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Abstract 

In this paper we show how, under minimal conditions, a combination extrapolation can be. introduced 
for an adaptive sparse grid. We apply this technique for the solution of a two-dimensional model 
singular perturbation problem, defined on the domain exterior of a circle. 
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1. Introduction 

With multigrid-type solution methods, second order elliptic PDEs can be solved 

numerically with a computational effort that is proportional to the number of 

required nodal points. Hence, to further enhance the efficiency, the number of 

degrees of freedom in a discretization procedure should be reduced. For suffi

ciently smooth solutions the use of sparse grids [13] seems to be very efficient in 

this respect. One can demonstrate for solutions with bounded cross derivatives, 

that satisfy 81d u/82x1, ... , 81xd < c in ad-dimensional domain, that the accuracy 

of the sparse grid solution is of order (! (h2 log(h)d-I) for piecewise linear inter

polation, where the number of degrees of freedom is f!J(h- 1 log(h)d-I). Such sparse 

grids are composed of particular sets of regular grids. The simplest way to indicate 

the grids involved is by saying that the sparse grid is constructed as a composite 

grid, which is the union of all regular grids with cell volume (h1, ... , hJ) >h. Here, 

for j = 1, ... , d, h1 = 2-n for some n E f\:J is the meshsize in the j-th coordinate 

direction. For small h, this requires a large number of regular grids, all with 

different cell aspect ratios. 

Since there is no distinct finest regular grid in the sparse grid family, one can 

imagine that the representation of one representative solution is no trivial matter. 

Without explaining this in detail, we mention that, in principle, there are two ways 

for obtaining a unique representation of a solution on such a grid family. The first 

one is based on the hierarchical basis representation [2, 10]. With this method the 

solution is distributed over hierarchical components on all available grids and the 

final representation is obtained by adding all these hierarchical components. Such 
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a technique is also widely explored in wavelet theory, and it is almost the natural 

choice if we consider adaptive grid generation, simply because the hierarchical 

method is almost adaptive by itself. The second way is by the combination tech

nique [2, 5]. Here we use standard basis representations on all regular grids, 

usually the solutions of an ordinary second-order finite-element discretization of 

the PDE. To obtain a unique solution on the composite grid, we perform an 

extrapolation, the combination extrapolation, which results in a much more ac

curate solution than the individual solutions. This technique is the basis for this 

paper. 

The use of the standard bases on the different grids has some advantages. First, 

we can use existing techniques to discretize and solve the different problems on 

the individual grids. Secondly, the solutions on the individual grids are com

pletely independent of each other and can be computed in parallel [3, 4, 5, 7, 8]. 

In this paper, we apply the combination technique on adaptively generated grids 

for a two-dimensional problem. The adaptive combination technique has already 

been studied in [6, 11, 12], but we impose no other limitations on the data 

structure than those necessary for the adaptive hierarchical basis technique. In 

other words we present a technique which has the same flexibility as the hier

archical basis technique, but makes use of the advantages of the combination 

technique. 

To demonstrate the new method we apply it to a model singular perturbation 

problem [9], which by nature of the problem requires adaptive grids. Special 

attention is paid to the development of a refinement criterion, as this singular 

perturbation problem will cause some particular difficulties on sparse grids. 

2. Notation 

Let k be a multi-integer, k=(k1, ... ,kd), with k;ENti={0,1,2, ... } for 

i = 1, ... , d. We define relational operators between multi-integers by 

analogously we define k ~ n, k < n, k > n and k = n. Further we define 

max(k, n) = (max(k1, n1 ), max(k2, n1) · · · max(kd, nd)) 

and min(k, n) similarly. The unit vectors e;, i = I, ... , d, are defined as 

e1 = (1,0, ... ,0), e1=(0,1,0, ... ,0), ed = (0, ... , 0, 1) and we use e =(I, ... , I). 

We denote !kl = k, + · · · + kc1 and lllklll = k1, ... , kd. Further, k = ( oo, .. ., oo) is 

simply written as k = oo. Scalar multiplication of multi- integers, for any scalar 

c E R is defined as ck= (ck1, ... , ckc1 ), and the result of this multiplication is 

made a multi-integer again, by truncating towards zero, e.g., ~ (1, 2, 3, 4) = 

(0, 1, I, 2). Multiplication of multi-integers is defined component-wise, i.e., 

kn= (k1n1, ... ,k<1nc1). 
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2.1. Grids 

Let Q c !Rd be (a subset of) ad-dimensional rectangular domain with boundary T. 

