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Abstract. This paper presents the definition of abstract data type (ADT) in dynamic Piece-Linear Aggregate (PLA)  
model. The introduced ADT permits to describe structural changes in the hierarchical dynamic PLA (dynPLA). In 
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1. Introduction 

Recently, there is a need to specify systems, which 
interact in the dynamic environment and react to va-
rious influences by changing the type and the number 
of their attributes. Such systems are of variable (dyna-
mic) structure, where not only the state but the 
structure as well is changing in time. 

In the real-world applications, there are a lot of 
activity models, where the tasks related with structural 
changes are solved. In the biological field, the comp-
lex evolution problems are modeled quite often, where 
dynamic structure is a key feature of such processes 
[10]. In the simulation of real biological systems a 
more flexible and understandable description manner 
is preferable. Such systems usually compose a struc-
ture of few levels that leads to the dynamic hierarchi-
cal modeling. Multi-agent systems (MAS) are relati-
vely a new research trend, but more and more 
researches are performed, where agents are used to 
solve different problems [2]. Specific features of MAS 
require for various structural changes, such as migra-
tion of agents, self-modification and others [4, 5, 6]. 
There are also other types of systems, which require to 
support changes of structure, e.g. traffic management, 
WEB protocols, complex networks [3]. 

Since such systems usually are of large scale and 
complex, a motivation for a formal specification 
occurs. Most of the formal methods can specify only 
the systems whose structure doesn’t vary in time. 
However, a task of formalization of variable structures 
is considered in this area as well.  For the formali-
zation of dynamic structures, these formalisms need to 
be extended. There are several formal dynamic 
approaches, which are based on widely used formal 

method DEVS (Discrete Event Systems Specification) 
[16]. In dynDEVS, models are interpreted as a set of 
different models (incarnations) that are generating 
themselves by model transition functions [11, 13]. In 
Multi-level DEVS, apart from variable structures and 
dynamic ports, multi-level abstraction is provided 
[14].  

Dynamic structure systems are also modeled with 
various Petri Nets (e.g. dynamic Petri Nets, Colored 
Petri Nets, high level Petri Nets). For example, the 
idea of high-level Petri nets is that model can modify 
its structure by adding/removing places and transitions 
[15].  

Piece-Linear Aggregate (PLA) is a specification 
formalism based on timed automata [9]. This formal 
method is used for creation of simulation models and 
their validation. PLA is very important in designing of 
complex real time systems, but only of static structure. 
The extension of PLA – dynPLA has been proposed 
some time ago [7]. In dynPLA, the specification of 
aggregate is extended with the new operations, such as 
addition/removal of new aggregate, addition/removal 
of new output, and etc. Since dynPLA was presented 
in the conceptual level not elaborating into the 
realization details, dynPLA is developed further in this 
paper. Here, dynPLA is defined using the extended 
structure of an aggregate, enabling the hierarchical 
structure. An aggregate consists of the regular attri-
butes used in PLA approach [9] and other internal 
aggregates with their own connections. To define the 
structural changes for the system of aggregates, ab-
stract data types (ADT) are introduced in dynPLA. Z 
specification language [8] is used for the formalization 
of ADT.  
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The rest of the paper is organized as follows. In 
Section 2 PLA model is presented including defini-
tions of classical and dynamic approaches. Section 3 
provides Z specification of abstract data type for struc-
tural changes in dynPLA. Section 4 illustrates an 
example where ADT in dynPLA specification is used. 
We finish with concluding remarks in Section 5. 

2. Piece-linear aggregate (PLA) model 
2.1. Classical PLA 

In classical PLA notation, an aggregate can change 
only its own state, which consists of discrete and 
continuous components [9]. 

Definition 1. Aggregate A is a tuple 
GHZEEYXA ,,,,,, ′′′= , where 

X −  set of input signals; 
Y − set of output signals; 
E′ − set of external events; 
E″ − set of internal events; 

…,, 21
ii

ie ξξ′′ −  controlling 
sequences 

νν zZ ,= - the state of aggregate; 
v – discrete component; 
zv – continuous component; 

H − transition operator 
( ZZEEH →×′′∪′: ); 
G − output operator ( YZEEG →×′′∪′: ). 

