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Finally, we show that the results for the two subpockets can 
be combined, which suggests that this simple nonempirical 
scoring function could be applied in fragment–based drug 
design.

Keywords Pteridine reductase 1 · PTR1 · Interaction 
energy · Ab initio · Nonempirical model · Binding affinity 
prediction

Introduction

Empirical computational methods are widely used in 
ligand discovery projects for ligand docking and comput-
ing ligand–receptor binding energetics. Docking proce-
dures using empirical scoring functions are often found to 
successfully predict poses, but commonly lack sufficient 
accuracy to correctly rank poses or predict binding affini-
ties [1–4]. On the other hand, rigorous ab initio quantum 
mechanical methods offer the  possibility of more accu-
rate calculations, but are generally too computationally 
costly and therefore impractical in drug design projects. 
Nevertheless, quantum chemical calculations may pro-
vide deeper insights into the physical nature of the corre-
sponding interactions and lead to simpler and more robust 
nonempirical models. An example is the finding that for 
polar or charged inhibitors of phenylalanine ammonia-
lyase and leucine aminopeptidase, the  nonempirical 
first-order electrostatic interaction energy defined within 
perturbation theory  [5] (or its multipole component  [6]) 
alone yielded a reasonable correlation with experimental 
inhibitory activity data. However, such a simple model is 
insufficient for nonpolar receptors, like fatty acid amide 
hydrolase (FAAH), where inclusion of a  nonempirical 
dispersion term, in addition to the electrostatic multipole 
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term, was necessary to describe inhibitory activities  [7]. 
Likewise, as noted by  Lonsdale et  al. [8], dispersion 
effects should be considered for reliable modeling of 
enzyme-catalyzed reactions.

While the  electrostatic multipole term estimated from 
atomic multipole moments obtained from RHF wave-
functions scales favorably with the number of atoms A of 
the  studied system as O(A2), the  ab  initio calculation of 
dispersion energy is much more computationally demand-
ing, scaling as O(N5), where N is the size of the basis set 
and, as such, it cannot be part of a  generally applicable 
scoring method. A  computationally inexpensive empiri-
cal expression for the dispersion energy employed by clas-
sical force fields [9] might be seen as a rational substitute 
for the ab  initio calculations  [10, 11]. However, empirical 
dispersion appears to be associated with a  non-system-
atic error compared to rigorous DFT-SAPT results  [10]. 
Another drawback of the classical term seems to arise for 
intermonomer distances shorter than equilibrium sepa-
ration, wherein empirical results deviate from the  refer-
ence DFT-SAPT calculations  [11]. Since such shortened 
intermolecular distances might result from force field 
inadequacy  [12] or basis set superposition error  [13], any 
method including short range intermolecular energy terms 
sensitive to artificial compression of intermonomer sepa-
ration is inadequate for the purpose of rapid estimation of 
the binding energy within protein–ligand complexes.

Most attempts to derive affordable and reliable disper-
sion corrections have been undertaken in conjunction with 
density functional theory methods, which do not account 
for the dispersive van der Waals forces unless special cor-
rections are added  [14–16]. Pernal et  al. [17] proposed 
an alternative approach—a  dispersion function E

Das
 that 

describes noncovalent interactions by atom–atom potentials 
fitted to reproduce the  results of high-level SAPT (Sym-
metry Adapted Perturbation Theory [18]) calculations that 
provide state-of-the-art quantum chemical dispersion and 
exchange-dispersion energies. It is noteworthy that the E

Das
 

function demonstrated remarkable performance in describ-
ing hydrogen bonding interactions, which are governed by 
both electrostatic and dispersive forces [19]. The low com-
putational cost of this approximate dispersion function and 
its broad applicability stemming from the  lack of empiri-
cal parametrization, make the  use of the  E

Das
 expression 

a  promising approach to describing dispersive contribu-
tions in scoring methods suited for virtual screening. Fur-
ther advantages of the  E

Das
 term over van der Waals 1/r6 

empirical expression discussed above are the clear physical 
meaning of the former and its pertinence to a wide range 
of intermolecular distances because of an additional higher 
order 1/r8 term and an exponential damping function that 
is essential at short distances where penetration effects 
become significant.

Here, we evaluate the  ability of the  simple model that 
was previously tested for a congeneric series of inhibitors 
of the FAAH protein [7], to predict the activities of inhibi-
tors targeting two different subpockets of a  protein bind-
ing site, which is an important requirement for application 
in fragment-based drug design approaches. In this model, 
the  ligand–receptor interaction energy is approximated by 
the sum of the first-order electrostatic multipole component 
of the interaction energy, E(10)

EL,MTP
, and E

Das
, the aforemen-

tioned approximation of dispersion energy. The advantage 
of such a model is that it captures both long-range electro-
static and dispersive energy terms, while being relatively 
computationally efficient. The  interaction energy of an 
inhibitor or a fragment of an inhibitor with the protein bind-
ing pocket is computed in a pairwise manner as the sum of 
amino-acid residue/inhibitor interaction energies for a  set 
of residues defining the pocket or subpocket.

To validate the  E
(10)

EL,MTP
+ E

Das
 approximation, here 

we compute several contributions to the  second-order 
Møller–Plesset (MP2) interaction energy and assess their 
importance by evaluating correlation coefficients with 
experimentally determined inhibitory activities  [20]. In 
these inhibitory activity models, we neglect the  influence 
of binding free energy contributions such as entropy, des-
olvation energy and conformational adaptation of ligands 
and receptor upon binding. Our results suggest that this is 
a valid approximation when considering the relative bind-
ing free energies of a  congeneric series of inhibitors that 
are expected to have similar binding modes. In addition, we 
examine various nonempirical representations of the  dis-
persion term, to test the validity of the E

Das
 approximation 

and the possibility of exchanging E
Das

 with other dispersion 
corrections used with various DFT functionals. It should be 
noted that such corrections represent not only dispersion 
interactions but also other nonphysical deficiencies of DFT 
functionals [17].

