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A spectroscopic near-infrared imaging system, using a focal plane
array (FPA) detector, is presented for remote and on-line measure-
ments on a macroscopic scale. On-line spectroscopic imaging re-
quires high-speed sensors and short image processing steps. There-
fore, the use of a focal plane array detector in combination with
fast chemometric software is investigated . As these new spectro-
scopic imaging systems generate so much data, multivariate statis-
tical techniques are needed to extract the important information
from the multidimensional spectroscopic images. These techniques
include principal component analysis (PCA) and linear discriminant
analysis (LDA) for supervised classi® cation of spectroscopic image
data. Supervised classi® cation is a tedious task in spectroscopic im-
aging, but a procedure is presented to facilitate this task and to
provide more insight into and control over the composition of the
datasets. The identi® cation system is constructed, implemented, and
tested for a real-world application of plastic identi® cation in mu-
nicipal solid waste.

Index Headings: Spectroscopic infrared imaging; Plastic identi® ca-
tion; Focal plane array (FPA) detector; Linear discriminant anal-
ysis (LDA).

INTRODUCTION

Near-infrared (NIR) spectroscopy is a well-known and
accepted identi® cation technique which ® nds its merits in
agricultural science, pharmaceutical science, and process
control.1± 3 A few years ago, as an extension of this tech-
nique, spectroscopic NIR imaging was introduced as a
technique which generates additional identi® cation infor-
mation.4± 6 This method opens new doors, in particular,
for process control and process monitoring. Identi® cation
by arti® cial vision provides additional geometric material
information, which allows surface mapping of physico-
chemical properties. Furthermore, the shape and size of
the samples can be used as additional sorting criteria,
whereas the technique is independent of the position of
the process (sample) in the measurement detection area.
The latter is an important practical advantage. A main
problem in spectroscopic imaging is the amount of data
that is generated.7,8 New IR imaging detectors, called fo-
cal plane array (FPA) or staring array detectors, com-
bined with fast wavelength selection devices, allow the
acquisition of millions of re¯ ectance units. In order to
extract the most relevant information from these data, fast
electronics and computer algorithms combined with a
thorough knowledge of the problem are needed. Earlier
experimentation in unsupervised classi® cation by the
present authors9,10 has now lead to the introduction of
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supervised multivariate statistical pattern recognition for
on-line classi® cation of large amounts of spectroscopic
image data. The extraction of the relevant spectroscopic
material information is done with linear discriminant
analysis, which is a fast, robust, well-known, and fre-
quently validated classi® cation technique.11 Supervised
classi® cation gives the opportunity to include pre-infor-
mation in the classi® cation model, which can improve the
classi® cation performance. So far, this approach has ap-
peared to be a very time-consuming step for spectro-
scopic image data. While NIR spectroscopic imaging has
already been applied in many microscopic applica-
tions,12± 17 developments in the macroscopic ® eld have not
been as rapid, and the applicability of chemometric tech-
niques in this ® eld has hardly been investigated. There-
fore, the purpose of this paper is to investigate the merits
of a macroscopic NIRimaging system suitable for on-line
measurements. In this paper, an identi® cation system for
plastic waste identi® cation is developed.

It has been known for some time that the direct recy-
cling of unsorted plastic waste is of limited applicability
for reuse in the industry, because of the poor physical
and chemical properties of mixed plastics.18 Therefore,
this kind of waste needs to be sorted prior to further
processing. Over the last few years, extensive growth in
research has been observed for automated plastic waste
identi® cation techniques.19± 23 Several research groups
have come to the conclusion that NIR spectroscopy is
presently one of the most promising techniques. They
have concluded that this technique is fast and accurate,
does not need any contact (nondestructive), and does not
require sample pretreatment. Detectors for the NIRwave-
length region are relatively cheap and commercially
available. The material recognition is based on interac-
tions of light with vibrations of speci® c molecules which
are present in polymers. This work aims at the detection
of plastics from nonplastics in a stream of mixed waste
by spectroscopic NIR imaging.24 It is done within the EC
project SIRIUS, a cooperation project between the Lab-
oratory for Analytical Chemistry, University of Nijme-
gen, The Netherlands, and the Institute for Chemical and
Biochemical Sensor Research, MuÈ nster, Germany. Anoth-
er part of the project is to investigate the succeeding steps
in plastic identi® cationÐ namely, to separate out the dif-
ferent types of plastics from each other. A good discus-
sion about this subject and the results of that work is
presented in detail in the literature.10,19,25,26

In the ® rst part of the present study, a description of
the detection technique is given in order to show the large
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FIG. 1. Schematic view of the measurement principles. Re¯ ected ra-
diation from an object is measured for several wavelength regions. Each
individual detector pixel integrates possible re¯ ected photons in the par-
ticular wavelength range.

