general case like most pre-

vious research. While, in the second protocol, the time

scan is about 9∼11 hours. It is close to the real-world

application situation, and it is the first try in this area.

In the first protocol, ten able-bodied subjects (seven

males and three females) participated, and the age ranges

from 22 to 28. Before the data collection, the instruction

photographs of hand and wrist motions were shown to

the participants. They could practice the desirable move-

ments for a moment in order to be familiar with the

experiment procedure. During the experiment, all partici-

pants naturally extended their arms toward to the ground,

and performed each motion with natural force as that in

their daily life (no need to use large force on purpose). In

each cycle, the participants were instructed to sequentially

perform tenmotion classes. Each contraction was held for

5 s and separated by 5 s resting interval. The participant
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Figure 2 Photo of electrode placements on the forearm. (a)

Posterior view: extensor carpi radials, extensor carpi ulnaris. (b)

Anterior view: palmaris longus, flexor carpi ulnaris.

Figure 3 Two protocols for EMG data collection. Protocol 1: EMG

data are collected during a short period (2∼3 hours) at one time.

Protocol 2: EMG data are collected at two separate times during a day,

and the time interval is about 6∼7 hours.

could relax every two cycles and no fatigue was reported.

The experiment collected twenties cycles of ten motions

for each participant. The whole experiment of data acqui-

sition lasted for about 2 to 3 hours for each participant. In

EMG PR evaluation, the first 6 cycles were assigned as a

training set and the next 14 cycles as a testing set.

In the second protocol, four able-bodied healthy sub-

jects (all males) participated and the age ranges from 22

to 25. The EMG data were acquired at two separate times

for each subject in one day. One time was in the morn-

ing, and the other was in the evening. The time interval

was about 6∼7 hours. During the interval, the EMG elec-

trodes were not removed, and the subjects still could do

the daily activities as usual. The other procedure of EMG

measurement is the same as that in the first protocol. For

each subject, 35 cycles of measurement were conducted

(15 cycles in the morning, and 20 cycles in the evening),

and each trials contained five cycles. The data of the first 5

cycles are used for training, while the data of rest 30 cycles

are used for testing.

Experiment results
Novel classifiers with self-enhancing are proposed, while

the available feature extraction methods are not improved

in this work. To evaluate the performance of self-

enhancing classifiers, AR and FC feature sets are prepared,

where the 6th order AR coefficients with RMS value of

each channel form the AR feature, and the first seven FC

coefficients of each channel construct the FC feature. The

two feature sets are 24 dimensional vectors. For EMG

feature extraction, the data from a 200 ms analysis win-

dow are used to estimate the feature, with the analysis

window incremented by 25 ms. The traditional classifiers

(LDA and QDA) and the proposed classifier (SELDA and

SEQDA) are applied respectively, and their performance

is compared. Please note that the results in subsections

‘Comparison of self-enhancing methods with the tradi-

tional classifiers, Effect of mean vector and covariance

updating on the classification performance and Changes

of recognition accuracy and classifier parameters across

different testing trials’ are accomplished using the EMG

data from the first protocol, and subsection ‘Evaluation on

long-term EMG data’ will show the results using the data

from the second protocol.

Comparison of self-enhancing methods with the

traditional classifiers

We compare the SELDA and SEQDA classifiers with

their original versions using both AR and FC feature sets.

The parameters of SELDA and SEQDA, such as class

mean vectors, class covariances and pooled covariances,

are updated using the testing data respectively. The LDA

and QDA classifiers keep the original model learned by

the training set. Table 1 lists the participant-specific and
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Table 1 Participant-specific andmean RA results of

different classifiers

Classification accuracy(%)