In this study, we perform calculations for pteridine 
reductase 1 (PTR1), an enzyme involved in the  pterin 
metabolism of trypanosomatid parasites  [21, 22]. This 
enzyme, which is present in parasites but not humans, is 
a  target for the  design of inhibitors [20, 23–25] that dis-
rupt the  reduction of biopterin and folate in parasites and 
thus hinder their growth. In particular, PTR1 is an impor-
tant enzyme in Trypanosoma brucei (Tb), which causes 
human African trypanosomiasis [26]. Different subpockets 
in the main binding site of TbPTR1 have been explored in 
inhibitor discovery projects and it therefore provides a good 
system for assessing the applicability of the simple nonem-
pirical model for fragment–based approaches to inhibitor 
design.

In this work, we focus on the  benzimidazol-2-amine 
series of potent, non-covalent, and reversible TbPTR1 
inhibitors that was developed by  Mpamhanga et  al. [23] 
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and further extended by Spinks et  al. [20], and for which 
apparent inhibitory activities (Kapp

i
; referred to in the  fol-

lowing as ‘inhibitory activities’) against TbPTR1 were 
measured. This series of compounds occupies the relatively 
hydrophobic TbPTR1 subpockets adjacent to the  binding 
site of the main enzyme substrate, biopterin (Fig. 1). Com-
pound 11 from Ref.  [20] (Fig. 1) is the parent compound 
for this inhibitor series  [20, 23]. This compound adopts 
a  well-defined binding mode in the  crystal structure  [23] 
(PDB code: 3GN2, see Fig.  1) stabilized by multiple 
hydrogen bonds, halogen bonds and stacking interactions. 

In particular, the N3 nitrogen of benzimidazole and 
the 2-amino group make hydrogen-bonds with the carboxy-
late group of the nearby Asp161 and the backbone carbonyl 
of Gly205 residue. On the other side of the binding pocket, 
the  chlorines of the  3,4-dichlorophenyl moiety make hal-
ogen bonds with the  backbone carbonyl group of Trp221 
and the carboxylate group of the terminal Ala268 residue. 
The position of the scaffold of compound 11 is additionally 
stabilized by edge-face �–� interactions (Fig.  1). Due to 
this extensive interaction pattern, we expect similar binding 
modes for the derivatives of compound 11. This assumption 

Fig. 1  The crystal structure of TbPTR1 in complex with com-
pound 11 (PDB: 3GN2) showing the interactions made by the inhibi-
tor in the  binding site. (left) Interaction diagram of compound  11 
with the  TbPTR1 protein pocket. A and D denote protein subunits 
in the  TbPTR1 homotetramer. (right) View of compound  11 (green 

with green semi-transparent surface contour) in the TbPTR1 binding 
site, with residues within 3 Å of the ligand shown in stick represen-

tation and labeled. A fragment of the cofactor, nicotinamide adenine 
dinucleotide phosphate (NADP), is shown in yellow. The  protein is 
rendered in cartoon representation. The  substitution points (C4 and 
C7) in compound  11 are labeled. The  edge-face �–� interactions 
between the  inhibitor and the protein are indicated by green dashed 

lines, while purple and yellow dashed lines denote hydrogen bonds 
and halogen bonds, respectively

Fig. 2  Chemical structures of 
the C7 set of TbPTR1 inhibi-
tors [20]. The C7 position of 
the benzimidazole moiety is 
marked in yellow 



718 J Comput Aided Mol Des (2017) 31:715–728

1 3

was used to model the  TbPTR1–inhibitor complexes, for 
which crystallographic structures were not available.

To evaluate the  E
(10)

EL,MTP
+ E

Das
 model for prediction of 

inhibitory activity, we first analyzed TbPTR1 derivatives 
of compound  11 substituted at C7 of the  benzimidazole 
scaffold, i.e. the compounds reported in Fig. 2 (which we 
refer to as the  C7 set). A  similar analysis was previously 
performed for the docked covalent inhibitors of the FAAH 
enzyme [7]. The FAAH inhibitors were however modelled 
without knowledge of the  crystallographically confirmed 
binding mode of the  core scaffold, which probably intro-
duced uncertainty into the  results of the  scoring model. 
Here, our first aim was therefore to test the  performance 
of the  E

(10)

EL,MTP
+ E

Das
 model for another protein target, 

TbPTR1, with an inhibitor series with a well-defined bind-
ing mode. Our second aim was to investigate whether 
the model is general and additive, which is assumed since 
the interaction energy is calculated as a sum of the pairwise 
residue/inhibitor contributions. Thus, we made a  similar 
model based on the model for the C7 set for the dataset of 
the C4–substituted compounds shown in Fig. 3 (which we 
refer to as the  C4 set), with substituents interacting pre-
dominantly with a different set of residues than the C7 set. 
Our models for the C4 and C7 sets show transferability of 
the  E

(10)

EL,MTP
+ E

Das
 model, suggesting its applicability to 

fragment-based drug design approaches.

Methods

Preparation of the sets of compounds

Calculations were performed for (i) inhibitors from the 
C7 set [20] (Fig. 2) and (ii) inhibitors from the C4 set [20] 
(Fig.  3), which share a  common parent scaffold: com-
pound  11. The  numbering of the  inhibitors is adopted 
from  Spinks et  al. [20]. Of the  reported inhibitors with 
substitutions at the C4 carbon of benzimidazole  [20], two 
compounds, 26 and 27, were not included in the C4 set due 
to their weak inhibitory activities and because their bind-
ing modes presumably differ from that characterizing the 
remaining inhibitors (as suggested by our docking simula-
tions). Further assumptions underlying our approach, i.e., 
the representation of the receptor and ligand structures with 
models of limited size, preclude consideration of inhibi-
tors with entirely different binding poses. Compound 28 
(Fig. 3) was reported to be contaminated with 25% of com-
pound 33 (Fig.  2), and the  inhibitory activity was meas-
ured for a mixture [20]. Thus, we calculated the inhibitory 
activity of the pure compound 28 based on the equilibrium 
equations for competitive binding. As reported in the Sup-
plementary material, Section  1, the  computed value was 
K

app

i
= 0.42 μM.