We assume that Q is (a subset of) the union of S1 x S2 x · · · x Sc1 unit cubes, for 

some multi-integer S = (S1, S2, ... , Sc1 ), where Si is the length of Q in the j-th 

coordinate direction. We define a regular mesh Qk on Q, with mesh size 

hk = 2 k = (2-k', ... , 2-k,,). The integer lkl = k1 + · · · + k" is called the level of 

grid Qk· The coarsest grid is !10, with 0 = (0, ... , 0), and therefore the coarsest 

level is zero. A cell Qkj is defined by 1/12-·ki, (j1 + 1 )2 x · · · x 

[/J2-kd,(JJ+l)2-k"]. The grid Qk is a set of cells Qki, defined by 

Qk = {QkilO::; j < S2k, Qki c Q}. The volume of a cell Qki, 0 S j < S2k is denoted 

by lllhk Ill = hk, · · · hk". The vertices of the grid Qk are denoted by nt, and Q~ 

denotes the j-th vertex on grid Qk, with 0 ::; j ::; S2k. The vertices Q~ are called 

dyadic points. The Cartesian coordinates of the dyadic point Q~ are denoted by 

x(Q~). 

2.1.1. Ordering of Grids and Cells 

Considering a grid Qk we can refine it in all d directions simultaneously and 

obtain a sequence of grids Qk+e, Qk+2e, .... In this way we get a sequentially 

ordered family of grids. Actually, such a sequence is the basis for any standard 

multigrid solution method. 

On the other hand, starting with the same grid Qk, by refinement we can construct 

the grids Qk+e; for i = 1, ... , d. This process is called semi-refinement. The prin

ciple of semi-refinement can be continued recursively for the newly formed refined 

grids, and thus we obtain an infinite, partial/)' ordered family of grids. We define 

the virtual .fiunily of grids or family of virtual grids as 

G._ = {QklO::; k::; oc} 

~{QkilOSkSx;, 0Sj:SS2k}. 

Since a grid Qk is a set of cells {QkilO::; j S S2k}, we also speak of the family of 

virtual cells. We call these grids and cells virtual because most of them are not 

found in the actual implementation. For this goal we distinguish between the 

virtual grids (cells) and the generated grids (cells). Before we give the definition of 

a generated cell we first define three relations that may exist between cells in the 

different grids from the family Gx,. 

2. l .2. Relations between Cells 

We define the relations (i) father, (ii) kid, (iii) ancestor between cells in G"". 

Definition 1. Let a direction he denoted bye;, i = 1, ... , d, and let a cell Qki E G:xc 

he give. Then the father of cell Qki in the ei-direction is defined hy 

,_;;;c' ( Qkj) = Qk c, ,j :\ic, · 
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The existence of a father :Fe, (Qki) E G00 is not always guaranteed. In fact father 
.~•, (Qkj) does not exist if and only if k; = 0. In other words, for a cell Qki all 

fathers exist except when llkll = 0. 

Definition 2. Let a cell Qki E G00 and a direction e;, i = I, ... d, be given. Then the 

kids of the cell Qki in the e;-direction, denoted by .%•, (Qkj) are defined by 

We see that this set of two kinds in the direction e; always exists in G00 • In the 
other directions other kids exist, so that in total, in G00 a cell Qki has 2d kids in d 

directions. 

Definition 3. Let {Qkdi, ... , nk,,i) be a set ofp cells in G00 with non-empty inter

section. Let a dyadic point n! be contained in all these p cells. Then the ancestor 

d(Qkti1 , ••• , Qkpi) E Goo is defined as, 

d(Qk . Qk . ) = Q . k k ) . = Q . 1J1' • • ·' pJp mm( ·1, ... , P 11 m, 

with n = min(k 1, ... , kd). It is easily verified that i is uniquely determined. In fact, 

the ancestor is the finest cell which encloses all cells in { Qkdi, ... , Qkpip}. In con
trast with the definition of father and kinds, the ancestor does not depend on a 
direction e;. Notice that, with this definition of an ancestor ce!l .cit(Qktii, ... , Qk"jP), 

it possibly coincides with one of its own arguments Qk,j,, fort E {l, ... ,p}. 

2.1.3. The Generated Grid 

In practice, in order to represent a solution sufficiently accurate and efficient, we 
want to use as few cells as possible. Therefore, we distinguish between approxi
mation on the virtual family of grids '§00 and on the much smaller set of generated 

cells, denoted by '!J. The set ~4 is finite, and we denote the number of cells in '!J by 

I '!J 1. 

