
7

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.1

APPLICATION OF ABSTRACT DATA TYPE IN DYNAMIC
PLA APPROACH

Henrikas Pranevičius, Agnė Paulauskaitė-Tarasevičienė, Dalius Makackas
Department of Business Informatics, Kaunas University of Technology

Studentu 56-301, LT-51424 Kaunas, Lithuania
e-mail: agne@ifko.ktu.lt

Abstract. This paper presents the definition of abstract data type (ADT) in dynamic Piece-Linear Aggregate (PLA)
model. The introduced ADT permits to describe structural changes in the hierarchical dynamic PLA (dynPLA). In
order to formalize the specification of abstract data type, the Z language is used. The application of ADT in
specification of dynPLA is demonstrated by an example - the transaction processing system.

Keywords: dynamic systems, formal specification, piece-linear aggregate, abstract data types.

1. Introduction

Recently, there is a need to specify systems, which
interact in the dynamic environment and react to va-
rious influences by changing the type and the number
of their attributes. Such systems are of variable (dyna-
mic) structure, where not only the state but the
structure as well is changing in time.

In the real-world applications, there are a lot of
activity models, where the tasks related with structural
changes are solved. In the biological field, the comp-
lex evolution problems are modeled quite often, where
dynamic structure is a key feature of such processes
[10]. In the simulation of real biological systems a
more flexible and understandable description manner
is preferable. Such systems usually compose a struc-
ture of few levels that leads to the dynamic hierarchi-
cal modeling. Multi-agent systems (MAS) are relati-
vely a new research trend, but more and more
researches are performed, where agents are used to
solve different problems [2]. Specific features of MAS
require for various structural changes, such as migra-
tion of agents, self-modification and others [4, 5, 6].
There are also other types of systems, which require to
support changes of structure, e.g. traffic management,
WEB protocols, complex networks [3].

Since such systems usually are of large scale and
complex, a motivation for a formal specification
occurs. Most of the formal methods can specify only
the systems whose structure doesn’t vary in time.
However, a task of formalization of variable structures
is considered in this area as well. For the formali-
zation of dynamic structures, these formalisms need to
be extended. There are several formal dynamic
approaches, which are based on widely used formal

method DEVS (Discrete Event Systems Specification)
[16]. In dynDEVS, models are interpreted as a set of
different models (incarnations) that are generating
themselves by model transition functions [11, 13]. In
Multi-level DEVS, apart from variable structures and
dynamic ports, multi-level abstraction is provided
[14].

Dynamic structure systems are also modeled with
various Petri Nets (e.g. dynamic Petri Nets, Colored
Petri Nets, high level Petri Nets). For example, the
idea of high-level Petri nets is that model can modify
its structure by adding/removing places and transitions
[15].

Piece-Linear Aggregate (PLA) is a specification
formalism based on timed automata [9]. This formal
method is used for creation of simulation models and
their validation. PLA is very important in designing of
complex real time systems, but only of static structure.
The extension of PLA – dynPLA has been proposed
some time ago [7]. In dynPLA, the specification of
aggregate is extended with the new operations, such as
addition/removal of new aggregate, addition/removal
of new output, and etc. Since dynPLA was presented
in the conceptual level not elaborating into the
realization details, dynPLA is developed further in this
paper. Here, dynPLA is defined using the extended
structure of an aggregate, enabling the hierarchical
structure. An aggregate consists of the regular attri-
butes used in PLA approach [9] and other internal
aggregates with their own connections. To define the
structural changes for the system of aggregates, ab-
stract data types (ADT) are introduced in dynPLA. Z
specification language [8] is used for the formalization
of ADT.

H. Pranevičius, A. Paulauskaitė-Tarasevičienė, D. Makackas

8

The rest of the paper is organized as follows. In
Section 2 PLA model is presented including defini-
tions of classical and dynamic approaches. Section 3
provides Z specification of abstract data type for struc-
tural changes in dynPLA. Section 4 illustrates an
example where ADT in dynPLA specification is used.
We finish with concluding remarks in Section 5.

2. Piece-linear aggregate (PLA) model
2.1. Classical PLA

In classical PLA notation, an aggregate can change
only its own state, which consists of discrete and
continuous components [9].