Participant LDA QDA SELDA SEQDA

P1
AR 95.29 94.36 97.36 96.39

FC 95.30 96.65 97.12 99.29

P2
AR 92.95 88.15 93.58 92.95

FC 94.60 94.61 97.09 97.60

P3
AR 96.23 98.02 97.14 99.44

FC 98.00 97.79 98.89 99.62

P4
AR 91.97 91.58 93.00 92.60

FC 91.83 93.49 92.49 94.26

P5
AR 90.23 90.47 91.68 92.60

FC 92.05 93.85 94.49 98.10

P6
AR 94.17 95.34 96.62 97.09

FC 94.48 95.60 96.48 98.15

P7
AR 89.24 84.88 93.66 88.96

FC 86.61 90.88 90.79 94.53

P8
AR 93.18 96.88 93.58 98.33

FC 95.59 97.45 98.22 98.54

P9
AR 96.75 96.32 98.24 97.18

FC 97.25 98.17 98.22 99.05

P10
AR 95.66 95.31 96.20 97.64

FC 95.08 96.17 95.45 97.04

Mean ± std

AR
93.57 ± 93.13± 95.11± 95.34±

2.54 4.24 2.25 3.32

FC
94.08± 95.47± 95.67± 97.62±

3.26 2.28 2.52 1.87

The best RA results for each participant are highlighted in bold.

mean/standard deviation (std) recognition accuracy (RA)

rates of different classifiers, where the combinations of the

feature and classifier achieving the best performance for

each participant are highlighted in bold. From this table,

it can be observed that 1) the self-enhancing method can

improve the classification performance when compared

to the original classifiers. 2) the self-enhancing classifiers

has less variability (small std) than their original versions

and thus shows more robust performance. 3) the SEQDA

method (about 2.2%) has greater performance improve-

ment than the SELDA (about 1.6%) for both feature sets,

indicating that individual class covariances updating is

superior to the pooled covariance updating.

We have also studied the mean RA results of individ-

ual motions. For the prosthesis control, the reliability of

systems requires high accuracy not only within the mean

RA rate but also within the RA of each motion. The poor

recognition of certain specific motions would be of hazard

to the safe operation of prostheses. It is found that the self-

enhancingmethod raises RA results for mostmotions. For

SEQDA + FC method, the RAs of motions are all above

93%.

Effect of mean vector and covariance updating on the

classification performance

The self-enhancing mechanism is realized by two types

of updating, the class mean vectors and the class (or

pooled) covariances, which respectively characterize the

first order and second order information in the LDA

and QDA classifiers. This experiment aims to evaluate

how these parameters impact on the RA results. The

SELDA (M) or SEQDA (M) and SELDA (C) or SEQDA

(C) denote the mean vectors updating and covariances

updating respectively. Table 2 lists the participant-specific

and mean classification accuracies of different classifiers.

It shows that each parameter updating has the positive

effect for improving the classification performance. The

mean results of SEQDA(C) and SEQDA (M) are improved

Table 2 Participant-specific andmean RA results of the

different parameter updating for SEQDA and SELDA

Classification accuracy(%)

Participant SELDA (M) SELDA (C) SEQDA SEQDA

(M) (C)

P1
AR 96.98 96.39 95.52 96.26

FC 96.48 96.10 97.56 99.18

P2
AR 93.56 93.14 88.78 92.84

FC 96.28 95.19 95.69 97.45

P3
AR 97.32 96.20 98.59 99.44

FC 98.87 98.04 98.60 99.51

P4
AR 92.95 92.15 92.03 92.63

FC 92.18 92.31 93.87 94.27

P5
AR 92.37 89.78 91.25 93.58

FC 93.97 92.80 95.07 97.90

P6
AR 96.61 94.85 95.83 97.00

FC 96.10 95.46 97.06 97.91

P7
AR 93.72 91.64 85.45 88.76

FC 90.16 89.37 93.09 94.59

P8
AR 93.97 93.14 97.55 98.03

FC 95.87 95.49 98.11 97.70

P9
AR 97.58 97.48 96.78 97.14

FC 97.78 97.80 98.24 99.00

P10
AR 96.18 95.72 95.98 97.59

FC 95.33 94.93 96.53 97.13

Mean
AR 95.12 94.05 93.87 95.33

FC 95.30 94.75 96.38 97.46
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by 2.2% and 0.75% for AR, and 1.99% and 1.1% for FC

respectively when compared to QDA. The mean results

of SELDA(C) and SELDA (M) are improved by 0.48% and

1.55% for AR, and 0.67% and 1.22% for FC respectively

when compared to LDA.