FIG. 2. Schematic representation of the LDA classi® cation procedure.
The three-dimensional calibration dataset XÅ is unfolded to a two-di-
mensional matrix Z, which is used to calculate weight matrix W. Next,
matrix Z is transformed to Y where for each class (nc) the covariance
matrix and corresponding means are calculated, according to the Ma-
halanobis measure. An unknown image Z* is transformed to Y* and
classi® ed to d* with the use of the calculated covariance and mean data.

amount of data that is generated. Linear discriminant
analysis (LDA) was used to extract material information
from these data to determine the class membership of the
measured object(s). The importance of supervised clas-
si® cation using a representative calibration model and test
set is discussed, and an easy way to compose these sets
for three-dimensional image data is given. A speci® c im-
aging ® lter was used to incorporate additional geometric
material correlations in the image data. A special section
is devoted to speci® c problems that occur in macroscopic
imaging: shadow effects of large objects and mirror re-
¯ ections due to the smoothness of an object’s surface.
Speed measurements were performed to investigate the
future applicability of the setup and to compare the data-
reducing classi® cation technique with classi® cation of the
untreated, original image data. Finally, on-line measured
images were classi® ed by the optimized experimental set-
up and the optimized LDA model.

BACKGROUND

Spectroscopic Imaging. Spectroscopic imaging is
based on the same principles as NIR transmission or re-
¯ ectance spectroscopy. Most work has been presented as
either microscopic applications where transmission mea-
surements of the investigated materials were obtained or
as large-distance applications such as satellite measure-
ments. For the macroscopic experimental setup presented
in this work, however, re¯ ection measurements were
used. In re¯ ection measurements, the waste materials are
illuminated by an infrared light source. The re¯ ected light
is passed through a wavelength selection device, as is
shown in Fig. 1. In this ® gure a rotating ® lter wheel con-
taining interference ® lters is used as a wavelength selec-
tion device. After passing this device, the re¯ ected and
® ltered light is projected on the detector by an optical
lens system. A new focal plane array detector is used,
which contains thousands of sensing elements, pixels,
which can individually integrate infrared photons over a
wavelength range from 1200 to 4600 nm. A wavelength
integration for one ® lter results in an image where every

element represents the total integrated value (gray value)
for all re¯ ected photons, collected from the correspond-
ing geometric area. A measurement with different inter-
ference ® lters results in a three-dimensional stack of im-
ages, XÅ i,j,k, where the variables i and j are image coordi-
nates, with i 5 1. . .n, and j 5 1. . .m, and where k rep-
resents the selected wavelength regions, with k 5 1. . .p.
Another representation of this three-dimensional stack is
to consider every individual pixel as an independent de-
tector, able to integrate re¯ ected photons from a speci® c
area in the camera view. Measuring images at p different
wavelengths results in a matrix of vectors, were every p-
dimensional vector expresses a so-called mini-spectrum.
A p-dimensional vector is not a real spectrum, because
the ® lter ranges are not successive, but this method of
representation facilitates interpretation (also see next sec-
tion).

Classi® cation of Spectroscopic Image Data. A mini-
spectrum can be considered as a vector in a p-dimen-
sional wavelength space ( p 5 6 in this work). As every
detector element is able to measure a mini-spectrum from
a speci® c area (x,y) in the camera view, physicochemical
information is obtained per corresponding (x,y) position
and stored in XÅ i,j,k (Fig. 2). Since equivalent materials
express equivalent physicochemical properties, they are
expected to express similar mini-spectra. Therefore, these
mini-spectra can be used by pattern recognition tech-
niques for classi® cation, which leads to a complete map-
ping of the (x,y) positions in the camera view. The result
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FIG. 3. Schematic representation of the on-line identi® cation of plastic
materials.