Definition 1. Aggregate A is a tuple
GHZEEYXA ,,,,,, ′′′= , where

X − set of input signals;
Y − set of output signals;
E′ − set of external events;
E″ − set of internal events;

…,, 21
ii

ie ξξ′′ − controlling
sequences

νν zZ ,= - the state of aggregate;
v – discrete component;
zv – continuous component;

H − transition operator
(ZZEEH →×′′∪′:);
G − output operator (YZEEG →×′′∪′:).

The schema of aggregate A is depicted in Figure 1.

Aggregate

x1

x2

xn

y1

y2

yn
Figure 1. An aggregate

Definition 2. The system of aggregates is a
tuple RAAAA nS },,..,{ 21= , where

− iA is an aggregate, iiiiiiii GHZEEYXA ,,,,,, ′′′=

ni ,1= ;
− R is the set of links between aggregates of the

system
},...{},..{},..{},..{ 1111 nnnn XXAAYYAAR ×→×=

The system of aggregates is illustrated in Figure 2.
Usually complex systems are described using a

hierarchical approach thereby presenting them as a
multi-level structure. Hierarchical structure facilitates
the description of tasks which require for the layout of
objects in the different levels. To define the hierarchy
of aggregates, each aggregate is enabled to have a set
of internal aggregates, which in turn can have the
connections with their parent aggregate (“surroun-
ding” aggregate) and with each other. All internal
aggregates can have a set of aggregates as well. This
principle is illustrated in Figure 3. Thus, the structure
of hierarchical aggregate consists not only of all

attributes of classical PLA (Definition 1) but also
includes other connected aggregates (Definition 2),
which have the same structure as hierarchical aggre-
gate.

Aggregate 1

Aggregate 2 Aggregate N

Figure 2. The system of aggregates

Definition 3. Hierarchical aggregate Ah is a struc-
ture RRAAAA nh ,,,.., 010= , where

 − 0A is an aggregate, which has a structure
described in Definition 1;

 − nAA ,...1 are internal aggregates, which are
contained in the aggregate 0A .

− ∧×→×= },..{},..{ 11000 nn XXAAYAR

0011 },...{},....{ XAYYAA nn ×→× is the set of links
between aggregate 0A and internal
aggregates nAA ,...1 ;

− },..{},..{},..{},..{ 1111 nnnn XXAAYYAAR ×→×= is
set of links between internal aggregates.

Aggregate Aggregate Aggregate Aggregate

Aggregate Aggregate

Aggregate

Aggregate

Figure 3. Illustration of hierarchical aggregate

2.2. dynPLA

 The purpose of this section is to adapt the hierar-
chical aggregate to define the systems, whose struc-
ture is varying in time. Besides, the aggregates should
have a capability to change their own structure autono-
mously. Each set of aggregate’s attributes can be aug-
mented by new element (() () newmm xtXtX ∪=+1) or
be reduced by removing the existing one
(() () oldmm xtXtX \1 =+) at a certain time moment. The
changes in the aggregate model are the reactions to the
internal and external events. An aggregate can perform
the structural modifications, which don’t change its
interface, since the external changes of the internal
aggregate are internal changes of its surrounding one.

Definition 4. dynPLA is the hierarchical PLA mo-
del (Def. 3), whose components are varying in time:

Application of Abstract Data Type in Dynamic PLA Approach

9

)(),(),(),(),(),(),(),(),(tAtGtHttZtEtEtYtXA sdyn νν′′′= ,
where:

)(tX − set of input signals at time moment t;
)(tY − set of output signals at time moment t;
)(tE′ − set of external events at time moment t;
)(tE ′′ − set of internal events at time moment t;
)(tZν − set of continuous components at time moment t;

)(tν − set of discrete components at time moment t;
)(tH − set of transition operators at time moment t;
)(tG − set of output operators at time moment t ;
)(tAS − system of aggregates at time moment t .

In classical PLA model, Markov process, which
describes the changes of the aggregate’s state)(tz ,
includes two components)(tzv ,)(tv . Based on dyn-
PLA, the new process is denoted below:

() () () () () () () () () ()tAtGtHtZttEtEtYtXtz S,,,,,,,, νν′′′= ,

which describes the state of the system at each time
moment t:

()
() ()
() { }
()⎪

⎩

⎪
⎨

⎧

=
∈
∈

=
−−

.,
,,..,,

,,,

00

21

11

tttz
ttttz

ttttz
tz m

mmm

3. Usage of abstract data type in dynPLA
The main goals of the usage of ADT are: to have

clear, precise and unambiguous description of com-
mon data with associated operations; to encapsulate
the specification; to provide the basis for their reali-
zation in programs.