Changes of recognition accuracy and classifier parameters

across different testing trials

To compare the recognition performance of the self-

enhancing and original classifiers across the testing stage,

we plot Figure 4 displaying the mean RA results for each

testing cycle, where the ith mean RA averages the clas-

sification results over the past i testing cycles, and the

final result is the overall mean RA. These plots show that

the RA rates of the classifiers change over time (testing

cycles), and the final RA rates of the original classifiers are

lower than their preceding rates. Figure 5 presents the RA

performance based on SEQDA and SELDA for ten motion

classes across testing cycles.

a)

b)

Figure 4Mean recognition accuracy across testing cycles. (a)

Recognition accuracy of different classifiers in the testing cycles using

AR features, (b) Recognition accuracy of different classifiers in the

testing cycles using FC features.

We have investigated the changes of some classifier

parameters across different testing cycles. Under the

assumption of data with a Gaussian distribution, the class

mean vectors μ and the covariances � of the discriminant

classifier describe the distribution of each class by a hyper-

ellipsoid. The class mean vectors indicate the difference

between classes, and the covariances depict the shape of

distributions referring to equations (5),(6). The principal

axes of these hyperellipsoids are given by the eigenvec-

tors of the covariances, and the eigenvalues determine

the lengths of these axes [34]. To describe the direction

changes of principal axes and mean vectors, the cosine of

angle between the original vector (the training one) and

the current vector (the ith testing cycle) is given by

cos =
v0 · vi

|v0||vi|
(13)

where v0 and vi denote the original and current vec-

tors respectively, · denotes the internal product, and |v|

denotes the norm of the vector.

Based on the FC feature, we study the changes on

SEQDA and SELDA for a specific subject (P6) respec-

tively. The four kinds of parameters are further consid-

ered: length of class mean vectors, length of first two

principal axes of class covariances, cosine of angle of class

mean vectors, and cosine of angle of first two principal

axes of class covariances. All the parameters more or less

show some changes in different testing cycles along the

time, but there is no very significant and useful infor-

mation. We can only find that the changes on pooled

covariance of SELDA, the class mean vectors of both

SELDA and SEQDA are relatively small. So perhaps they

make minor contribution to adaptivity of the proposed

classifier.

Evaluation on long-term EMG data

In this part, based on the EMGdata collected in the second

protocol mentioned in EMG data acquisition section, we

tested the performance of the proposed classifier. As QDA

(SEQDA) generally performs better than LDA (SELDA),

we just present the results on QDA (SEQDA). Only FC is

used as the EMG feature here.

The results on RA of QDA and SEQDA for the four

subjects are shown in Table 3. It is obvious that the gen-

eral performance of SEQDA (97.58%) is 3.15% better than

that of QDA (94.43%). Without loss of generality, we

select the result of a subject (S1) to observe the change

of classification accuracy along at different time points. In

comparison, the results on average RA of 30 testing cycles

and 6 trials (each trial contains 5 cycles) using QDA and

SEQDA are illustrated in Figure 6. We can see the details

from results represented in cycles, and find the general

trend from results represented in trials.
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a) b)

c) d)

Figure 5 Recognition performances of ten motion classes across testing cycles. The motion classes include pronation, supination, hand

closing, hand opening, radial flexion, ulnar flexion, flexion, extension, palmar and cylinder grasp. (a) and (b) show the performance of SEQDA using

FC and AR features respectively. (c) and (d) show the performance of SELDA using FC and AR features respectively.

For a clear view, the difference of average RA between

QDA and SEQDA (RA of SEQDA minus RA of QDA) is

shown in Figure 7. The trend that SEQDA outperforms

QDA can be observed. At the early stage, the difference is

very small, while the difference becomes significant after

certain time.