is stored in a matrix Di,j where each element represents
the class membership of the corresponding (x,y) posi-
tions. When the pattern recognition technique `̀ classi® -
er’ ’ is ® rst calibrated (trained) with known mini-spectra,
it can evolve a model which can be used to predict the
class membership (material type) of unknown mini-spec-
tra. First, a classi® cation model is built by training the
classi® er with representative examples of the classes to
be investigated. Second, when a robust model has been
built, it can be used to predict the class membership of
unknown samples. In this work, linear discriminant anal-
ysis is used as a pattern recognition technique. It is a
known technique in chemical image analysis.24 LDA tries
to ® nd the discrimination lines between classes of interest
and uses these to estimate the most probable class mem-
bership of unknown samples, on the basis of the spectral
information used for building the classi® cation model.
Figure 3 shows a summary of the different steps in the
identi® cation process.

EXPERIMENTAL

Hardware. Spectroscopic imaging was done with the
experimental setup shown in Fig. 1. Four strong, variable,
quartz light sources (1800 W each) were used to illumi-
nate the objects, which were placed on the measurement
area. This area was a sanded aluminum plate to establish
diffusely re¯ ected background radiation. A high illumi-
nation power was needed because of the large distance
between object and detector, which was about 1.5 m. The
light sources were positioned above the objects and in

opposite directions in order to reduce shadow contribu-
tions around the objects. The angle of the light source
and the plane perpendicular to the measurement area was
about 678 . The re¯ ected radiation from the objects was
collected by a gold mirror and passed through a circular
rotation ® lter wheel. This wavelength selection device
contained p 5 6 interference ® lters, which were trans-
parent at, respectively, 1546± 1578, 1545± 1655, 1655±
1745, 1700± 2150, 2207± 2321, and 2115± 2550 nm. The
® lters are optimized for those speci® c wavelength regions
that give maximum discrimination between plastics and
nonplastics.27 Thereafter, the photons were projected on
the FPA detector (Cincinnati Electronics Inc., OH) by an
ordinary 50-mm objective lens, f 5 1/2.3. The objective
lens material was transparent from 300 to 2700 nm.² As
chromatic aberration of the ordinary objective lens
caused different focus centers for different interference
® lters, two additional lenses were mounted on the ® lter
wheel to correct for this artifact. These lenses were com-
mercial silica lenses for ® lters 5 and 6, with focal lengths
of, respectively, 4 and 2 m. In front of the detector, inside
the camera, a cold-shield ® lter is positioned to prevent
the detector from sensing background light emitted by
the optical components. This cold-shield ® lter is cooled
with N2. The wavelength range of the cold-shield ® lter
has been extended to 1.1± 4.6 m m. The FPA detector was
made of InSb and is sensitive from 1200 to 4600 nm. It
contains 64 3 64 sensing elements (image size n 3 m).
The gray-scale resolution of the camera is 10 bits. The
digital output of the camera was able to send 51 frames
(images) per second via an electronic buffer (SC-01) and
a high-speed 16-bit S16D I/O interface (Engineering De-
sign Team, Inc. OR) to the internal memory of a SUN
SPARC 10 workstation. Because of this construction, the
images were available for image processing at approxi-
mately the camera readout speed.

Software and Computations. Direct image access
was established by a library of C procedures, developed
and installed by Starling Consultancy (Hengelo, The
Netherlands). This library is used to process and classify
the raw images by self-implemented procedures. The
classi® cation models were made by another program be-
forehand with the use of MATLAB (The MathWorks,
Inc., Natick, MA). MATLAB has also been used for vi-
sualization and other calculations. The preparation of the
training and test datasets was performed by an in-house-
developed score plot program. This program used XITE
software procedures (Torr Lonnestad and Otto Milvang,
Image Processing Laboratory, Department of Informatics,
University of Oslo, Norway) for graphical display of the
score plots and mouse interactions.

MATERIALS AND METHODS

Dataset. Objects or samples with known material com-
position are needed in order to calibrate (learn) the ma-
terial properties by LDA. In this work, it is supposed that
spectroscopic NIR images, measured from such samples,
contain suf® cient information to discriminate between the
materials. As a consequence, a number of waste samples

² Measurements taken from different objective lenses, performed by
H.W. Siesler and students, NIR research group, University of Essen,
Germany.
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FIG. 4. Visualization of the calibration dataset using two linear discriminant components for three classes: plastic, nonplastic, and background
mini-spectra. The ellipses indicate the classes modeled by LDA.

were collected from the household waste of the city of
Nijmegen (The Netherlands).