The schema of aggregate A is depicted in Figure 1. 

Aggregate

x1

x2

xn

y1

y2

yn  
Figure 1. An aggregate 

Definition 2. The system of aggregates is a 
tuple RAAAA nS },,..,{ 21= , where  

− iA  is an aggregate, iiiiiiii GHZEEYXA ,,,,,, ′′′=  

ni ,1= ; 
− R is the set of links between aggregates of the 

system
},...{},..{},..{},..{ 1111 nnnn XXAAYYAAR ×→×=  

The system of aggregates is illustrated in Figure 2. 
Usually complex systems are described using a 

hierarchical approach thereby presenting them as a 
multi-level structure. Hierarchical structure facilitates 
the description of tasks which require for the layout of 
objects in the different levels. To define the hierarchy 
of aggregates, each aggregate is enabled to have a set 
of internal aggregates, which in turn can have the 
connections with their parent aggregate (“surroun-
ding” aggregate) and with each other. All internal 
aggregates can have a set of aggregates as well. This 
principle is illustrated in Figure 3. Thus, the structure 
of hierarchical aggregate consists not only of all 

attributes of classical PLA (Definition 1) but also 
includes other connected aggregates (Definition 2), 
which have the same structure as hierarchical aggre-
gate.  

Aggregate 1

Aggregate 2 Aggregate N

 
Figure 2. The system of aggregates 

Definition 3. Hierarchical aggregate Ah is a struc-
ture RRAAAA nh ,,,.., 010= , where 

 − 0A  is an aggregate, which has a structure 
described in Definition 1; 

 − nAA ,...1  are internal aggregates, which are 
contained in the aggregate 0A .  

− ∧×→×= },..{},..{ 11000 nn XXAAYAR  

0011 },...{},....{ XAYYAA nn ×→×  is the set of links 
between aggregate 0A and internal  
aggregates nAA ,...1 ; 

− },..{},..{},..{},..{ 1111 nnnn XXAAYYAAR ×→×=  is 
set of links between internal aggregates. 

Aggregate Aggregate Aggregate Aggregate

Aggregate Aggregate 

Aggregate 

Aggregate

 

Figure 3.  Illustration of hierarchical aggregate 

2.2. dynPLA 

 The purpose of this section is to adapt the hierar-
chical aggregate to define the systems, whose struc-
ture is varying in time. Besides, the aggregates should 
have a capability to change their own structure autono-
mously. Each set of aggregate’s attributes can be aug-
mented by new element ( ( ) ( ) newmm xtXtX ∪=+1 ) or 
be reduced by removing the existing one 
( ( ) ( ) oldmm xtXtX \1 =+ ) at a certain time moment. The 
changes in the aggregate model are the reactions to the 
internal and external events. An aggregate can perform 
the structural modifications, which don’t change its 
interface, since the external changes of the internal 
aggregate are internal changes of its surrounding one.  

Definition 4. dynPLA is the hierarchical PLA mo-
del (Def. 3), whose components are varying in time: 
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)(),(),(),(),(),(),(),(),( tAtGtHttZtEtEtYtXA sdyn νν′′′= , 
where: 

)(tX  − set of input signals at time moment t; 
)(tY   − set of output signals at time moment t; 
)(tE′  − set of external events at time moment t; 
)(tE ′′ − set of internal events at time moment t; 
)(tZν − set of continuous components at time moment t; 

)(tν   − set of discrete components at time moment t; 
)(tH  − set of transition operators at  time moment t; 
)(tG   − set of output operators at  time moment t ; 
)(tAS − system of aggregates at time moment t . 