Discussion
For feature sets in Table 1, FC shows better performance

than AR when using the QDA. The possible reason is that

Table 3 Average recognition accuracy of 10 types of

motions on four subjects (S1-S4) using long-term EMGdata

S1 S2 S3 S4 Mean

QDA 93.45 93.09 94.33 96.85 94.43

SEQDA 95.56 97.56 97.63 99.58 97.58

covariances of FC vary from different classes and has non-

linear feature distribution. Therefore, nonlinear classifier

such as QDA can better discriminate it. In the experi-

ment, the FC feature presents better performance than

the AR feature. A paired t-test [35] is employed to exam-

ine the statistical significance of the improvement by the

use of self-enhancing method. The SEQDA significantly

outperforms the QDA in the statistical test using both

AR and FC features (p < 0.01). The SELDA is also sig-

nificantly better than the LDA using both AR and FC

features (p < 0.01). In addition, from Table I, we find that

the FC+SEQDA is determined as the best combination of

the featre and classifier for nine out of ten participants.

AR+LDA is widely considered as a benchmark EMG clas-

sification method due to its good performance [8,24]. The

proposed FC+SEQDA has the RA rate roughly 4% higher

than AR + LDA.
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a)

Figure 6 Recognition accuracy for the individual subject (S1). (a) Results of QDA/SEQDA in 30 testing cycles. (b) Results of QDA/SEQDA in 6

testing trials. Note: Each trial contains 5 cycles.

In Table 2, for SEQDA, the class covariance updating

presents greater improvement than the class mean vectors

updating. On the contrary, the pooled covariance updat-

ing has less improvement than the class mean vectors

updating for SELDA. The class mean vectors updating has

different classification strength on SELDA and SEQDA.

This might be caused by the different effects of the two

(class or pooled) covariance estimates upon the classifica-

tion performance. The combination of mean vector and

covariance updating can further increase the RA results

except the SELDA classifier using the AR feature. The

paired t-test shows that the RA results are significantly

improved when using the SEQDA(C), SEQDA(M) and

SELDA(M) for both AR and FC features. The improve-

ment of SELDA(C) is not significant. In a word, the class

covariance updating and the class mean updating play

major roles in both SEQDA and SELDA classifiers.

In Figure 4, RA rates of the traditional classifiers (LDA

and QDA) decreases obviously. The reason of this RA

decrease can be attributed the unobserved changes of

experiment condition in 2–3 hours, including perspira-

tion, humidity, cognitive intent variations or contraction

intensity changes, soft tissue fluid fluctuations (slight spa-

tial change) and so on. Perhaps, the experimental partic-

ipants already have slight fatigue but they cannot exactly

feel it, so they did not report it. It can be found that the
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Figure 7 Difference between QDA and SEQDA for the individual subject (S1). (a) Results in 30 testing cycles. (b) Results in 6 testing trials.

Difference represents the average RA of SEQDA minus that of QDA. Note: Each trial contains 5 cycles.

RA differences of the two types of classifiers are enlarged

with the increase of testing cycles. This may be attributed

to the fact that the self-enhancingmethod can incorporate

more information from testing set to the initial models

and can accurately estimate the parameters of classifiers

with change of the different testing cycles. It is observed

that the performance declines in Figure 4 for all but the

FC+SEQDA. It means that FC+SEQDA might be more

robust than other combinations. In the experiment, the

length of testing cycles might not be long enough for the

declining of FC+SEQDA.

Figure 5 shows the classed-based performance for ten

motion classes, where the classification performance of

most motion classes declined with the increase of test-

ing cycles. But a few classes (e.g. extension and cylinder

grasp) have the increasing performance. The possible rea-

sons for this phenomenon may include: 1) the adaptation

enlarges the data size for training and therefore leads to

more accuracy estimation of classifier parameters, par-

ticularly with covariance. 2) the training data have much

difference from the first two or three testing cycles. The

adaptation mechanism allows the classifier to learn the

information in testing data and enhance the performance.

Regarding the evaluation on long-term EMG data as

the results shown in Figure 6. The RA of QDA degrades

obviously, which indicates the traditional QDA without
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adaptation cannot guarantee stable performance in a long

duration. For SEQDA, the performance does not degrade

much in general, although the performance is not good at

several points. This is reasonable, because none can get

absolutely perfect information from the testing data, and

there must be some unexpected disturbing data. However,

even the worst case of SEQDA (RA=0.885) is still better

than any result of QDA.