Modeling of the protein–inhibitor complexes

The binding poses of the  C7–set inhibitors were mod-
elled in the  TbPTR1 binding pocket based on the  crys-
tallographic binding mode of compound  11 (PDB code 
3GN2 [23]). Following the recommended protein prepara-
tion protocol  [27], crystallographic water molecules were 
removed and the  resulting protein–inhibitor complexes 
were minimized in Maestro [28] using Protein Preparation 
Wizard  [29] with the default OPLS 2005  [30] force field, 
and the  convergence criterion defined as the non-hydro-
gen atom RMSD = 0.3 Å. Optimal hydrogen bonding was 
determined with PROPKA [31–34], implemented in Maes-
tro, at pH 6.0, i.e. the  pH used for the  measurements of 
inhibitory activities [20].

The modelling procedure was similar for 
the  C4– and C7–substituted compounds. However, for 
the  C4 set, the  modelling was more difficult because 
the TbPTR1 subpocket accommodating the C4 benzimida-
zole substituents is smaller and more enclosed than that for 
the C7 set. The binding pose of inhibitor 24 of the C4 set 
was modelled as described above, but we also analyzed the 
unminimized protein–inhibitor complex. For compounds 
25 and 28, the conformations of the  top score poses from 
QM-polarized docking (implemented in Maestro software 
suite  [28]) were taken for the  aforementioned minimiza-
tion and structure preparation protocol. The QM-polarized 

Fig. 3  Chemical structures of the C4 set of TbPTR1 inhibitors [20]. 
The C4 position of the benzimidazole moiety is marked in orange 
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docking procedure consisted of the  following steps: (i) 
Glide docking with XP (extra-precision) score [35, 36] and 
standard molecular mechanics OPLS 2005 force field elec-
trostatic charges, (ii) recalculation of the  semi-empirical 
Coulson’s electrostatic point charges for the docked ligands 
in the protein surrounding, and (iii) redocking of the inhibi-
tors with the electrostatic charges calculated in step (ii).

Definition of the ligand fragments and TbPTR1 binding 

subpockets

Since the binding mode of the common core of the inhibi-
tors considered (i.e., compound  11) is well defined and 
likely to be positioned similarly for all inhibitors, its contri-
bution to the observed binding affinity differences is most 
probably negligible. Therefore, to decrease the  computa-
tional cost for the ab initio interaction energy calculations, 
the  inhibitor structures were truncated to the  fragments 
shown in Fig. 4 (named with a ‘fr-’ prefix). All the calcula-
tions refer to the inhibitor fragments shown in Fig. 4.

The TbPTR1 C7 binding subpocket consisted of resi-
dues from the  first shell surrounding the  C7 inhibitor 
fragments, see Fig.  5. Due to the  potential flexibility of 
Cys168 and the  limited ability of the  restrained optimi-
zation protocol to account for more extensive conforma-
tional changes, Cys168 was excluded from the subpocket 
definition. Finally, the  following residues were present in 
the  C7 receptor model used for evaluating the  interac-
tion energy: Phe97, Phe171, Pro210, Met213, Glu217 and 
Trp221. Since Glu217 was hydrogen-bonded to Trp221, 
this residue was included in the  calculations as a  part 
of a  Glu217–Trp221 dimer. The  broken bonds arising 
from cutting the  residues out of the protein scaffold were 
capped with hydrogen atoms optimized with Maestro using 
the protocol described above. The C4 system consisted of 
the following residues: Phe97, Asp161, Met163, Val164, 

Pro167, Cys168, Phe171, Tyr174, and Asn175, see Fig. 6. 
In this subsystem, in contrast to C7, Cys168 was included, 
because the rigid backbone of Cys is relatively close to the 
C4 substitution site, whereas the flexible side chain is not 
in direct contact (sulphur atom of Cys168 is located about 
4.05 Å from carbon C4). Furthermore, in the main set of 
results, Asp161 was treated as protonated and the protona-
tion of Asp161 at acidic pH is consistent with the catalytic 
mechanism of PTR1, as suggested by Gourley et  al. [37]. 
Notably, the systems with protonated Asp161 display sig-
nificantly better correlation of the energy contributions 
with the pK

app

i
 values than those with unprotonated Asp161 

Fig. 4  Fragments of the TbPTR1 inhibitors defined for calculations. Carbon atoms corresponding to the C7 and C4 positions of benzimidazole 
in the full inhibitor structures are marked in yellow and orange, respectively

Fig. 5  The C7 subpocket and ligand fragments. Superimposed 
structures of the  complexes of TbPTR1 with the  C7 inhibitor frag-
ments showing the surrounding residues included in the calculations. 
The hydrogen bond between Glu217 and Trp221 is shown by a green 

dashed line 
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(data shown in Tables  S5 and  S6 in the Supplementary 
Material).

Ab initio energy decomposition scheme

Hybrid variation-perturbation theory (HVPT)  [38, 39] 
was applied to partition the  interaction energy calculated 
at the  Møller–Plesset second-order level of theory, E

MP2
, 

into the following contributions characterized by increasing 
computational cost, as indicated by O(X) scaling (where N 
and A stand for the number of atomic orbitals and atoms, 
respectively):

E
(10)

EL,MTP
 refers to the  electrostatic multipole component 

estimated from an atomic multipole expansion  [40] (see 
the Supplementary Material for a detailed description of 

(1)

the interaction energy terms discussed herein). E
(10)

EL,PEN
 is 

the electrostatic penetration energy, calculated from the fol-
lowing expression: E(10)

EL,PEN
 = E(10)

EL
 − E(10)

EL,MTP
, where E(10)

EL
 

represents the  first-order electrostatic energy. The  first-
order exchange energy E(10)

EX
 term in Eq. 1 is calculated from 

the  first-order Heitler–London energy, E
(10): E

(10)

EX
 = E

(10) 
− E

(10)

EL
. The  higher-order delocalization energy, E

(R0)

DEL
, is 

calculated as: E(R0)

DEL
 = E

SCF
 − E(10), where E

SCF
 is the coun-

terpoise-corrected self-consistent field variational energy. 
The correlation term is defined as: E(2)

CORR
 = E

MP2
 − E

SCF
. 