Definition 4. A set of generated cells '!J, or an adaptive structure G, is a finite subset 

of Gx that satisfies the condition 

{ 
for all 

Qki E '!J =? either 

or 

i = 1, ... ,d, 

k; = 0, 

.?'e, (Qkj) E '!J. 
( 1 ) 

ln contrast to the virtual set of cells G00 , the possibility exists that, if QkJ E '!J this 
cell has no e;-kids, i.e., .%0; (Qki) n '!J = 0. As a consequence of the definition, if 

{ Qk,j, I t E {I, ... ,p}} E '!J than also .w(Qkdi, ... , Qkpi,,) E (fJ, due to the existence 
of all d fathers of every cell Qk,j,, t E { 1, ... , p}. The notion of set of generated cells 

is comparable with the so called active indices in [6]. Corresponding with a set of 
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generated cells G we can also construct a composite grid by considering all points 

Q~ corresponding with an arbitrary set of generated cells G. This is called the 

adaptive sparse grid rg+. 

The set l'fff, defined by 

is called the adaptive sparse grid on level I. 

2.1.4. The Sparse Family of Grids 

A special case of generated grids is formed if we consider all cells {Qkj}, with lkl 

bounded by some level £. This set of grids or set of cells is defined as the sparse 

family of grids and is denoted by 

l'ffe ={Oki lkl :::; £}, 

~ {nkjl /kl:::; e,o:::; i < s2k}, nkj c n. 

The sparse grid is obtained by constructing the composite grid, i.e., considering 

the union of grid points {Q~I lkl :::; £, 0:::; j:::; S2k}. 

2.2. Bases and Spaces 

2.2.1. Standard Representation 

An approximation of a function u E 'i&'(Q) on Qk E Gcx can be given by 

u ~ Uk = L Ukjtpkj> 
j 

(2) 

with uki = uk(x(Q~)) and <f>kj the usual piecewise d-linear basis function with 

supp( cpki) = Uj:sm'.S.i+e Qkm n Q, of tensor product type. With u(x) = uk (x) for all 

x E nt, this Uk is called the standard representation of u on nk. For any k 2'. 0 and 

for all piecewise d-linear approximations of 'i&'(Q)-functions, the standard basis Bk 

is defined as 

and the corresponding space of approximating piecewise d-linear functions is 

Further, for f E Nci we define, 

and the corresponding function space is 
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Vr = Span(Bf). 

In a natural way the set of coefficients {uki}O:S,i:SS:!' in (2) is an element in a vector 
space Vk. By concatenation of such vectors we define the vector space 

V1 = @lkl=I Vk. The vector space V1 is defined by Yr= ®j=0 V1. If no confusion is 
possible we use the notation uk both for a grid function Uk E Ji and for a vector 

with coefficients for the grid function uk E Vk. Notice that we can extend this 

vector space to the representation Uf = 60[k[=euk. 

The basis B1 is a basis for the approximations that can be represented on '!Jf, and 

similar Vr is a function space spanned on '§e. If we consider an adaptive structure 
'!J we can define bases, function spaces and vector spaces in the same way. By B'.tf, 

V1 and V'.1 we denote respectively the notions for an adaptive structure corre

sponding with Bi, Vi and V1. 

2.2.2. Hierarchical Representation 

A point Q~, is called a hierarchical point if it does not appear on a coarser grid, 

i.e., x(Q:i)Et{x(Q~)[ n s; k, n i k, 0:::; i:::; S2"}. It is easily shown that hierar

chical points Q~, k f 0, satisfy n:~l.k,foJ; is odd. Therefore we denote the hier
archical points in short by ·n~, j odd'. 

We see that basis function <Pkj• corresponding with hierarchical points Q~ make 
bases for vk and f/r. 

The hierarchical hasis ih for Vk is now defined by 

and the hierarchical basis for Vi by Qk E 'lfr is, 

The piecewise d-linear approximations of functions using the bases Bk and Be and 
written as 

(3) 

( 4) 

Notice the complete difference between (2) and (3). We use the same notation i/1 to 

denote u1 E V 1, i.e., a vector with zeroes in the positions corresponding with non

hicrarchical points. Further we write ilrv-i = Likl=I Li ilki<Pki' to identify the 
hierarchical contribution from level C. 
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2.3. Operators 

Let m 2:: k, then the piecewise linear prolongation operator Pmk : Vk --> Vm, for in

terpolation of a function Uk On the grid Qk tO a function Um On the grid Qm is 

defined by 

(5) 

and we define the piecewise linear restriction Rkm : Vm ---> Vk as 

(6) 

If m = min(k, n), for arbitrary k and n, the projection operator Ilkn : Vo ---> Vk is 

defined by 

(7) 

with Pmk, Rnm the above piecewise linear prolongation and restriction operators. 

This operator nkn projects the function Un of grid On onto grid nk. Notice that in 

a partially ordered set of grids, the minimum m is not necessarily equal to k or n1• 

We use the symbol Ilkn with the understanding that Ilkn = 0 if min(k;, n;) < 0 for 

any i - 1, ... , d. A treatment of some properties of these operators is given in [10]. 