In classical PLA model, Markov process, which 
describes the changes of the aggregate’s state )(tz , 
includes two components )(tzv , )(tv . Based on dyn-
PLA, the new process is denoted below: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tAtGtHtZttEtEtYtXtz S,,,,,,,, νν′′′= , 

which describes the state of the system at each time 
moment t: 

( )
( ) ( )
( ) { }
( )⎪

⎩

⎪
⎨

⎧

=
∈
∈

=
−−

.,
,,..,,

,,,

00

21

11

tttz
ttttz

ttttz
tz m

mmm

   

3. Usage of abstract data type in dynPLA 
The main goals of the usage of ADT are: to have 

clear, precise and unambiguous description of com-
mon data with associated operations; to encapsulate 
the specification; to provide the basis for their reali-
zation in programs. 

ADT in PLA method was used as well to solve the 
certain group of problems where the set of particular 
data with associated operations were used rather 
frequently in the specification. For instance, ADT of 
queue was used to specify protocols [9] in order to 
make the specification more compact and to avoid the 
declaration of usual operations.  

In dynPLA model, four types of structural changes 
of the system of aggregates may occur: addition of the 
new link; removal of existing link, addition of the new 
aggregate, removal of existing aggregate. It is possible 
to declare the common actions for each group of 
structural changes described above: 

1. Addition of a link: the corresponding link 
( ) ( )xAyA ji ,, , ji ≠  is added to the set of links; 
new output signal y is added to the set of output 
signals of source aggregate iA ; new input signal, ex-
ternal event, transition and output operators to process 
the new signal are added to the corresponding sets of 
target aggregate jA . 

2. Removal of a link: the link is removed from the 
set of links; output signal is removed from the set of 
output signals of source aggregate; input signal, 

external event, transition and output operators to pro-
cess the old signal are removed from the corres-
ponding sets of target aggregate. 

3. Creation of an aggregate: the aggregate iA  is 
added to the set of aggregates.  

4. Removal of an aggregate: the aggregate kA  is 
removed from the set of aggregates; all links 
associated with removed aggregate are deleted 

),(),(| xAyARr jk∈∀  or ),(),(| xAyARr ki∈∀ .  

It is appropriate to consider the use of data abstrac-
tions for such actions, declaring system of aggregates 
as a set of data with associated operations listed 
above. To invoke any of these operations, the precise 
description of format for input information is defined. 
To add or remove a link, the information of type 
( ) ( )xAyA ji ,, , ji ≠  is required. To add the new ag-
gregate, the name and type of aggregate kA  have to be 
referred. To remove the certain aggregate kA , only the 
name of the aggregate is required, since all names of 
aggregates are unique.  

3.1. Formalization of abstract data types using Z 
notation 

Specifications of abstract data types provide the 
basis for their realization. Formal specification is used 
to validate the statement about model description. For 
the formal description of ADT specification, Z nota-
tion was chosen [8]. This method enables an unambi-
guous description of all actions for structural changes 
in the system of aggregates. Restrictions and condi-
tions which have to be met in order to perform struc-
tural changes correctly and to avoid faults were 
included, e.g. we can’t create a link, which already 
exists. The specification of abstract data type was vali-
dated using Z notation prover Z/EVES, which has 
possibilities to check the syntax and semantic of 
models or even to write theorems [12]. 

3.2. Z specification of abstract data type for 
structural changes 

In Z specification language all data abstractions 
and operations are defined as separate components 
called schemas. The specification of ADT of structural 
changes in dynPLA is described below.  

Global sets of attributes υp]E2p,E1p,Yp,Xp,[ID,  
are given bellow: 
• ID  −  set of all possible names of aggregates;  
• Xp  −  set of all possible input signals; 
• Yp  −   set of all possible output signals; 
• pE1 −  set of all possible external events; 
• E2p −  set of all possible internal events; 
• pυ −     set of all possible discrete components. 