The experimental evaluation confirms the efficiency

of the proposed self-enhancing approaches. The SELDA

and SEQDA classifiers outperform the original versions

using both AR and FC features. The adaptation of clas-

sifier parameters has meaning at two levels. First, it can

incorporate the information of testing data into the clas-

sifier. Second, it indeed enlarges the data for training

the classifier. We think that these two adaptation factors

will mutually improve the classification performance. The

results also show that SEQDA is superior to SELDA and

suggest the individual class covariance updating can give

more accurate estimation of the second order informa-

tion than the pooled covariance. The possible reason is

that the class covariance updating takes the individual

class information into accounts and thus is a type of semi-

supervised method (using the classified labels), and the

pooled covariances updating is an unsupervised method.

The self-enhancingmethod provides the feedback on each

testing EMG data to update the classification algorithm.

Using online testing feedback of the current state of the

prostheses will help the users to recognize the misclas-

sification and to adjust themselves to proper conditions.

It is expected that the two types of feedbacks, one to

algorithms and another to users, will mutually improve

the classification performance further. Moreover, similar

to their original classifiers, SELDA and SEQDA have no

hyperparameters and require no time-consuming trial-

and-error procedures, facilitating their application to the

prosthesis control.

Computational efficiency is an important implemental

issue of the classification method. In our EMG PR algo-

rithm, the AR model is estimated by the Burge algorithm,

and the FC coefficients are computed by the fast algo-

rithms such as FFT and DCT. The experimental hardware

platform is a personal computer, consisted of a Core2 Duo

2.0G Hz CPU, 2G DDR2 memory. The software platform

is Matlab version 7.1 under the windows XP operating

system. To process 200 samples EMG data, the time cost

of AR feature set is about 4 ms, the time cost of FC fea-

ture set is about 2 ms and the classifier requires 1∼2 ms.

The FC feature extraction has relatively faster computing

speed than AR by the use of fast algorithms. In addition

to the original classification procedure, our self-enhancing

method needs additional step to update the parameters of

the classifier and it cost about 2 ms. More sophisticated

digital signal processing hardware will expedite the online

processing. Moreover, the self-enhancing method stores

the class mean vectors, class covariances and pooled

covariance for saving the model information after each

updating and has no need to store the large EMG data.

The most promising highlight of the self-enhancing

method is for the long-term EMG PR task, since it pro-

vides a basis for prosthetic control in real-world appli-

cation. Our method continuously adds the immediate

information of the EMG pattern to the classifier by updat-

ing the model parameters. The measurements involve the

EMG data for about 8∼10 hours that may include the pos-

sible variation factors. The testing data have larger size

than the training data and the ratio is 7:3. The results have

verified the performance of adaptive ability of the pro-

posed algorithm. It can be seen that RA results of SEQDA

outperforms QDA in the testing stage especially in the

late stage. The good RA results of self-enhancing clas-

sifiers exhibit their robust characteristics for long-term

application. Actually, there are many factors contributing

to the nonstationary changes of long-term EMG signals

such as electrode position, muscle fatigue, or other phys-

iological/psychological condition [25-27]. The underlying

physiological mechanism needs more investigation, and

this work does not focus on this issue. Evaluating on the

longer-term EMG data such as over days and months

may shed more lights on the self-enhancing approach into

practice.

Conclusion
In summary, this paper proposes a self-enhancing method

for EMG classification based on the traditional LDA and

QDA classifiers, which can incorporate the useful infor-

mation of EMG signal in testing data to the classification

model. The improved classifiers named as SELDA and

SEQDA continuously update their parameters such as

the class mean vectors, the class covariances and pooled

covariances using the labelled EMG feature data. We

have shown that the self-enhancing classifiers significantly

improve the recognition performance of the EMG PR sys-

tem including the preliminary application on long-term

EMG data.
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