The E(10)

EL,MTP
 and E(2)

CORR
 contributions are considered long-

range energy terms, i.e. they vary with the  intermolecular 
distance R as R−n (n ∈ ℕ), whereas E(10)

EL,PEN
, E(10)

EX
 and E(R0)

DEL
 

are short-range terms, i.e. they vary as exp−�R with R, � > 0 
(see Eq. 1).

Ab initio interaction energy calculations

The interaction energy between each residue (a single 
residue monomer or the  Glu217–Trp221/Met163–Val164 
dimers) and each inhibitor fragment was calculated with 
a  modified version  [39] of the  GAMESS program  [41] 
using the  6-311G(d)  [42, 43] basis set with diffuse func-
tions on the  s and p orbitals of the  chlorine atoms  [44, 
45]. This approach was chosen rather than using a  full 
6-311++G(2d,2p) basis set to save computational time and 
because we did not notice major qualitative differences in 
the  results (a comparison is given in the  Supplementary 
material, Table S1). A counterpoise correction was applied 
to avoid basis set superposition error [46].

Multipole electrostatic energy terms were calcu-
lated using the  Cumulative Atomic Multipole Moments 
(CAMM) approach [40, 47] implemented in GAMESS with 
the expansion truncated at the R−3 term. Exponential trun-
cation of the CAMM expansion at the (1∕R)n term seems 
to limit the disruptive effect of diffuse functions on higher 
rank multipoles and yields the  best results for n = 3, i.e. 
including the atomic dipole–dipole and monopole–quadru-
pole terms.

In addition, three dispersion energy models were tested 
and compared as regards their suitability for this appli-
cation, namely: (i) as a  reference, the  E

(2)

CORR
 term from 

the HVPT energy decomposition scheme, (ii) the E
Das

 func-
tion [17, 19] fitted to the SAPT [18] results, and (iii) the D3 
correction  [48] to dispersionless—DFT with Becke–John-
son damping  [49] applied. The  latter was calculated with 
standalone DFT-D3 program (version 3.1. Rev 1) [48, 49], 
using three different functionals, namely the  hybrid func-
tionals PBE0 [50, 51] and B3LYP [52], and the exchange 
functional TPSS [53]. D3 is defined as a dispersion correc-
tion being the sum of two- and three-body contributions to 
the dispersion energy [48].

Fig. 6  The C4 subpocket and ligand fragments. Superimposed struc-
tures of the  complexes of TbPTR1 with the  C4 inhibitor fragments 
showing the surrounding residues included in the calculations
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Data analysis

Each scoring model considered was compared with the 
experimental inhibitory activities (pK

app

i
) by computing 

Pearson correlation coefficients (R) and the success rate of 
prediction of relative binding affinities (Npred). The  latter 
is defined as the   percentage of concordant inhibitor pairs 
with relative stability of the same sign as in the  reference 
experimentally measured activities, evaluated among all 
pairs of the  inhibitor set (C4 or C7)  [54]. Note that when 
Pearson correlation coefficients between the  calculated 
interaction energies in our model and the  experimental 
inhibitory activities are negative (trends of the  aforemen-
tioned data sets are opposite), these values are said to cor-

relate, as lower values of energy should ideally accompany 
increasing inhibitory activity. For the  inverse relationship 
associated with a  positive Pearson correlation coefficient, 
we use the term “anticorrelation”. The XP (extra-precision) 
scoring in the Glide program [35, 36, 55], with the “score-
in-place” option, was applied for empirical scoring of 
the fragments used for the ab initio calculations. The score 
function is expressed as follows:

E
coul

 and E
vdW

 are electrostatic and van der Waals terms, 
respectively, Epenalty includes a  desolvation penalty and 
a  ligand strain energy which are unfavorable for bind-
ing, while E

bind
 is composed of favourable terms similar 

to those in the ChemScore function  [56]. The E
bind

 terms 
of the XP GlideScore additionally include: (i) a model of 
hydrophobic interactions, which takes into account ligand 
hydrophobic enclosure, and (ii) an improved model of 
hydrogen bond interactions  [36]. The above scoring func-
tion was tested on 198 protein–ligand complexes, resulting 

(2)XP GlideScore = Ecoul + EvdW + Ebind + Epenalty

in binding free energy RMSDs of 2.26 and 1.73 kcal  mol−1 
over all and selected well-docked ligands, respectively, as 
reported by Friesner et al. [36].

Results and discussion

The E
(10)

EL
 and E

MP2
 interaction energies correlate 

with pK
app

i
 values of the C7 set

The total interaction energy values calculated at the  con-
secutive levels of theory are shown in Table 1. Moreover, 
the  relationship between these interaction energies and 
exchange, delocalization and correlation contributions is 
depicted in Fig. S1 in the Supplementary Material. The cor-
responding pairwise interaction energy values for inhibi-
tor–residue pairs and the numerical values of exchange and 
delocalization energy components are presented in the Sup-
plementary material (Tables S2, S3, respectively).

Table 1 shows that the E
MP2

 interaction energy signifi-
cantly correlates with the experimentally determined inhib-
itory activities (R = −0.89). Apart from fr-29, the  E

MP2
 

values reflect the  ranking of the  inhibitors established 
experimentally. Furthermore, the E(10)

EL
 values correlate with 

the experimental data (R = −0.84), but with a lower Npred 
value than for E

MP2
 (80 vs. 86.7%, respectively).