The operations for creation/deletion of links use 
the type information RInformation as input para-
meters. RInformation includes the name ID  of source 
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aggregate with its output signal Yp  and the name ID  
of target aggregate with its input signal Xp : 

( ) ( )YpIDXpIDonRInformati ×××= . 
The operation for creation of new aggregate uses 

the type information AgInformation as input 
parameters, which includes the name and type of new 
aggregate: 

( )AggIDionAgInformat ×= . 
The state of surrounding aggregate is described 

using state variables of Z schema Aggregate.  

 
The set Ag of internal aggregates is of the structure 

[ ],...:,:,: YpYXpXIDidAgg ΡΡ= , which has the 
same structure as Z schema Aggregate. 

Surrounding aggregate

a) Links between two 
internal aggregates 

 

Surrounding aggregate

 
b) Links from internal 

aggregates to surrounding 
aggregate 

Surrounding aggregate

 c) Links from surrounding 
aggregate to internal 

aggregates 

Surrounding aggregate

 
d) Links from internal 

aggregate to itself 

Figure 4. Allowed types of links in dynPLA 
In the predicate of schema Aggregate, the different 

kinds of possible links are defined: 1) between two in-
ternal aggregates (Figure 4a); 2) from internal aggre-
gates to surrounding aggregate (Figure 4b.); 3) from 

surrounding aggregate to internal aggregates 
(Figure 4c); 4) from internal aggregate to itself 
(Figure 4d.). 

3.2.1. Operations 
Four fundamental schemas for the structural 

changes of system of aggregates were developed.  
  Add_R schema describes the creation of the new 
link. It has two preconditions, which define the 
constraints on the operation: aggregates id1, id2, 
which will be connected by the new link, have to 
belong to the set of aggregates Ag; the new link newR 
can’t exist in the set of links R. If it is true, the predicate 
of Add_R specifies that the set of links after the 
completion of the operation is augmented by the new 
link newR. In this operation, all state variables remain 
unchanged, except R.  

 
Only the added link is visible for external observer. 

The aggregates, which have to be connected by the 
new link, perform structural changes in their inside 
structure as well. AgchangesX and AgchangesY sche-
mas define the structural changes in the source and 
target aggregates. 

 
In order to apply such actions only to the aggre-

gates, which have to be connected by the new link, the 
partial operations of Aggregate schema named as the 
framing schemas were used.   
 The first framing schema ΦFraming1 defines the 
changes in the source aggregate, the second one 
ΦFraming2 in the target aggregate. 
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Since the framing schema by itself does not repre-

sent any system operation, it is combined with pre-
vious definitions: ΔAgg, AgchangesX or AgchangesY. 
Above defined framing schemas are combined in the 
following way: 

AgchangesXFraming1AggSchemaforX ∧Φ⋅Δ∃=  
AgchangesYFraming2AggSchemaforY ∧Φ⋅Δ∃=  

Finally, the operation of the link creation can be 
defined as a composition of SchemaforX, SchemaforY 
and Add_R schemas: 

RAddSchemaforYSchemaforXAddR _∧∧=  
The operation for removal of link is described in 

the same way as operation of link creation, whereas all 
corresponding signals (input and output), transition 
and/or output operators and link are not added but 
deleted. 

 
AddAg schema describes the creation of new ag-

gregate. The new aggregate can be added only if it 
doesn’t belong to the set of internal aggregates Ag. 

 
RemoveAg schema describes the removal of the 

aggregate. To remove the aggregate from the system, 
it is not sufficient to delete the aggregate from the set 
of aggregates. All links associated with aggregate have 
to be removed as well.  

 

4. An example 
To demonstrate the application of abstract data 

type in dynPLA, an example − the model of transac-
tion processing system is introduced.   

The transaction processing system consists of 
transaction coordinator (TM), which handles resources 
(RM), which in turn perform certain actions. When 
transaction coordinator receives a request to perform a 
task, it forwards this task to the particular resource. 
When resource completes the task, it notifies the trans-
action coordinator, which in turn can free up the 
resource [7]. 