3. The Adaptive Combination Formula 

The combination technique for sparse grids makes use of the standard basis B0 , 

for all generated grids Q0 E <f}i. Every grid has its own discretization and the 

discrete problems on the different grids Q0 E "41 are solved separately, possibly in 

parallel [3-5, 7, 8]. Once the solution process on the different grids is completed 

one composes a final unique combination solution on (a part of) a virtual grid nk. 

We define the d-dimensional combination operator C~ : Vi ---> Vk or the d-di

mensional combination formula for the extrapolation on the virtual grid nk by 

(8) 

This combination formula is introduced for the case of "complete sparse grids", 

'§e by [2]. For an adaptive generated set of cells '§, we cannot use this extrapo

lation formula. Therefore, in this section we develop a combination formula for 

an arbitrary adaptive set of generated cells '§. 

The adaptive combination technique has already been considered in [6, 11, 12]. 

The authors, however, impose more restrictions to the adaptive structure '§ than 

mentioned for an adaptive structure in Definition 4. The adaptive combination 

1The value at a particular point n~ for these operators is denoted by (Rkm(um))j, (F\m(u11 ))j, and 
(Ilkn(un))j, respectively. 
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formula presented here does not impose additional requirements on the structure 

of '!/. Moreover. during the generation of <§ we do not need to keep any ad

ministration with regards to the structure of <fJ. So the creation of an adaptive 

combination solution is completely decoupled from the generation of <fJ. 

3.1. Regular Combination Formula 

We first introduce concepts needed to the derivation of the adaptive combination 

formula, and then we apply these concepts for the derivation of the regular and 

adaptive combination formulae. For ease of notation, from this point on we 

describe only the two-dimensional case. 

Consistent approximations: Two approximations, uk on Qk E G00 and u0 on 

Qn E Gx. are called consistent [10]. if for grid Qm E Gx, with m = min(k, n) we 

have, 

The approximations are called consistent at a point Q~i if 

Extrapolation: Let us consider the grids { Qk-ell Qk-c2 , Qk-e} c <fJ t, with their 

approximations Uk-ei, uk-e2 , uk-e· The two-dimensional extrapolated approxi

mation for the grid Qk C Gx is defined by 

The local extrapolated approximation on the grid k at the point Q~ E (4rx, is 

defined by 

( 10) 

The extrapolated approximation and the local extrapolated approximation are 

both defined for Qk E Gx, whereas the original approximations on the grids 

{Qk-e1, Qk-e2 , Qk-e} are defined on '!J. In particular, for a given <§ = <§ 1, extra

polation to a virtual grid occurs when lkl = e + I. 

The hierarchical surplus: Let us consider the consistent approximations 

Uk,uk-e1,uk-e2 ,uk-e on the grids {Qk,Qk-e1,Qk-e2 ,Qk-e} C </Jp. The hierarchical 

surplus ilk for the grid Qk c <fJ1 is defined as 

( 11) 

The local hierarchical surplus [1 OJ in the dyadic point Q~ is calculated by 
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In contrast to the hierarchical surplus uk, which is only defined for approxima

tions uk C ~§£, the local hierarchical surplus is defined for all consistent approxi

mations on '!f. 

With these concepts we show that the regular combination technique gives the 

same result as the hierarchical basis representation of a consistent solution. This 

statement is the subject of the following lemma. 

Lemma 1. Let all approximations Uk C u1 on the grids Qk E '!le be consistent with 

respect to each other. The combination.formula (8) with d = 2,for the extrapolation 

to the grid Q 00 results in the same approximation as the hierarchical representation, 

Uoo = Ln<x Lj lini<Pnj' 

L Un= C~(ue). 
O:O:lnl:O:f 

Proof By calculation of the hierarchical surplus, Eq. (11), we can derive 

L Un= C~(ue) - c;,(ut-1), 
lnl=f 

further, by definition C~(u 0 ) = u0 = uo. So, by recursion, 

C~(u1) = L Un+ C~(uH) 
lnl=f 

= L Un + L Un + · · · + L Un 
ln[=I ln[c/ I lnl~O 

= I.: 11". 
O"'lnlSi 

D 

An important assumption in the above Lemma 1 is the fact that we considered 

consistent approximations. However, by recursive application the combination 

formula can also be applied to the virtual grids Qk c G:x;. Extrapolation to all 

grids on level £ + 1 and subsequently to the levels £ + 2, ... , 2£, will yield the 

same approximation. However, in the latter case it is not strictly necessary that 

the solutions are consistent, since consistency of the solutions was no requirement 

for the extrapolation equation (9). Therefore we are allowed to use solutions 

which are all affected by their own discretization error, we say the solutions are 

consistent up to discreti:::ation error. Notice that the accuracy in the combination 

solution as described in [ 13] is obtained by cancellation of these discretization 

errors on the different grids, assumed that an expansion on the discretiza

tion error exists of the type (for d = 2) uh 1 ,11, = u* + ex[h 1] + ey[h2] + r[h 1 h1]. 
(i.e., the error is the sum of three parts, where e.g. ex[hi] depends only on x,y 
and h1 .) 
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3.2. Two-Dimensional Adaptive Combination Formula 