For the fragments of three least potent inhibitors of 
the  C7 set, fr-29, fr-33, and fr-11, the differences in pK

i
 

of about 0.1 (corresponding to an approximately 0.1 kcal 
 mol−1 difference in binding  free energy  [57]), cannot be 
expected to be reproduced computationally, as they exceed 
the accuracy of most quantum chemical calculations, and, 
likely, of the experiments (measurement errors are, how-
ever, not explicitly provided in Refs. [20, 23]). Accordingly, 

Table 1  The total interaction 
energy at consecutive levels 
of theory, and energies 
for the E(10)

EL,MTP
+ E

Das
 and 

E
(10)

EL,MTP
+ E

(2)

CORR
 models for the 

C7 set of inhibitors

In units of kcal  mol−1

aExperimental pK
app

i
values are taken from Ref. [20]

bPearson correlation coefficient between the calculated energy and the experimental inhibitory activity
cPercentage of concordant pairs (%)

Inhibitor pK
app

i
a E

(10)

EL,MTP
E
(10)

EL
E
(10) E

SCF
E

MP2 E
(10)

EL,MTP
+ E

Das
E
(10)

EL,MTP
+ E

(2)

CORR

fr-32 8.2 −4.4 −8.3 10.8 7.0 −9.5 −25.8 −20.9
fr-30 7.3 −3.4 −6.9 7.6 4.5 −8.8 −21.9 −16.7
fr-31 7.0 −0.2 −7.0 12.2 8.9 −7.9 −20.2 −16.9
fr-29 6.3 −1.3 −3.0 6.2 4.6 −4.0 −12.2 −9.8
fr-33 6.2 −3.0 −5.9 5.3 3.3 −6.4 −15.5 −12.7
fr-11 6.1 −2.5 −4.6 5.1 3.6 −4.1 −12.4 −10.1

Rb −0.48 −0.84 0.76 0.62 −0.89 −0.96 −0.95

Nc

pred
66.7 80.0 13.3 26.7 86.7 86.7 80.0
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the computed binding energies of fr-29, fr-33, and fr-11 
ligands would be expected to be similar. It can be seen 
in Table 1 that fr-29 and fr-11, but not fr-33, have similar 
E

MP2
 interaction energy values. Actually, the E

MP2
 binding 

energies of the  C7 set inhibitors with an oxygen atom at 
the C7 position (i.e., compounds 30, 31, and 33) appear to 
be slightly overestimated (see Fig. S2 in the Supplementary 
material) whereas, the inhibitors with a hydrophobic C7 
substituent have underestimated values of E

MP2
 interaction 

energy. Notably, the C7 substituents are in direct contact 
with the methylene linker of the common scaffold depicted 
in Fig.  2 (e.g., the distance between the C7 chlorine and 
the closest hydrogen atom of the adjacent methyl group 
in compound 29 is 2.7  Å). Considering that this particu-
lar part of the inhibitor was not included in binding energy 
analysis, the observed under- and overestimation of interac-
tion energy could be associated with intramolecular inter-
actions that are not accounted for by the model. Despite 
these omissions, the overall correlation with experimental 
inhibitory activity is satisfactory.

On the other hand, both E(10) and E
SCF

 anti-correlate with 
inhibitory activities, i.e., these energies tend to indicate 
greater repulsion for the compounds with higher inhibitory 
activity. Positive values of the E(10) and E

SCF
 energies result 

from the repulsive exchange contribution, E(10)

EX
 (Table S3 in 

the Supplementary material). The repulsion is stronger for 
more potent inhibitors, since the molecular fragments that 
interact strongly are also more likely to experience stronger 
exchange effects [54, 58]. For example, for fr-31, the E(10) 
and E

SCF
 interaction energy terms appear to be exception-

ally high (i.e., unfavorable) due to the  incorporation of 
short-range exchange contribution. The short-range effects 
are exponentially dependent on the  interatomic distance, 
so any minor structural defect (e.g., artificial shortening 

of the  intermolecular distance due to the  basis set super-
position error or the  difference between the  crystal struc-
ture and the gas phase or the force field non-transferability) 
results in significant errors in the energy values. Therefore, 
E
(10) and E

SCF
 are vulnerable to structural deficiencies in 

the model  [7, 58], and are not really applicable for study-
ing crystal structure-based models of the  protein–ligand 
complexes.

Although the  delocalization term, E
(R0)

DEL
, accounted for 

at the  Hartree–Fock level of theory is characterized by 
a  correlation coefficient R = −0.94 (see the  Supplemen-
tary material, Table S3), it is still insufficient to overcome 
the inverse inhibitory ranking due to the E(10)

EX
 contribution 

(Fig.  S1 in the Supplementary material). Only the  E
(2)

CORR
 

contribution to the E
MP2

 energy restores the proper ranking 
of the  inhibitory activities (Table  1). As demonstrated in 
Fig. S1 in the Supplementary material, both the E(R0)

DEL
 and 

E
(2)

CORR
 terms approximately cancel out the repulsive charac-

teristics of the exchange component, but E(2)

CORR
 is the major 

contribution out of these two.
The above analysis is in line with our previous find-

ings for FAAH inhibitors  [7] that omitting the  contribu-
tions arising from short-range interactions (i.e., consider-
ing only the multipole electrostatic and correlation energy 
components) results in a much better model for predicting 
the inhibitory activity [7].

The E
Das

 approximation predicts inhibitory activities 

of the C7–set inhibitors as well as the correlation energy

The results shown in Table 2 indicate that, for the C7–set 
inhibitors, the dominant dispersion contribution could even 
serve as a  standalone scoring method, with R = −0.86 
for E

(2)

CORR
. Furthermore, for the C7 inhibitor set, the E

Das
 

Table 2  E
Das

 function and 
the D3 dispersion energy 
approximations evaluated for 
the C7–set inhibitor fragments

In units of kcal  mol−1

aExperimental affinity values are taken from Ref. [20]
bPearson correlation coefficient between the dispersion approximation and the correlation energy E(2)

CORR

cPearson correlation coefficient between the  calculated dispersion approximation and the  experimental 
inhibitory activity taken from Ref. [20]
dPercentage of concordant pairs (%)

Inhibitor pK
app

i
a E

(2)

CORR
E

Das
D3

PBE0
D3

B3LYP
D3

TPSS

fr-32 8.2 −16.5 −21.4 −12.3 −17.6 −15.7
fr-30 7.3 −13.3 −18.5 −10.9 −15.5 −13.8
fr-31 7.0 −16.8 −20.1 −12.2 −17.1 −15.4
fr-29 6.3 −8.5 −10.9 −6.5 −9.2 −8.2
fr-33 6.2 −9.7 −12.5 −7.5 −10.5 −9.4
fr-11 6.1 −7.6 −9.9 −5.7 −8.2 −7.3
R

CORR

b 0.98 0.99 0.99 0.99
Rc −0.86 −0.92 −0.89 −0.90 −0.89

Npred
d 66.7 86.7 86.7 86.7 86.7
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approximation correlates with the  inhibitory activities as 
well as E(2)

CORR
 (R = −0.92), thereby confirming the valid-

ity of the  E
Das

 approximation. A significant correla-
tion is obtained for the  E

(2)

CORR
 and E

Das
 energies because 

the C7–set of inhibitor fragments consists of largely hydro-
phobic substituents targeting a  relatively hydrophobic 
TbPTR1 subpocket, and thus dispersive interactions play 
a major role in binding.