4.1. Specification of the transaction processing 
system 

The transaction processing system is presented in 
Figure 5. The system of aggregates includes such 
aggregates: 

• External aggregate 0A ; 
• Transaction coordinator TC ; 
• Resources kRM . 
 

TC

RM1

RMn

 y3

RM2
y1x2

x3 y2

xn

x1

y1

y1

y1

 

0A

y0

 
Figure 5. The structure of the system of aggregates 

In the specification of transaction processing sys-
tem given below, ADT (section 3.2) are used to 
describe the structural changes of the system of 
aggregates:  

• AddAg −  to create the new aggregates kRM ; 
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• RemoveAg −  to remove the existing 
aggregates kRM ; 

• AddR −  to create new links between TC and 
aggre-gates kRM . 

Formal descriptions of all aggregates of system are 
presented using method of controlling sequences [9]. 

4.1.1. The system of aggregates 
The analyzed system is presented as a set of 

aggregates: 
( ) ( ) ( ){ } ( )tRRMtTCtAtAs ,,0 ∪= , 

where  
:RM  { }nRMRM ,...1 , 

( )

)},,(),(
),,(),(

),,(),{(

1

1

100

mk

kk

xTCyRM
xRMyTC

xTCyAtR

→
→

→=
 

where ),(1 #RMk = , )1,(2 # += RMm . 
Below is depicted the structure of the system of 

aggregates at initial time moment (Figure 6). 

 

 

 

Figure 6. The model of Transaction processing system at 
initial time moment.  

In this time moment, the system has two connected 
aggregates TC and 0A : 

( ) ( ) ( ){ } ( )00000 ,, tRtTCtAtAs = , 

where ( ) ( ) ( )1000 ,, xTCyAtR →= . 

4.1.2 0A aggregate 
Aggregate 0A  is responsible for generation of the 

new tasks, which are transmitted to the transaction 
coordinator TC.  
1. ∅=X . 
2. }{ 0yY = . 
3. ∅='E . 
4. }"{" 1eE = −  the generation of the new tasks. 

   ∞=→ ,1},{}"{ )1(
1 ke kϕ , where )1(

kϕ  −  the time 
period between generation of k-th and (k-1)th tasks. 
5 ( ) ∅=tν . 
6 ( ) ),"( 1 mtewtz =ν ,  ( ) ∞=0tzν  
7. ( ){ }1eHH ′′= . 
8. ( ){ }1eGG ′′= . 

:)"( 1eH // the end of generation of the new task//  

 1
1 )1,"( imm ttew η+=+ , 

.:)"( 01 taskyeG =  

4.1.3. TC aggregate 
TC is a transaction coordinator, which receives re-

quests from external aggregate 0A  and performs the 
tasks. All received requests are inserted into the FIFO 
queue.  It forwards each request to the corresponding 
resource aggregates. When a resource completes the 
task, it notifies the TC aggregate, which in turn release 
the resource.   
1. ( ) },...,{ 1)(21 += tcntxxxtX .  

2. ( ) },...,{ )(21 tcntyyytY = . 

3. ( ) }',...,'{' 1)(21 +′= tcnteeetE . 

4. }{" 1eE ′′= , where 1e ′′ – is processing of the task  
Set E” is not varying in time. 

∞=→ ,1},{}"{ )1(
1 ke kη , where )1(

kη  −  the time 
period between processing of k-th and (k-1)th tasks. 
5. ( ) ( ) ( ){ })(,, tcnttQtAt S=ν ,  
where ( )tQ  – a queue of tasks;. 

 ( )tAS – a set of aggregates of system; 
 )(tcnt – the number of active resources. 
6. ( ) ( )},{ 1 mtewtz ′′=ν . 
7. ( ) ( ) ( ) ( ){ }1)(21 ,..., +′′′= tcnteHeHeHtH . 