ADT in PLA method was used as well to solve the
certain group of problems where the set of particular
data with associated operations were used rather
frequently in the specification. For instance, ADT of
queue was used to specify protocols [9] in order to
make the specification more compact and to avoid the
declaration of usual operations.

In dynPLA model, four types of structural changes
of the system of aggregates may occur: addition of the
new link; removal of existing link, addition of the new
aggregate, removal of existing aggregate. It is possible
to declare the common actions for each group of
structural changes described above:

1. Addition of a link: the corresponding link
() ()xAyA ji ,, , ji ≠ is added to the set of links;
new output signal y is added to the set of output
signals of source aggregate iA ; new input signal, ex-
ternal event, transition and output operators to process
the new signal are added to the corresponding sets of
target aggregate jA .

2. Removal of a link: the link is removed from the
set of links; output signal is removed from the set of
output signals of source aggregate; input signal,

external event, transition and output operators to pro-
cess the old signal are removed from the corres-
ponding sets of target aggregate.

3. Creation of an aggregate: the aggregate iA is
added to the set of aggregates.

4. Removal of an aggregate: the aggregate kA is
removed from the set of aggregates; all links
associated with removed aggregate are deleted

),(),(| xAyARr jk∈∀ or),(),(| xAyARr ki∈∀ .

It is appropriate to consider the use of data abstrac-
tions for such actions, declaring system of aggregates
as a set of data with associated operations listed
above. To invoke any of these operations, the precise
description of format for input information is defined.
To add or remove a link, the information of type
() ()xAyA ji ,, , ji ≠ is required. To add the new ag-
gregate, the name and type of aggregate kA have to be
referred. To remove the certain aggregate kA , only the
name of the aggregate is required, since all names of
aggregates are unique.

3.1. Formalization of abstract data types using Z
notation

Specifications of abstract data types provide the
basis for their realization. Formal specification is used
to validate the statement about model description. For
the formal description of ADT specification, Z nota-
tion was chosen [8]. This method enables an unambi-
guous description of all actions for structural changes
in the system of aggregates. Restrictions and condi-
tions which have to be met in order to perform struc-
tural changes correctly and to avoid faults were
included, e.g. we can’t create a link, which already
exists. The specification of abstract data type was vali-
dated using Z notation prover Z/EVES, which has
possibilities to check the syntax and semantic of
models or even to write theorems [12].

3.2. Z specification of abstract data type for
structural changes

In Z specification language all data abstractions
and operations are defined as separate components
called schemas. The specification of ADT of structural
changes in dynPLA is described below.

Global sets of attributes υp]E2p,E1p,Yp,Xp,[ID,
are given bellow:
• ID − set of all possible names of aggregates;
• Xp − set of all possible input signals;
• Yp − set of all possible output signals;
• pE1 − set of all possible external events;
• E2p − set of all possible internal events;
• pυ − set of all possible discrete components.

The operations for creation/deletion of links use
the type information RInformation as input para-
meters. RInformation includes the name ID of source

H. Pranevičius, A. Paulauskaitė-Tarasevičienė, D. Makackas

10

aggregate with its output signal Yp and the name ID
of target aggregate with its input signal Xp :

() ()YpIDXpIDonRInformati ×××= .
The operation for creation of new aggregate uses

the type information AgInformation as input
parameters, which includes the name and type of new
aggregate:

()AggIDionAgInformat ×= .
The state of surrounding aggregate is described

using state variables of Z schema Aggregate.

The set Ag of internal aggregates is of the structure

[],...:,:,: YpYXpXIDidAgg ΡΡ= , which has the
same structure as Z schema Aggregate.

Surrounding aggregate

a) Links between two
internal aggregates

Surrounding aggregate

b) Links from internal

aggregates to surrounding
aggregate

Surrounding aggregate

 c) Links from surrounding
aggregate to internal

aggregates

Surrounding aggregate

d) Links from internal

aggregate to itself

Figure 4. Allowed types of links in dynPLA
In the predicate of schema Aggregate, the different

kinds of possible links are defined: 1) between two in-
ternal aggregates (Figure 4a); 2) from internal aggre-
gates to surrounding aggregate (Figure 4b.); 3) from

surrounding aggregate to internal aggregates
(Figure 4c); 4) from internal aggregate to itself
(Figure 4d.).