Nonetheless, a  universal scoring model should also 
account for the  electrostatic contribution, so that it is 
appropriate for noncovalent complexes with intermo-
lecular forces of either dispersive or electrostatic nature 
(or a  mixture of both). Upon including the  electrostatic 
multipole term, the  scoring abilities of the  proposed 
model further improve for the C7 inhibitor set (Table 1): 
for E

(10)

EL,MTP
+ E

Das
 and E

(10)

EL,MTP
 + E

(2)

CORR
 models the cor-

relation coefficients are equal to −0.96 and −0.95, 
respectively. Furthermore, the E(10)

EL,MTP
+ E

Das
 model cor-

rectly predicted 86.7% of concordant pairs, i.e. as many 
as for the  E

MP2
 level. Note that for the  E

(10)

EL,MTP
+ E

Das
 

model describing TbPTR1 inhibition, the  correlation 
is distinctly better than for the  inhibitors of the  FAAH 
enzyme (R = −0.67) [7]. This difference might be due to 
the higher flexibility of the FAAH inhibitor series, which 
may cause problems in determining the  correct binding 
pose even by the most accurate docking procedures.

Comparison of dispersion models: alternatives 

to the E
Das

 function

In the  work presented herein, we additionally tested 
the  D3  correction to dispersionless—DFT developed by 
Grimme et  al. [48], calculated for the  following function-
als: PBE0, B3LYP, and TPSS. Our objective was to check 
how the simple E

Das
 approximation is related to the widely 

tested D3  correction. The  performance of the  dispersion 
approximations for the C7 set is compared in Table 2.

All the  dispersion approximations correlate well 
with the  E

(2)

CORR
 results. Considering the  agreement with 

the experimental inhibitory activities, the dispersion ener-
gies calculated from the D3 corrections perform compara-
bly well with the  other methods, with a  correlation coef-
ficient R of about −0.90 for all the three tested functionals, 
whereas for E

Das
 and E

(2)

CORR
 the  values of R are equal to 

−0.92 and −0.86, respectively. While each dispersion 
approximation considered here performs remarkably well, 
the dispersion model proposed by Pernal et al. [17] is fit-
ted to the SAPT results, whereas the results obtained with 
D3 corrections might, in general, depend on the  applied 
functional. Accordingly, the  choice of certain functional 
might not be obvious if structure–activity relationships 
are to be predicted for novel receptor–ligand complexes 

not characterized experimentally, wherein prior testing of 
the performance of a given method cannot be carried out.

Comparison of the E
(10)

EL,MTP
+ E

Das
 model with empirical 

scoring

Protein–ligand interactions are routinely evaluated 
with computationally inexpensive empirical scoring 
approaches  [59]. These rely on empirical parameters 
that are typically derived using a  diverse training set. 
Although, in principle, generally applicable, such scor-
ing functions have been shown to perform successfully in 
some applications and to fail in others [1, 60]. In Fig. 7, 
the nonempirical E(10)

EL,MTP
+ E

Das
 scoring method is com-

pared with the Glide  XP scoring function [35]; the cor-
responding values are given in the Supplementary mate-
rial (Table  S4). Notably, the  predictive capabilities of 
the E(10)

EL,MTP
+ E

Das
 model, tested on the C7 set of inhibi-

tor fragments, outperform the empirical scoring function, 
with an R correlation coefficient of −0.96 compared to 
−0.82 value obtained with Glide XP.

An important advantage of the  E
(10)

EL,MTP
+ E

Das
 model 

is that it is fully based on well-defined long-range inter-
action energy components obtained from first principles 
ab initio calculations and does not contain any empirical 
parameters. Moreover, the method is as computationally 
affordable as commonly used empirical scoring func-
tions, scaling as O(A2)  [7]. Overall, these results sug-
gest that more accurate, nonempirical ways of assessing 
the protein–ligand interactions might be advantageous for 
the design of novel inhibitors, and that a gain in the qual-
ity of the  results can be achieved with little computa-
tional effort.

Fig. 7  Interaction energies of the  C7 set of  TbPTR1 inhibitor frag-
ments computed with nonempirical and empirical scoring approaches 
versus experimental inhibitory activities taken from Ref. [20]
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Sensitivity of the E
(10)

EL,MTP
+ E

Das
 and E

MP2
 models 

to the inhibitor–receptor modelling procedure—the 

case of compound 24 in the C4 set of inhibitors

We performed calculations for the C4 set of inhibitor frag-
ments, targeting another subpocket of TbPTR1. Table  3 
shows the  interaction energies calculated at the  different 
levels of theory, together with the  E

(10)

EL,MTP
 + E

(2)

CORR
 and 

E
(10)

EL,MTP
+ E

Das
 models. The  corresponding interaction 

energy values for each residue–inhibitor fragment pair are 
presented in the Supplementary Material (Table S6).

Since modeling of the C4 set of inhibitor–protein com-
plexes was not as straightforward as for the C7 set, we 
analyzed the influence of the modeling procedure, in 
particular the classical force field minimization of the 
TbPTR1–inhibitor complex, on the computed energy val-
ues for one inhibitor, compound 24. In this case, we sus-
pected that the classical force field description [30], which 
models atoms as spheres with point charges, might incor-
rectly treat the interactions of 4-Cl substituent with the side 
chain of Asn175. Due to the complex electronic structure 
of halogens and the resultant �-hole phenomenon, the chlo-
rine may form the so-called halogen bond, which is poorly 
described in commonly-used force fields [61].