8. ( ) ( ) ( ) ( ){ }1)(21 ,, +′′′= tcnteGeGeGtG . 
Descriptions of transition and output operator, which 
define the changes of RA aggregate’s coordinates are 
presented below 

:)'( 1eH // the new task is received // 

 
( )( ) ( )

( ) ( ) ,0,,

,,,,
#1

1

1

=+=′′

∞≠′′

mkmm

mm

tQifttew

tewiftasktQENQ

η
 

∅=YeG :)'( 1 . 
:)( 1eH ′′ // the end of processing of the task // 

 
( )( )

( ) ,0
).),((

,1)()1(
,

# ≠
⎪
⎭

⎪
⎬

⎫
+=+ m

mS

mm

m

tQif
CAtAAddAg
tcnttcnt

tQDEQ
 

where  ( )1+=
mtcntRMCA , 

 )),(( CRtAAddR mS , 
where  CR = ( ) ( ) ),(),{( 1111 +++ →

mm tcnttcnt xTCyRM , 

     ( ) ( ) ),(),( 111 xRMyTC
mm tcnttcnt ++ → , 

 ( ) ( ) ,0,, #1
1 =+=′′ mkmm tQifttew η   

,:)( 11 hyeG ′′ where ( )1+= mtcnth . 
:)'( keH   // the forwarded task is accomplished //  

 )),(( DAtARemoveAg mS , where  kRMDA = , 

where 1)(,2 += tcntk , 
∅=YeG k :)'( . 

The structure of aggregate TC at the initial time 
moment is described below: 
1. ( )0 1{ }X t x= , 

0A

TC 
x10y
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2. ( ) ∅=0tY , 
3. ( ) }'{' 10 etE = , 
4. }{" 1eE ′′= , 
5. ( ) ( ) ( ){ })(,, 0000 tcnttQtAt S=ν ,  
where ( ) 00 =tQ ,  
 0)( 0 =tcnt , 
the structure of ( )0tAS  at initial time moment is defi-
ned in section 4.1.1. 
6. ( ) }{0 ∞=tzν , 
7. ( ) ( ){ }10 eHtH ′= , 
8. ( ) ( ){ }10 eGtG ′= . 

4.1.4. kRM aggregate 

The aggregate kRM  receives a task from transac-
tion coordinator TC. During the internal event, the re-
ceived task is performed. Whenever the task is accom-
plished, the resource aggregate kRM  informs trans-
action coordinator TC by generating the output signal.  
1. }{ 1xX = . 
2. }{ 1yY = . 
3. }{' 1eE ′= . 
4. }"{" 1eE = − the performance of received task. 

   }{}"{ )1(
11 ϕ→e  − the processing duration of the task. 

5 ( ) ∅=tν . 
6 ( ) ),"( 1 mtewtz =ν ,  ( ) ∞=0tzν  
7. ( ) ( ){ }11 , eHeHH ′′′= . 
8. ( ) ( ){ }11 , eGeGG ′′′= . 

:)'( 1eH // the forwarded task is received // 

        imm ttew ϕ+=+ )1,"( 1  

11 :)'( ∅=YeG . 
:)"( 1eH // the performance of received task // 

   ∞=+ )1,"( 1 mtew  

11 :)( yYeG =′′ . 
In this example, the structures of aggregates kRM  

and 0A  are not varying in time. System of aggregates 
is used as abstract data type. Defined operations 
(section 3.2.1) in advance were enough to perform all 
structural changes in analyzed system. 

5. Concluding remarks 
In this paper we demonstrated the usage of abstract 

data type (ADT) for structural changes in the dynamic 
PLA model. For the formalization of ADT, Z speci-
fication language has been chosen, since it provided a 
complementary representation of the dynamic behavior 
of aggregates.  Besides, Z notation allowed us to define 
ADT in mathematically rigorous manner based on the 
set theory and predicate calculus. Introduced ADT has 
been verificated using Z/EVES prover. It permits to 
check the syntax and the semantic of specification, 
ensuring that ADT was defined correctly.  In dynPLA, 

the application of predefined ADT allowed us to get the 
compact specification for considered example. 
 In the future, this approach will be used for formali-
zation of the Session Invitation Protocol (SIP). 
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