3.2.1. Operations
Four fundamental schemas for the structural

changes of system of aggregates were developed.
 Add_R schema describes the creation of the new
link. It has two preconditions, which define the
constraints on the operation: aggregates id1, id2,
which will be connected by the new link, have to
belong to the set of aggregates Ag; the new link newR
can’t exist in the set of links R. If it is true, the predicate
of Add_R specifies that the set of links after the
completion of the operation is augmented by the new
link newR. In this operation, all state variables remain
unchanged, except R.

Only the added link is visible for external observer.

The aggregates, which have to be connected by the
new link, perform structural changes in their inside
structure as well. AgchangesX and AgchangesY sche-
mas define the structural changes in the source and
target aggregates.

In order to apply such actions only to the aggre-

gates, which have to be connected by the new link, the
partial operations of Aggregate schema named as the
framing schemas were used.
 The first framing schema ΦFraming1 defines the
changes in the source aggregate, the second one
ΦFraming2 in the target aggregate.

Application of Abstract Data Type in Dynamic PLA Approach

11

Since the framing schema by itself does not repre-

sent any system operation, it is combined with pre-
vious definitions: ΔAgg, AgchangesX or AgchangesY.
Above defined framing schemas are combined in the
following way:

AgchangesXFraming1AggSchemaforX ∧Φ⋅Δ∃=
AgchangesYFraming2AggSchemaforY ∧Φ⋅Δ∃=

Finally, the operation of the link creation can be
defined as a composition of SchemaforX, SchemaforY
and Add_R schemas:

RAddSchemaforYSchemaforXAddR _∧∧=
The operation for removal of link is described in

the same way as operation of link creation, whereas all
corresponding signals (input and output), transition
and/or output operators and link are not added but
deleted.

AddAg schema describes the creation of new ag-

gregate. The new aggregate can be added only if it
doesn’t belong to the set of internal aggregates Ag.

RemoveAg schema describes the removal of the

aggregate. To remove the aggregate from the system,
it is not sufficient to delete the aggregate from the set
of aggregates. All links associated with aggregate have
to be removed as well.

4. An example
To demonstrate the application of abstract data

type in dynPLA, an example − the model of transac-
tion processing system is introduced.

The transaction processing system consists of
transaction coordinator (TM), which handles resources
(RM), which in turn perform certain actions. When
transaction coordinator receives a request to perform a
task, it forwards this task to the particular resource.
When resource completes the task, it notifies the trans-
action coordinator, which in turn can free up the
resource [7].

4.1. Specification of the transaction processing
system

The transaction processing system is presented in
Figure 5. The system of aggregates includes such
aggregates:

• External aggregate 0A ;
• Transaction coordinator TC ;
• Resources kRM .

TC

RM1

RMn

 y3

RM2
y1x2

x3 y2

xn

x1

y1

y1

y1

0A

y0

Figure 5. The structure of the system of aggregates

In the specification of transaction processing sys-
tem given below, ADT (section 3.2) are used to
describe the structural changes of the system of
aggregates:

• AddAg − to create the new aggregates kRM ;

H. Pranevičius, A. Paulauskaitė-Tarasevičienė, D. Makackas

12

• RemoveAg − to remove the existing
aggregates kRM ;

• AddR − to create new links between TC and
aggre-gates kRM .

Formal descriptions of all aggregates of system are
presented using method of controlling sequences [9].

4.1.1. The system of aggregates
The analyzed system is presented as a set of

aggregates:
() () (){ } ()tRRMtTCtAtAs ,,0 ∪= ,

where
:RM { }nRMRM ,...1 ,

()

)},,(),(
),,(),(

),,(),{(

1

1

100

mk

kk

xTCyRM
xRMyTC

xTCyAtR

→
→

→=

where),(1 #RMk = ,)1,(2 # += RMm .
Below is depicted the structure of the system of

aggregates at initial time moment (Figure 6).

Figure 6. The model of Transaction processing system at
initial time moment.

In this time moment, the system has two connected
aggregates TC and 0A :

() () (){ } ()00000 ,, tRtTCtAtAs = ,

where () () ()1000 ,, xTCyAtR →= .

4.1.2 0A aggregate
Aggregate 0A is responsible for generation of the

new tasks, which are transmitted to the transaction
coordinator TC.
1. ∅=X .
2. }{ 0yY = .
3. ∅='E .
4. }"{" 1eE = − the generation of the new tasks.