If the generated grids are not "1t but an arbitrary set of generated cells "§, we 

cannot use the combination formula (8). In the case when the approximations are 

no longer defined on the entire domain Q but only on a couple of cells Qkj c C§ in 

the grid Qk c Goe, to still obtain a combination solution, we can extend the set of 

cells ~I} by virtual cells from Grxo and use the local extrapolation (l 0) to "fill up" the 

solutions in the additional cells of Goc;. In practice, to save an essential amount of 

computational work, we do not want to create such additional cells. Therefore, to 

arrive at the same goal, we introduce the adaptive combination formula. 

In order to introduce the adaptive combination formula, we first give two defi

nitions for particular sets of cells. 

Definition 5. Given an adaptive structure 'i§, the set of finest cells for a dyadic point 

Q~ E Qj E Gcx in a direction e; is denoted by 0 :!J>~i' and de.fined by, 

(13) 

Definition 6. Given an adaptive structure Cff, the set of (first degree) ancestors for a 

dyadic point Q~ E Omr E G00 in a direction e; is denoted by 1 :dP~i' and defined by 

1 Y'~j = {Qmr = .w'(Qkp,!lnq)l{!lkp,Qnq} C Og.i~i' 

n = k +eh t # i, n~ E Omr}. ( 14) 

To illustrate the definition of the set of finest cells and the set of ancestors we give 

an example in Fig. l. In the figure one should not consider the squares as the 

representation of a regular grid. In the figure the squares represent cells which all 

contain a given (arbitrary) dyadic point n~. The dashed ones are virtual cells. In 

the example the direction chosen is e2• This means that one has to search in 

"columns" for the finest cells. To get an ancestor cell, one has to look in the two 

"neighbor columns" for their finest cells and then the ancestor is defined as the 

minimum cell with respect to the finest cells. 

One observes that it is possible that a particular cell is part of og.i~i and part of 
1 &~i as well. 

The following definition describes the adaptive combination formula 

Definition 7. Consider a given set of generated cells,'§, a dyadic point Q~ E G00 and 

a direction e;. Then the adaptive combination formula for the point Qki reads 

Ukj = L (IIkn(Uns))j - L (IIkn(Uns))j. (15) 

Q,,,E"J':J !1,,.El . .J":i 

Lemma 2. In the case C§ = '§£, uk in the adaptive combination formula gives the 

same result as (8) with d = 2. 
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367 

Proof The proof is immediate if we see that in this case ogi~i = ';#e\';#1_ 1 and 
I@e1 _ rA \"'• D 
;?"kj - C>'f-1 C>'f-1· 

Remark. In the definition of the sets 0 :1/>~i and 1 .11'~i' we use a direction e;. De

pending on the adaptive structure ~ff. generally, for different directions ej f. e; we 

will generate different sets 0 .1il~i and 1 .1/"~j· This observation leads to the following 
lemma. 

Lemma 3. The adaptive combination formula introduced in Definition 7 is invariant 

in the direction e;. 

Proof We already saw that, for a given e;-direction, possible 
0 .'1/>~i n 1 .ji>~i = 2~i =f. 0. This implies that the corresponding terms in (15) cancel. 

This observation leads to the proof of the lemma by showing that the sets 
0 ._!i'~i \d~i and 1 ,11~i \d~i are independent of the erdirection. 

We see that 0 .#~i \d~i is the set of cells that are the finest cells in the erdirection 

and not ancestors in the other direction. This implies that this set is the collection 

of cells that are finest (i.e., have no kids) in all directions. 

On the other hand we see that 1 Jl!~i \.:t~i is the set of cells that are first degree 

ancestor in the erdirection and not a finest cell in the e;-direction. This means that 

such a cell has kids in all directions but lacks grandchildren in the e; - erdirec

tion. 
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Thus we see that the sets O:;;;>•"\ JJ•« and 1 !J>•'.\ 01•'. are independent of the direction 7 k1 ~kj . kj °"kJ 

e1, and, therefore, that uki in (15) is independent of the direction e;. D 

Remark. We can characterize the non-cancelling sets in the above proof in di

rection independent notation as 

o #~i \.:1~i = { !1mrlf•1 (Qmr) n <§ = 0, Q~ E Qmr }, 

'2P~i\:!1~i = {QmrlJf'C;(Qmr) n<§-=j:. 0, x-•1 (f.'(Qmr)) n<§ = 0, l = 1,2}. 