In total, 40 waste objects were collected comprising 17
plastics [1 PVC (polyvinylchloride), 2 PET (polyethyl-
eneterephthalate), 4 PS (polystyrene), 4 PE (polyethyl-
ene), and 6 PP (polypropylene)] and 23 nonplastics (4
ceramics, 5 metals, 3 glass, 5 paper, 5 wood, and 1 ® ber).
The objects differed in size, color, composition, mechan-
ical ¯ exibility, and thickness. Images were measured by
using six interference ® lters per object and corrected for
the dark current and reference images as described in the
literature.25 This correction entails the division of the raw
image by its corresponding reference image. The result-
ing corrected image sets the re¯ ectance values for dead
pixels to 1. Since this is equal to the scaled background
value in the corrected image, the dead pixels did not need
any further processing for the purpose in this work. After
preprocessing, 40 stacks of corrected images (64 3 64 3
6) were obtained and stored as a database. The database
was used to create a training and test set. The training
set was used to build the model by the pattern recognition
technique and the test set to evaluate the calculated mod-
el.

Training and Test Set. A complete three-dimensional
stack of images (size: n 5 64, m 5 64, p 5 6) contains
only information from a single (waste) object. Since each
stack of images contains 64 3 64 pixels, representing
4096 mini-spectra each of length p 5 6, a huge amount
of data is obtained for only one material sample. To in-
clude suf® cient variation in material type for both the
calibration and test set, one needs to characterize many
material samples by their image stacks. Therefore, a com-
promise has to be found between a representative varia-
tion in material type and the total size of training and test
dataset. To solve this, we created a training and test da-

taset, by extracting a prede® ned number of material pix-
els (plastic or nonplastic) and background pixels from a
series of image stacks. The numbers were chosen in such
a way that the calibration dataset contained about the
same number for each material class. Two ways of se-
lecting these pixels from the images were investigated.
The ® rst was by visual inspection of the images, the sec-
ond by means of principal component analysis (PCA).25

By visual inspection, ® xed blocks of pixels were ex-
tracted from `̀ pure’ ’ material areas in the image. Care
had to be taken to exclude pixels with bad mini-spectra
such as mirror re¯ ection or spikes. A problem with visual
inspection is that large-sized blocks do not guarantee ho-
mogeneous material information, whereas small blocks
lead to very time-consuming pixel extraction. Pixel se-
lection by principal component analysis guarantees the
selected homogeneity of the mini-spectra and is very easy
to perform. The PCA selection is based on the spectral
correlation of pixels in a score plot. A cluster in a score
plot can be selected by mouse-assisted handling on a
computer screen. Since there is little control about the
number of pixels in a selected cluster of a PCA score
plot, it is necessary to reduce the amount of selected pix-
els to a prede® ned number. This selection is done ran-
domly.

The training set was created by selecting an equal
number of pixels for each material, but it should be
stressed that the nonplastic class consisted of six mate-
rials instead of ® ve for the plastic class. Pixels from the
remaining materials were all put into the test set. Since
a different number of objects per material were collected,
a different number of pixels are present in the test set.

The ® nal numbers of pixels in the calibration set were
as follows: plastics, 400; nonplastics, 450; and back-
ground, 400. For the test set, the numbers were as fol-
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TABLE I. a (`̀ false negative’’), b (`̀ false positive’’), and total error in percentages and number of pixels, respectively, calculated for the
test set. Three different scaling techniques were applied for the three-class model, while the four-class dataset is the extended three-class
dataset including shadow pixels.

Comparison of classi® cation errors

3-class 3-class unit 3-class range 3-class auto 4-class

a plastics

a nonplastics

a background

b plastics

b nonplastics

b background

2.00 (9)
5.57 (39)
0.17 (1)
2.08 (27)
0.95 (10)
1.04 (12)

12.0 (54)
2.43 (17)

68.0 (410)
1.31 (17)

44.2 (464)
0.0 (Ð )

0.44 (2)
5.29 (37)

10.8 (65)
2.85 (37)
6.38 (67)
0.0 (Ð )

0.67 (3)
5.00 (35)
1.00 (6)
2.46 (32)
0.86 (9)
0.26 (3)

0.22 (1)
12.6 (88)
1.17 (7)
2.00 (26)
0.48 (5)
0.35 (4)

Total % 2.80 (49) 27.5 (481) 5.94 (94) 2.51 (44) 5.49 (96)

lows: plastics, 450; nonplastics, 700; and background,
600.