 ∞=→ ,1},{}"{)1(
1 ke kϕ , where)1(

kϕ − the time
period between generation of k-th and (k-1)th tasks.
5 () ∅=tν .
6 ()),"(1 mtewtz =ν , () ∞=0tzν
7. (){ }1eHH ′′= .
8. (){ }1eGG ′′= .

:)"(1eH // the end of generation of the new task//

 1
1)1,"(imm ttew η+=+ ,

.:)"(01 taskyeG =

4.1.3. TC aggregate
TC is a transaction coordinator, which receives re-

quests from external aggregate 0A and performs the
tasks. All received requests are inserted into the FIFO
queue. It forwards each request to the corresponding
resource aggregates. When a resource completes the
task, it notifies the TC aggregate, which in turn release
the resource.
1. () },...,{ 1)(21 += tcntxxxtX .

2. () },...,{)(21 tcntyyytY = .

3. () }',...,'{' 1)(21 +′= tcnteeetE .

4. }{" 1eE ′′= , where 1e ′′ – is processing of the task
Set E” is not varying in time.

∞=→ ,1},{}"{)1(
1 ke kη , where)1(

kη − the time
period between processing of k-th and (k-1)th tasks.
5. () () (){ })(,, tcnttQtAt S=ν ,
where ()tQ – a queue of tasks;.

 ()tAS – a set of aggregates of system;
)(tcnt – the number of active resources.
6. () ()},{ 1 mtewtz ′′=ν .
7. () () () (){ }1)(21 ,..., +′′′= tcnteHeHeHtH .

8. () () () (){ }1)(21 ,, +′′′= tcnteGeGeGtG .
Descriptions of transition and output operator, which
define the changes of RA aggregate’s coordinates are
presented below

:)'(1eH // the new task is received //

()() ()

() () ,0,,

,,,,
#1

1

1

=+=′′

∞≠′′

mkmm

mm

tQifttew

tewiftasktQENQ

η

∅=YeG :)'(1 .
:)(1eH ′′ // the end of processing of the task //

()()

() ,0
).),((

,1)()1(
,

≠
⎪
⎭

⎪
⎬

⎫
+=+ m

mS

mm

m

tQif
CAtAAddAg
tcnttcnt

tQDEQ

where ()1+=
mtcntRMCA ,

)),((CRtAAddR mS ,
where CR = () ()),(),{(1111 +++ →

mm tcnttcnt xTCyRM ,

 () ()),(),(111 xRMyTC
mm tcnttcnt ++ → ,

 () () ,0,, #1
1 =+=′′ mkmm tQifttew η

,:)(11 hyeG ′′ where ()1+= mtcnth .
:)'(keH // the forwarded task is accomplished //

)),((DAtARemoveAg mS , where kRMDA = ,

where 1)(,2 += tcntk ,
∅=YeG k :)'(.

The structure of aggregate TC at the initial time
moment is described below:
1. ()0 1{ }X t x= ,

0A

TC
x10y

Application of Abstract Data Type in Dynamic PLA Approach

13

2. () ∅=0tY ,
3. () }'{' 10 etE = ,
4. }{" 1eE ′′= ,
5. () () (){ })(,, 0000 tcnttQtAt S=ν ,
where () 00 =tQ ,
 0)(0 =tcnt ,
the structure of ()0tAS at initial time moment is defi-
ned in section 4.1.1.
6. () }{0 ∞=tzν ,
7. () (){ }10 eHtH ′= ,
8. () (){ }10 eGtG ′= .

4.1.4. kRM aggregate

The aggregate kRM receives a task from transac-
tion coordinator TC. During the internal event, the re-
ceived task is performed. Whenever the task is accom-
plished, the resource aggregate kRM informs trans-
action coordinator TC by generating the output signal.
1. }{ 1xX = .
2. }{ 1yY = .
3. }{' 1eE ′= .
4. }"{" 1eE = − the performance of received task.

 }{}"{)1(
11 ϕ→e − the processing duration of the task.

5 () ∅=tν .
6 ()),"(1 mtewtz =ν , () ∞=0tzν
7. () (){ }11 , eHeHH ′′′= .
8. () (){ }11 , eGeGG ′′′= .