This insight yields the way to generalize formula (15) to higher dimensions. 

In contrast with the standard combination formula. equation (8), where we have 

the same formula for each dyadic grid point Q~ of the virtual grid, for the 

adaptive combination formula we have generally a different formula for every 

dyadic point Q~ of the virtual grid. This means that for each dyadic point Q~j we 
need to find the new sets Ogp~i and 1 ::!1'~i· So, the adaptive combination formula is a 

point-wise formula. With a proper data-structure, however, the administration 

takes a negligible amount of work. 

With the above insight we easily prove, similar to Lemma 1. that for consistent 

approximations the adaptive combination formula (15) results in the same ap
proximation on the virtual grid as the hierarchical decomposition. 

4. Refinement Strategy 

In [1. 6, 11] adaptively refined sparse grids are used together with the hierarchical 

decomposition of the solution. Mostly the authors consider the hierarchical 
corrections as a natural threshold for the refinement strategy. An additional ad

vantage of the use of hierarchical representations is the fact that one does not 
need to calculate internal boundary conditions. This is because two hierarchical 

basis functions on the same grid do not share a common support. If we use 

standard basis representations on the different cells Qki c ~I}, we do not have these 
particular advantages that go with the hierarchical basis representation. 

Before we describe our actual refinement criterion, we discuss some particular 
difficulties that may appear with non-smooth solutions. In particular, such re

marks are relevant for the numerical singular perturbation problem that we will 

study in some detail in Section 5. 

4.1. Steep Gradients 

In Fig. 2 we give a simple example of a one-dimensional solution which contains a 
steep gradient. The figure shows the hierarchical decomposition together with the 

standard basis representation for the different levels. We make two observations 

related to the use of the hierarchical correction iiki as a criterion for refinement, 
say we stop refinement if iiki ::; t:. 
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Figure 2. Hierarchical basis decomposition and corresponding standard basis representation for a 
solution with u !urge gradient at x = 1 /2. The graph at the top shows the approximated· function; the 
grnphs ut the right show hierarchical contributions to the approximation on the different levels; at the 

left the successive approximations are shown 

Firstly we see that the hierarchical basis component on the grid Q1 is zero. Without 

provision, this would result in no further refinement on the grid Q 2 • This problem 

of an early stop for the refinement is due to the counter-symmetric solution. If we 

use the hierarchical basis components as a criterion for refinement, we should 

always be aware of this. In the singular perturbation problem in Section 5.1, we do 

not need particular measures for this, because our solution is strictly monotone. 

Secondly, we observe that the size of the hierarchical corrections does not de

crease around the jump in the solution. Eventually the refinement will stop when 

the mesh of the grid hk « ~- l, where ~ denotes the slope of the jump in the 

solution. For true discontinuities refinement will never stop. 

In our solution method we do not use the hierarchical basis representation. 

Nevertheless we use the hierarchical component as a threshold for refinement. In 
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the one-dimensional problem we can easily see that the hierarchical surplus on a 

particular grid Qk is easily calculated. Similar, in the two-dimensional case we can 

use the local hierarchical surplus (12). However, the solutions on the different 

grids are only consistent up to discretization error. Therefore, used with the 

discretizations on (subsets) of the regular grids Qk, the local hierarchical surplus is 

not strictly the same as the regular hierarchical decomposition. Nevertheless, on 

sufficiently refined grids the solutions correspond, except for the (sufficiently 

small) discretization error. 

4.2. Monotonicity 

Generally, interpolation by means of bilinear basis functions on a grid <!J or <!Jt is 

not monotonicity preserving. Therefore, the use of the local hierarchical surplus 

can cause problems when monotonicity is expected. Especially when we consider 

higher-dimensional problems with relatively large gradients, which are not aligned 

with the grid, interpolation of monotone functions on the regular grids does not 

guarantee a monotone result. 

Figure 3 shows an example which is likely to appear in the problem studied in 

Section 5.1. We observe that all values on the three coarsest grids are non-neg

ative, whereas the locally extrapolated value in the dyadic point Q~ on the finest 

grid is negative. From the example we see that non-monotonic results originate 

from the use of ( 10), even when all interpolants are monotone. Further we see that 

in Fig. 3 the approximations on nk-ei and nk-ez are consistent, so that the same 

problem arises if we use hierarchical bases. 

A way to circumvent the problem with monotonicity might be by using lower 

order interpolation. However, we did not further pursue this. Instead we try to 

alleviate this problem by using sufficiently fine grid refinements. 