LDA Methodology. The identi® cation problem in this
work is to classify image pixels into the three aforemen-
tioned material classes: plastic, nonplastic, and back-
ground. These classes need to be modeled before pixel
classi® cation of unknown material pixels can take place.
The multiple class modeling will be done by linear dis-
criminant analysis. A detailed description of LDA can be
found in the literature.28 The ® nal classi® cation of un-
known mini-spectra is performed by determining the
shortest Mahalanobis distance (D2) between the unknown
and the existing material classes. The Mahalanobis dis-
tance of object i to class c is de® ned as 5 (xi,c 22Di,c

xmc) 9 (xi,c 2 xmc),29 where represents the inverse2 1 2 1S Sc c

of the covariance matrix of class c, xmc is the mean or
centroid of class c, and xi,c represents the mini-spectrum
from object i, belonging to class c. In this way, correla-
tion or covariances in the material classes are taken into
account explicitly.

The LDA model consists of (r) discriminant weights,
where r represents the number of linear components.
Each weight is a linear combination of the original wave-
length regions. The discriminant weights are used to
transform original unknown mini-spectra (pixels) to the
latent model space. Subsequently, the Mahalanobis dis-
tances are calculated between the unknown image pixels
and each individual class center within this new reduced
space (centroid). The unknown pixel is classi® ed to the
class where the Mahalanobis distance between pixel and
class centroid is the shortest. An example of the LDA
model with Mahalanobis classi® cation is shown in Fig.
2. First, the LDA model is calculated by using the cali-
bration mini-spectra in the unfolded matrix Zn*m,p. The
folding of images has been described earlier.25 The model
leads to a weight matrix Wp,r and their corresponding
column importances l r,r. The weight matrix Wp,r can then
be used to reduce the Zn*m,p matrix to the discriminant
space, represented by Yn*m,r. From these transformed
training pixels the class centroids ZÅ c and corresponding
covariance matrices Cc of each class c are calculated. In
the same way, unknown mini-spectra in the test matrix
Z*

n*m,p can be transformed to their discriminant space
Y*

n*m,r. Their class membership can be predicted by the
Mahalanobis distances by using ZÅ c and Cc. The classi® -
cation result is expressed by the vector dn*m, in which
integer-valued elements represent the membership of
each image pixel in a particular material class. It should
be noted that the maximal dimension of r is de® ned as:

r 5 min ( p, nc 2 1), where nc is the number of classes.
The vector dn*m can be folded back to an image Dn,m,
which facilitates a direct evaluation by means of visual
inspection.

Filtering of Classi® ed Images. Another important in-
herent characteristic of multivariate images is the high
correlation between adjacent pixels. In the classi® cation
process, only the spectral information is used. In order to
use the additional geometric correlation, a ® ltering pro-
cedure was applied to the images. This ® lter, referred to
as a majority ® lter, checks for the class membership of
the neighbor pixels. The class membership of the pixel
under investigation is replaced by that of the majority of
the neighboring pixels. This is done by ® rst de® ning a
window around the pixel to be examined. This window
has a size of s s where s must be uneven. When a pre-*
de® ned number of neighbors m, where m is larger than
0.5 (s s 2 1), have the same class membership as the* *
central pixel, then the class membership of the central
pixel is replaced by that of the majority. The decision
about the number of pixels within the window that should
represent the majority is dependent on the size of the
window and is problem-speci® c. In this work, the clas-
si® ed images have been ® ltered by using a window size

of 3 3 with a majority threshold of 6. In this way, the*
high correlation between neighboring pixels is taken into
account. As most waste objects are positioned around the
image center, the edges of the images are not ® ltered.