:)'(1eH // the forwarded task is received //

 imm ttew ϕ+=+)1,"(1

11 :)'(∅=YeG .
:)"(1eH // the performance of received task //

 ∞=+)1,"(1 mtew

11 :)(yYeG =′′ .
In this example, the structures of aggregates kRM

and 0A are not varying in time. System of aggregates
is used as abstract data type. Defined operations
(section 3.2.1) in advance were enough to perform all
structural changes in analyzed system.

5. Concluding remarks
In this paper we demonstrated the usage of abstract

data type (ADT) for structural changes in the dynamic
PLA model. For the formalization of ADT, Z speci-
fication language has been chosen, since it provided a
complementary representation of the dynamic behavior
of aggregates. Besides, Z notation allowed us to define
ADT in mathematically rigorous manner based on the
set theory and predicate calculus. Introduced ADT has
been verificated using Z/EVES prover. It permits to
check the syntax and the semantic of specification,
ensuring that ADT was defined correctly. In dynPLA,

the application of predefined ADT allowed us to get the
compact specification for considered example.
 In the future, this approach will be used for formali-
zation of the Session Invitation Protocol (SIP).

References
 [1] F. J. Barros. Modeling formalisms for dynamic struc-

ture systems. ACM Trans. Model. Comput. Simul. Vol.7,
No. 4, 1997, 501–515.

 [2] F. Bellifemine, G. Claire, D. Greenwood. Developing
Multi-Agent Systems with JADE. John Wiley & Sons.
Ltd., 2007.

 [3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-
U. Hwang. Complex networks: Structure and dynamics.
Physics Reports, Vol.424, No. 4-5, 2006, 175–308.

 [4] F. M. T. Brazier, N. J. E. Wijngaards. Designing Self-
Modifying Agents. Proceedings of Computational and
Cognitive Models of Creative Design, the fifth
international roundtable conference Computing, Uni-
versity of Sydney, 2001, 93-112.

 [5] F. M. T. Brazier, B. J. Overeinder, M. van Steen,
N. J. E. Wijngaards. Generative Migration of Agents.
Proceedings of the AISB’02 Symposium on Adaptive
Agents and Multi-Agent Systems, 2002, 116-119.

 [6] V. Dignum, F. Dignum, L. Sonenberg. Towards dyna-
mic organization of agent societies. Workshop on Coor-
dination in Emergent Agent Societies, 2004, 70–78.

 [7] Š. Packevičius, A. Kazla, H. Pranevičius. Extension of
PLA Specification for Dynamic System Formalization.
Information Technology And Control, 2006, Vol.35, No.3,
235 – 242.

 [8] B. Potter, J. Sinclair, D. Till . An Introduction to For-
mal Specification and Z. Prentice Hall, Trowbridge, UK,
1996.

 [9] H. Pranevičius. Formal Specification and Analysis of
Computer Network Protocols: Aggregate Approach.
Technologija, Kaunas, 2004 (in Lithuanian).

[10] J. R. Prill, P.A. Iglesias, A. Levchenko. Dynamic
Properties of Network Motifs Contribute to Biological
Network Organization. 2005, PloS Biology, Vol. 3(11),
650 – 659.

[11] M. Rohl, A. M. Uhrmacher. Controlled Experimen-ta-
tion with Agents - Models and Implementations. 5th
International Workshop. “Engineering Societies in the
Agents World”, Toulouse, France, 2004, October, 20-
22, 292-304.

[12] M. Saaltink. The Z/EVES 2.0 User‘s Guide. TR – 99-
5493-06a, ORA Canada, Canada, 1999.

[13] A. M. Uhrmacher. Dynamic Structures in Modeling
and Simulation : A Reflective Approach. ACM
Transactions on Modeling and Computer Simulation,
Vol.11, No.2, 2001, 206-232.

[14] A. M. Uhrmacher, R. Ewald, M. John, C. Maus, M.
Jeschke, S. Biermann. Combining Micro and macro-
modeling in DEVS for computational biology.
Proceedings of the 2007 Winter Simulation Conference,
IEEE Press, 2007, 871-880.

[15] D. Xu, Y. Deng. Modeling mobile agent systems with
high level Petri nets. Proc. IEEE International
Conference on Systems, Man and Cybernetics
(SMC’2000), Vol.5, 2000, 3177-3182.

[16] B. P.Zeigler, H. Praehofer, T. G. Kim. Theory of Mo-
deling and Simulation. Second Edition, Academic Press,
2000.

Received October 2008.