We observed that classical minimization distinctly 
changes coordinates of this system, with the distance 
between 4-Cl of compound  24 and amide  N of Asn175 
decreasing from 5.0 to 3.9  Å (see Fig.  S3 in the Supple-
mentary material). For the  minimized compound 24 com-
plex, the exchange energy E

(10)

EX
 is much lower than for 

the  unminimized complex (29.2 vs.  44.7 kcal  mol−1, see 
Table  S7 in the Supplementary material). This difference 

suggests that minimization reduces some steric clashes in 
the complex. Furthermore, with minimized compound 24, 
E
(10)

EX
 anti-correlates with pK

app

i
 for the four C4 compounds, 

whereas with the unminimized compound  24 complex, 
no such anti-correlation is observed (R = 0.69 vs. −0.03, 
respectively, Table S7). This is likely the reason why E

MP2
 

does not correlate with pK
app

i
 for the C4 set with minimized 

inhibitor  24 (R = 0.21, Table  3), whereas it correlates for 
the unminimized compound 24 (R = −0.85). On the other 
hand, the E

(10)

EL,MTP
+ E

Das
 model (which does not include 

E
(10)

EX
) shows the expected inverse relation with pK

app

i
 for 

both the minimized (R = −0.59) and the unminimized 
(R = −0.35) inhibitor  24 (Table 3). Thus, the results sug-
gest that the E(10)

EL,MTP
+ E

Das
 model is more robust than the 

E
MP2

–based model to inaccuracies in the models of the 
inhibitor–receptor complexes.

Limitations of the E
(10)

EL,MTP
+ E

Das
 model due to omission 

of the exchange energy

For the C4 set, the correlation of E(10)

EL,MTP
+ E

Das
 with pK

app

i
 

is not as good as for the C7 set (compare Tables 1,  3). This 
is likely due to the lower number of inhibitors and the nar-
row range of pK

app

i
 values in this set. However, if we inves-

tigate how well the E(10)

EL,MTP
+ E

Das
 model approximates the 

reference E
MP2

 energy, omitting compound 25 significantly 
increases the correlation between E

MP2
 and E(10)

EL,MTP
+ E

Das
,  

which is 0.27 for all inhibitors and 0.93 when compound 25 
is excluded from the C4 set (see Table S8 in the Supple-
mentary material). Notably, E

(10)

EX
 of compound  25 seems 

to be overestimated (unfavourable for binding), while 
E
(2)

CORR
 (and E

Das
) are too favourable (see Table  S7 in the 

Table 3  The total interaction 
energy at consecutive levels 
of theory, and energies 
for the E(10)

EL,MTP
+ E

Das
 and 

E
(10)

EL,MTP
+ E

(2)

CORR
 models for the 

C4 set of inhibitors

In units of kcal  mol−1

The data for the unminimized compound 24 complex are marked by *
aExperimental affinity values are taken from Ref. [20]
bPearson correlation coefficient between the calculated energy and the experimental inhibitory activity
cPercentage of concordant pairs (%)

Inhibitor pK
app

i
a E

(10)

EL,MTP
E
(10)

EL
E
(10) E

SCF
E

MP2 E
(10)

EL,MTP
+ E

Das
E
(10)

EL,MTP
+ E

(2)

CORR

fr-25 6.5 −1.7 −16.9 32.9 24.6 −4.4 −48.8 −30.7
fr-28 6.4 −0.1 −11.7 21.4 16.0 −5.8 −33.4 −22.0
fr-11 6.1 1.0 −9.5 19.5 14.8 −2.4 −22.7 −16.2
fr-24 5.6 −0.2 −10.4 18.7 13.9 −6.0 −29.8 −20.1

Rb −0.44 −0.66 0.70 0.71 0.21 -0.59 -0.59

Npred
c 66.7 83.3 0.0 0.0 33.3 83.3 83.3

fr-24∗ 5.6 −2.1 −17.7 27.1 19.9 −1.7 −36.0 −23.7

R∗b 0.27 0.28 0.14 0.17 −0.85 −0.35 −0.33

N∗

pred

c 50.0 50.0 33.3 33.3 83.3 66.7 66.7
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Supplementary material). For this compound, even the 
standard docking procedure shows that the side chain 
makes steric clashes, and these contacts could not be prop-
erly relaxed by energy minimization procedure (see Fig. S4 
in the Supplementary Material). The omission of the E(10)

EX
 

energy, and thereby the effects of short-range repulsion, 
in the E

(10)

EL,MTP
+ E

Das
 model mean that it should not be 

applied when there are significant ligand–receptor clashes, 
such as observed for compound  25. This problem can be 
detected at the early stage of modeling/docking prior to the 
QM calculations. Since the E(10)

EL,MTP
+ E

Das
 model does not 

properly capture the interactions of inhibitor 25, we omit-
ted this compound in further analysis.

Putting the C7 and C4 models together

Analysis of correlations for the C4–set models should be 
treated with caution since the dataset (excluding inhibi-
tor 25) consists of only three inhibitors with a very nar-
row pK

app

i
 range. Therefore, we did not make correlation 

models for these points alone. Instead, we fitted these data 
points to the C7–set E

(10)

EL,MTP
+ E

Das
 and E

MP2
 models, 

assuming per-residue additivity of the models (see explana-
tion in the Supplementary material), which requires that � 
parameter in the E = � ⋅ pK

app

i
+ � models for the C7 sys-

tem was kept constant and the � parameter was fit by mini-
mizing the deviation of the three C4 experimental pK

app

i
 

values. The use of different � values for different subpock-
ets reflects the fact that there is a different energetic contri-
bution to binding for each substituent position but that this 
contribution can be assumed constant for all compounds 
with substituents at a given position. Fig. 8 shows the fit-
ted E

MP2
 and E

(10)

EL,MTP
+ E

Das
 models for the C7 and the 

C4 set. It can be seen in Fig. 8 that, for both inhibitor sets, 

predictions of the regression models are generally worse for 
the weaker binders, which form less specific and less stable 
interactions, and are thus more challenging to model.