RESULTS AND DISCUSSION

Inspection of Calibration Dataset. Figure 4 shows
the mini-spectra (pixels) from the calibration dataset,
plotted for the ® rst two discriminant axes of the LDA
model. As mentioned previously, the maximum number
of discriminant weights (r) that can be calculated is
de® ned by r 5 min( p, nc 2 1), where p 5 6 (the num-
ber of interference ® lters) and nc 5 3 (the number of
classes). This means that there are maximally two dis-
criminant weights which can be calculated for these
data. The plot shows that the information content in the
mini-spectra allows a discrimination between the three
material classes: plastic, nonplastic, and background.
There is a small overlap for nonplastic and background
pixels. It turned out that the overlapping pixels were
selected from transparent glass. Obviously, the small
absorbance of this glass is hard to detect by our ex-
perimental setup within the wavelength regions used.
This consideration makes it dif® cult to discriminate the
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FIG. 5. In¯ uence of shadow on mini-spectra. The mini-spectra shown are taken from the indicated positions in Fig. 6B. The mini-spectrum for
background material shows no spectral features, but the two shadow spectra resemble the mini-spectrum for the nonplastic material.

TABLE II. Time calculations for hardware and software in ms.
The hardware measurements were executed in a stand-alone mode,
without the use of the ® lter wheel, but include the correction of the
images for background and dark current contributions.

With
LDA (ms)

Without
LDA (ms)

Hardware:
Software:

Measurements
Step 1
Step 2
Step 3

631
30

284
63

631
Ð
829
63

Total 377 892

glass from the background material. Another overlap
exists between plastic and nonplastic materials. This
overlap was due to thin and transparent plastic foils
whose mini-spectra did not clearly exhibit the features
of one of the plastic spectra. The three ellipses in the
plot indicate equidistant distances from each corre-
sponding class center, with the use of the Mahalanobis
distance measure. As this measure takes the cluster
variance into account, the ellipse of a compact cluster
(small standard deviation) will enclose a smaller area
than a cluster which is more diffuse (large standard
deviation). The ellipses are calculated by multiplying
the class standard deviations with the same (arbitrary)
number. Because the spread in the cluster for back-
ground pixels (for both axis) is the smallest, the cor-
responding ellipse is also the smallest. Note that the
plot shows regions of extrapolation (empty areas within
the ellipse) for both plastic and nonplastic materials.

Test Set Classi® cation. The prediction ability of the
LDA model is validated with the test set. The classi® -
cation results for the test set are shown in Table I. We
tried to improve the classi® cation results by preprocess-
ing the data prior to calculating the model. Therefore,

several scaling techniques were applied on the corre-
sponding mini-spectra. To compare the in¯ uence of the
different scaling techniques, we formulated a zero-hy-
pothesis (Ho) for each material type:

Ho: The classi® cation result is material c if the Ma-
halanobis distance of this object pixel in the trans-
formed LDA space to the centroid of class c is the
smallest, where c can be one of the material classesÐ
plastic, nonplastic or background.

The a error is de® ned as the rejection of Ho while it
is true (`̀ false negative`̀ ). The b error is de® ned as the
acceptance of Ho while it is false (`̀ false positive’ ’ ). It
cannot be predicted which of these errors is important
and what their values should be. This factor depends on
the desired sorting criteria. When a high material purity
is required, the b error must be as small as possible. This
means that the percentage of other materials in the (al-
ready) sorted plastic waste is kept to a minimum. For
example, when the b error for material class c is zero,
all samples in the test dataset which do not belong to
class c are not classi® ed as being material class c. On the
other hand, when a high yield of sorted material is re-
quired, the a error should be as low as possible. For
example, when the a error for material class c is zero,
all the corresponding samples in the test dataset belong-
ing to class c are classi® ed correctly. In plastic recycling,
the b error is an important purity parameter, since differ-
ent types of plastic do not mix well and only very pure
mono-streams can be processed to high-value products.
In this case, a very low b error is required. One should
keep in mind that a low b error can result in a low yield
since only the very pure materials are extracted from the
waste. On the other hand, when the recycled plastic ma-
terial is destined for low-value products, the yield is very
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FIG. 6. (A and B) Example of two original raw images, measured from a plastic (PET) fragment and a cotton sock, in the spectral range from
2100 to 2500 nm. Note the shadow regions for the cotton sock. (C and D) The raw images from A and B are classi® ed by the three-class LDA
model. Black represents plastic material, light gray the background, and medium gray the nonplastic material. Shadow and edge effects are not
recognized by the model. (E and F) The raw images from A and B are classi® ed by the four-class LDA model. Shadow and edge effects are partly
recognized by the model. (G and H) The raw images from A and B are classi® ed by the four-class LDA model and ® ltered with the majority ® lter.
Shadow and background classes are represented by the light gray color as one class.

important and should be very high. This standard can be
achieved by a low a error. It depends on the quality de-
mands of the low-value product to what extent the b error
may occur.