Figure 3. Example of the calculation of the local extrapolated surplus, with a non-monotonic result. 
Highly irregular but monotone function leads to a non-monotone extrapolated function at point n~. 
shown in the center of the grid Qk· The interpolant on Qk-• is monotone; the corrections from Qk-e, 

and Qk-e, destroy this monotonicity 
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Notice that the monotonicity problems in Fig. 3, which appear if we want to 

calculate the value in point Q~, are caused by the two-dimensional local ex

trapolation. The same problem appears with (12). This local hierarchical surplus 

is used as a threshold for the refinement criterion. When we calculate the hier

archical surplus based on a one-dimensional extrapolation, e.g., an extrapolation 

from cell Qk-e to the cell Qk-e1 , with llJk - elll = 0, see Fig. 3, the problems with 

monotonicity do not show up. These one-dimensional extrapolations are always 

used when we calculate the hierarchical surplus for the grids with JllklJI = 0. In our 

refinement strategy we use this consideration. 

4.3. Refinement Criterion 

We use the local hierarchical surplus as a threshold for the refinement. The sin

gular perturbation problem in Section 5.1 contains steep gradients. As the steep 

gradients eventually are continuous, this guarantees that the refinement based on 

a hierarchical surplus calculated with a one-dimensional local extrapolation, 

eventually stops. Therefore we let the maximum x-level and the maximum y-level 

be controlled purely by the refinement based on a one-dimensional calculated 

hierarchical surplus, i.e., when lllklll = 0. We now use the following criterion for 

refinement of a particular cell Qki C ~fJ. 

• If the local hierarchical surplus (12), liikil > 6, then 

If lllklll = 0 then m = max(m, k + e); 

r1 :=(m:2k+e 1); 

r1 := (m :2 k + e1). 

• For i = l,2, if (r1), then create Jf"e;(Qkj). 

In the current situation, m, the multi-integer defining the maximum x-level and the 

maximum y-level, is initially set to m = 0. Further, the magnitude of m is con

trolled by the finest cells Qki E <ff, with Jllklll = 0. So the maximum x-level and the 

maximum y-level, denoted by the vector m are set when JJJkJJI = 0, and hence m is 

purely controlled by refinement based on one- dimensional extrapolation. 

5. Numerical Results 

5.1. The Test Problem 

As a test problem we consider a singular perturbation problem in two dimensions 

proposed in [9). The original problem was defined on an unbounded domain in 

IF£1 . For its numerical solution we truncate the domain of definition to a suffi

ciently large rectangle, and because of the problem's symmetry, we only ap

proximate the solution in half of the proposed domain. Thus, the problem we 

solve is given by 

u, - 1:/iu = 0 ( 16) 
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Figure 4. Domain of the singular perturbation problem 

on a rectangular domain Q = (NL,NR) x (O,Nr)\{(x,y)lx2 + y2 2: I}, with 

NL, NR, <Jnd Nr E N, and 0 < e « 1, (see Fig. 4). We solve the numerical problem 

with Q = (-4,6) x (0,4), so that on the coarsest mesh S = (10,4). An analytical 

solution for the original problem on the unbounded domain is given in [9]. 

On the bounded domain we apply the following boundary conditions: 

x2 + y2:::; 1_,u(x,y)=1, 

y E [0, Nr] _, u(NL,Y) = 0, 

y E [O,Nr] _, ux(NR,y) = 0, 

x E [NL,NR] _, uy(x,Nr) = 0, 

x E [NL, NR] _, uy(x, 0) = 0. 

On each grid Qk Eq. (16) is discretized by first-order upwind differencing. At the 

dyadic point Q~ the discrete equation is written as, 

where the parameters h1, hn h1, hb, Uc, u1, ur, u1, and ub take different values in 

the different situations, depending on the grid Qk and the position of Uc in the 

domain, see Fig. 5. Notice that we consider only rectangular grids. If no 

boundary points are involved, we have h1 = hr = 2k1 , h1 = hh = 2-k2 , Uc = Ukj, 

u1 = Ukj-e1 , Ur= Ukj+e1 , ub = Ukj-e2 , U1 = Ukj+e2 • We notice that this first-order 

accurate discretization will yield a monotone solution on each separate grid Qk· 

For e « 1 we have a strongly convection-dominated problem and diffusion only 

plays a role in particular regions. For small e, the solution will have large gra

dients in front of the cylinder and there will be a distinct wake at the back. Large 

gradients, especially when these gradients do not align with the coordinate 

directions, cause difficulties for standard sparse grids because of the large cross 

derivatives [JO]. To solve the problem which appears with the non-aligned 

gradient we consider adaptive grids. 
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U/ 

Figure 5. Example of stencil near the circle x2 + y2 = I 

5.2. Regular Combination Solution 

First we compare the solution obtained by the (standard) combination technique 

applied to ~tJ 6 with a "reference" solution, calculated on the single grid Q(6.6). For 

these computations we take the small parameter r = 1/50. No numerical prob

lems are expected on Q( 6.6 i because£= 1/50 > 1/64 = 2-6 , which implies that the 
sharp layers can be completely resolved on this mesh. 