The E
MP2

 models for the C7 set and the C4 or C4* set 
(for unminimized inhibitor  24) are remarkably consist-
ent (see Fig. 8a; Table 4). This is confirmed by low RMS 
errors in pK

app

i
 values (0.8 and 0.4 for the C4 and C4* 

sets, respectively; Table  4). Thus, the E
MP2

 model seems 
to be transferable between the C4 and C7 pockets. The 
E
(10)

EL,MTP
+ E

Das
 energy performs overall worse in predict-

ing pK
app

i
values than E

MP2
 (Table 4), although it also shows 

reasonable transferability of the C7 model to the C4 sub-
pocket (Fig.  8b; Table  4). The subpockets feature differ-
ing physico-chemical properties (C7—more hydrophobic, 
C4—more hydrophilic; compare Figs.  2,  3), but similar 
hydrophobic character of the substituents may facilitate the 

Table 4  Inhibitory activities pK
app

i
 for the C4 set predicted with 

the best fitting equations obtained from the E(10)

EL,MTP
+ E

Das
 and E

MP2
 

models

The model has the same gradient � as the corresponding C7 model 
(E = � ⋅ pK

app

i
+ �)

The data sets with the unminimized compound  24 complex are 
marked by *

See model parameters in Table S9 in the Supplementary material
aExperimental pK

app

i
 values are taken from Ref. [20]

bRoot mean square error of pK
app

i
 prediction

Inh. Exp.a E
(10)

EL,MTP
+ E

Das
EMP2

C4 C4* C4 C4*

fr-28 6.4 6.8 6.4 6.5 7.0
fr-11 6.1 5.1 4.8 5.1 5.7
fr-24 5.6 6.2 6.9 6.5 5.4

RMSEb 0.7 1.0 0.8 0.4

Fig. 8  The E
MP2

 (a) and E(10)

EL,MTP
+ E

Das
 (b) interaction energies ver-

sus experimental inhibitory activities and linear regression models for 
the C4 and C7 inhibitor sets. The same � value is used for the C7 
and C4 models. Parameters of the models are presented in Table S9 
in the Supplementary Material and pK

app

i
 prediction results are given 

in Table 4. The data for the unminimized compound 24 (fr-24∗) are 
also shown (in orange)
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transferability of the models between subpockets, which 
should be further tested for ligands with more diverse 
properties.

Concluding remarks

We have conducted ab  initio calculations of the  interac-
tion energies between a  series of inhibitor fragments and 
binding subpockets of the TbPTR1 enzyme. The common 
scaffold for this inhibitor series was a  derivative of ben-
zimidazol-2-amine (compound  11), with a  well-defined 
binding mode in TbPTR1. Two types of substitutions were 
analysed, i.e. substituents at the C7 carbon of benzimida-
zole scaffold (6 inhibitors, C7 set) and at the C4 position 
(4 inhibitors, C4 set), the  two substituent sets interacting 
predominantly with different subpockets of the  TbPTR1 
protein.

For evaluation of the  inhibitor–receptor interaction 
energies, we used the  recently developed E

(10)

EL,MTP
+ E

Das
 

approximate model, including only multipole electro-
static and dispersive energy terms  [7]. Combining these 
two terms is reasonable as they both are major long-range 
contributions to the  intermolecular interaction energy. 
It is noteworthy that, despite the  approximate approach, 
the  model does not contain empirical parameters, i.e. 
it is parametrized only based on the  theoretical SAPT 
results. The  model, however, also involves the  following 
approximations: (i) a  reduced binding pocket representa-
tion that includes only the  residues directly interacting 
with the  inhibitors, and (ii) inhibitor–receptor interaction 
energy terms calculated in a  pairwise manner, summing 
over contributions of each binding pocket residue. This cal-
culation scheme, despite its simplicity, resulted in a  good 
correlation with experimental inhibitory activities for both 
the C7 and the C4 sets of the TbPTR1 inhibitors. Further-
more, this computationally efficient model was more accu-
rate in predicting inhibitory activities of TbPTR1 inhibi-
tors than the  extra-precision (XP) docking score of Glide 
(Schrödinger, Inc.). We also found that the  replacement 
of the  E

Das
 function by the  D3  correction to dispersion-

less—DFT could also be considered, since this approxi-
mation reflects the  correlation energy contribution as 
accurately as the  E

Das
 energy. Unlike the  latter, however, 

the  D3  correction might be dependent on the  choice of 
the  functional and further validation is required to assess 
its range of applicability. Considering both the C7 and C4 
sets of inhibitors, we obtained correlations with the experi-
mental data for the E

(10)

EL,MTP
+ E

Das
 model. For the more 

closed, confined C4 subpocket, the E
(10)

EL,MTP
+ E

Das
 model 

performed less well but gave results comparable to those 
obtained for FAAH inhibitors [7]: R = −0.59 versus −0.67,  
respectively. The lower correlation for the C4 inhibitor set 

may be due to the low number of compounds with a nar-
row range of experimental pK

app

i
 values. We found that 

E
(10)

EL,MTP
+ E

Das
 is better able to overcome deficiencies of 

the model of the ligand–receptor complex for the halogen-
ated compound (inhibitor 24) than the interaction energy 
at the MP2 level of theory. However, the applicability of 
the E

(10)

EL,MTP
+ E

Das
 model is limited by the omission of 

the E(10)

EX
 term, as seen for inhibitor 25 whose fragment is 

slightly too bulky to fit well in the C4 subpocket. Finally, 
we have shown that the E

(10)

EL,MTP
+ E

Das
 model for the C7 

subpocket could be transferred to the C4 subpocket with 
refitting of the � constant term. The model could therefore 
be applied to the  prediction of novel compounds capable 
of reversible binding to the  target enzyme. The  observed 
partial transferability and favorable computational scaling 
of the  E

(10)

EL,MTP
+ E

Das
 model opens possibilities for future 

applications in lead optimization. The most accurate inhibi-
tory activity predictions can be expected for a set of com-
pounds with similar solvation energy and the binding poses 
that share a common characteristics. The  transferability 
of the E

(10)

EL,MTP
+ E

Das
 model between different subpockets 

should be investigated further for larger sets of compounds 
with more diverse chemical properties.
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