Three different scaling techniques were applied on the
three-class model: unit length, range (0± 1), and auto-
scaling. The four-class dataset is the extended three-class
dataset including shadow pixels. The a and b classi® ca-
tion errors were calculated for each material class.

The best classi® cation results are obtained when au-
toscaled mini-spectra are used. Normalization to unit
length and range scaling between 0 and 1 yielded bad
classi® cation results, while mean centering gave exactly

the same results achieved without preprocessing of the
mini-spectra. As both the plastic and nonplastic samples
are compiled from various materials, their corresponding
mini-spectra express a large within-group variance. Since
autoscaling takes this variance into account, it can lead
to better classi® cation results. Although the overall clas-
si® cation is just slightly better than classi® cation of the
untreated mini-spectra, we nevertheless decided to use
the untreated mini-spectra for further classi® cation. The
reason for this decision was that scaling techniques re-
quire additional computation time, which reduces the
speed for on-line measurements. This choice could be
made because the classi® cation performance without
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FIG. 6. Continued.

scaling was not signi® cantly worse than that with scaling.
An additional problem appeared when the three-class
model was tested on real images. It turned out that small
shadow bands around the objects were wrongly classi® ed.
This artifact was studied in more detail.

In¯ uence of Shadow. In Fig. 5, a plot of four different
mini-spectra is shown. These spectra were obtained from
different areas in the image, as indicated by the corre-
sponding symbols in Fig. 6B. The upper spectrum was
measured from pure background material, whereas the
lower spectrum originated from a nonplastic material.
The remaining spectra were obtained from areas in the
shadow region. Spectrum `̀ Shadow1’’ was obtained from
a region further away from the object sample than spec-

trum `̀ Shadow2’’ . From these spectra it can be seen why
the shadow spectra differ from the object material spec-
tra. The shadow spectra exhibit the same spectral struc-
ture as the object material, except for a constant differ-
ence (offset) in absorbance. The closer a shadow pixel is
to the object, the smaller the offset difference in com-
parison with the spectrum of the object material. This
offset difference must be caused by the lower intensity
of the re¯ ected radiation of these spatial regions, because
shadow areas are less illuminated than others. The reason
why shadow spectra resemble the spectra of the object
has to do with the type of re¯ ection. As diffuse re¯ ected
radiation leaves the object surface in all directions, a
(small) part of this radiation can be captured by neigh-
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boring pixels in the FPA detector and in¯ uence their
spectra (also see next section).

On-Line Classi® cation of Real Images. For on-line
classi® cation of raw images, two objects were chosen
from two different materialsÐ a nonplastic folded cotton
sock and a plastic (PET) fragment. The raw images of
these objects are depicted in Figs. 6A and 6B. Both im-
ages are easy to discriminate from the background, al-
though it should be noted that the image measured from
the sock contains shadow contributions on the upper and
lower side of the sock. When the three-class LDA model
was used to classify these raw images, it had dif® culties
in identifying the shadow contributions, because the mod-
el was not trained for this artifact (Figs. 6C and 6D). The
edges of the plastic object were even recognized as non-
plastic material. To overcome this problem in the short
term, we added an extra shadow class to the LDA model.
This class is identi® ed as the four-class model. Additional
shadow pixels (400) were extracted from stacks of im-
ages, measured from high objects. The selection of these
pixels went through the same procedure as described be-
fore. Consequently, the LDA calibration model was ex-
tended to four classes. Table I shows that the classi® ca-
tion results for plastics and especially for nonplastics be-
came a little bit worse. The extra class forced the LDA
model to include it in the old model, resulting in a loss
of discrimination power for the existing classes. Since the
shadow spectra resembled those of the nonplastic, the
discrimination between these spectra is more dif® cult.
The two models show that a choice has to be made when
raw images are to be classi® ed. The three-class model
predicts the three material types better than the four-class
model but cannot handle the image artifacts such as shad-
owed areas. To investigate the worst case, we depict the
classi® cation of the aforementioned raw images per-
formed with the four-class model in Figs. 6E and 6F.
Although some false classi® cations occurred near the
edge of the object, the four-class model was for the most
part capable of recognizing large areas of shadow around
the object. After including the geometric correlation in
the images by the majority ® lter and representing the
background and shadow class by one combined class (see
Figs. 6G and 6H), we could easily recognize the material
class of the measured objects.

Speed Measurements. One of the requirements for
on-line identi® cation is fast image processing. Therefore,
speed measurements for the individual hardware and soft-
ware components have been carried out, ranging from the
image measurement step to the classi® cation of the image
pixels for a complete stack of images. The slowest step
of the present experimental laboratory setup is due to the
slow communication between computer and rotating ® lter
wheel. This delay in the procedure of setup reduced the
measurement time for one identi® cation to about 6 s. Be-
cause of this consideration, the speed measurements are
calculated per individual step, to estimate the decision
speed of the experimental setup, when the communica-
tion problem of the ® lter wheel is solved. In Table II, a
time table is given for the individual steps. The LDA
classi® cation is compared with classi® cation of the un-
reduced original mini-spectra, with the use of only the
Mahalanobis distance measure. The table shows that the
measurement time for the software processing part is

much shorter than that for the hardware, if LDA is used
for classi® cation. The software computation time com-
prises three substeps. In step 1, the raw mini-spectra have
to be transformed to the discriminant space (only for
LDA classi® cation). Step 2 comprises the calculation of
Mahalanobis distances from the transformed mini-spectra
to all class centroids. In the last step, the shortest class
distance for each mini-spectrum is calculated and all clas-
si® ed mini-spectra are counted. When the time consump-
tion of LDA classi® cation is compared with that for clas-
si® cation of the original, unreduced mini-spectra, a time
reduction of a factor 2.4 is obtained. Although LDA clas-
si® cation needs an extra transformation step (step 1),
more time is gained with the distance calculations. This
gain will even increase when more interference ® lters are
used, since more operations are needed in the distance
calculations of step 2!

Future Expectations. The use of the present experi-
mental setup for the identi® cation of different types of
plastics is presently under investigation. For this goal to
be accomplished, either more wavelength regions have to
be taken into account (requiring the installation of more
interference ® lters) or smaller ® lter widths have to be
used. Both options are meant to measure more speci® c
information from the waste materials, since the spectra
of, e.g., PE and PP show only small differences within a
limited wavelength range.19 Furthermore, for the appli-
cation of such a system in practice, it should have no
moving parts as well as high measurement and classi® -
cation speed.

To guarantee fast, safe, and robust classi® cation of
spectroscopic image data, future research will focus on
the implementation of other multivariate identi® cation
techniques such as arti® cial neural networks and a boot-
strap-based classi® cation technique30 with error indica-
tion. Preliminary results of arti® cial neural networks as
advanced, nonlinear, multivariate classi® cation methods,
applied to spectroscopic imaging, have already been pre-
sented.31

CONCLUSION

In the present work we have demonstrated that spec-
troscopic near-infrared imaging can be used for rapid on-
line material identi® cation on a macroscopic scale. An
important requirement is that multivariate statistical iden-
ti® cation techniques be used, which reduce the large
amount of spectroscopic image data for faster data han-
dling. The classi® cation results showed that an empirical
pattern recognition technique, such as LDA, is very suit-
able for the on-line classi® cation of spectroscopic images.
This technique is fast and robust and reduces the large
stacks of image data. The necessity of preparing a cali-
bration and test dataset also accounts for spectroscopic
image data; accordingly, an easy way of performing this
procedure by means of principal component analysis is
presented. This procedure facilitates the access for other
spectroscopic imaging techniques to identify materials on
the basis of their differences in physicochemical proper-
ties. The present experimental laboratory setup is able to
measure suf® cient information from the waste materials
to discriminate between them. The recognition percent-
age for plastics and nonplastic materials by LDA is high-
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er than 97%. This level is signi® cantly better than that
achieved with the recently reported unsupervised classi-
® er.10 Nevertheless the on-line classi® cation of complete
images showed additional practical problems such as the
in¯ uence of shadow and speed contributions.
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