Figure 6 shows the reference solution. Figure 7 shows the combination solution, 
on the sparse family of grids <§p, with£= 6. We see that the regular sparse grid 

solution shows monotonicity problems, as mentioned in Section 4.2. The 

considerations apply because the regular combination formula is derived from 
subsequent two-dimensional extrapolations. 

Figure 6. Reference solution on grid Qt6•61 
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Figure 7. Combination solution from all grids Qk c '111. with P = 6 

Table I shows different norms for the difference between the combination solution 

and the reference solution for various values of€. For sufficiently smooth solu

tions we may expect an @(h2 Jog(h)) extrapolation error reduction for the L2-norm 

for the two dimensional problem [I 0, Thm. 3.6], possibly on top of an (!J(h) 

discretization error. (However, if a proper multivariate h-expansion exists, then 

discretization errors may cancel to some extent.) In fact, we see that there is 
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Figure 8. Two views of the adaptive combination solution with small different f: and ii. The bottom 
view clearly shows the non-monotonicity in the combination solution. a e = 0.01, ,5 = 0.005. b" = 0.02, 

i5 = 0.01 
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hardly any convergence. This again is a result of lack of smoothness in the 

solution. 

Where convergence is slow for the Li -norm, no convergence is seen in the L00 -

norm. Apparently, the non-monotonicity does not disappear, even for large 

values of £. The first effect of the further refinements is that we restrict the 

overshoots and undershoots to a smaller area. First the maxima of these over- and 

undershoots are not really suppressed. However, eventually for e large enough, 

convergence will be seen. 

5.3. Adaptive Combination Solutions 

For the computations in this section the same problem is used as in the previous 

section. However, we now take the small parameter B = 0.01. As a threshold for 

the refinement criterion as described in Section 4.3 we use b = 1/200. By this 

criterion, on the finer grids Qk the discretized equation is solved (only) on (small) 

subdomains of Q. Here the same discretization is used as in Section 5.1 and 

Table l. Nodal error and number of nodes for the combination solution 

0.1i llerrorllx llerrorll 2 llerrorll 1 #nodes 

'11 0.8887 . 10° 0.1955 . 10° 0.1076. 10° 457 

'.42 0.8379 . 10° 0.1265 . 10° o.6185 · w- 1 1038 

'.'h 0.8460 . 10° o.8982 · w- 1 o.3614· w- 1 2532 

'.44 0.8921 . 10° 0.7448 . 10-1 0.2210 · JO-I 6171 

'§5 0.8851 . 10° 0.5648 · JO-I 0.1297. 10- 1 14739 

'§6 0.8032 . 10° 0.3810. 10-1 0. 7844 . 10-2 34444 
n,6.6) 164737 

'!I c ~46 0.7967 . 10° 0.3974 . 10-1 0.1380· 10-1 6077 

The discrete solution on the regular grid n,6,6) serves as the reference solution for the singular 

perturbation problem (16) with e= 1/50. Bottom line: nodal error of the adaptive combination 

solution 

>< 

Figure 9. Contours of combination solution with e = 1/100 and [J = l/200 
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Figure 10. Adaptive sparse grid for the solution with f. = I/ 100 and {J = I /200 

(artificial) boundaries of these subdomains use Dirichlet boundary conditions. 

The necessary boundary values are derived from the coarser grid solutions by 

means of the adaptive combination formula (15). 

The number of points for the solution satisfying this criterion is approximately 

22250 and the "finest" grid Qk E '-!J is k = (12, 7), so the highest level is£= 19. 

The minimal and maximal values of the solution as shown in Fig. 8 are 

(umin' Umax) = (-0.0239, 1.0). The fact that no overshoot is seen is partly due to 

the treatment of the boundary conditions, i.e., the code to calculate the solution 

for Ix ::;: 1.0. The undershoot is of the order of Ci, which is acceptable. The position 

of the minimal solution is x = (-0.3125, 1.50). Figure 9 shows the contour lines of 

this solution. In Fig. 10 the adaptive sparse grid nt E '-!J is shown. 

6. Conclusions 

In this paper we introduce an adaptive combination formula for the computation 

of the solution of a PDE on an adaptive sparse grid. We apply the formula to 

solve a two-dimensional singular perturbation problem of which the solution has 

both boundary and interior layers. The (O(t: 112) interior layers, that are aligned 

with the grid, are efficiently approximated by the adaptive semi-refinement. The 

(li(e) boundary layer, that is not particularly aligned, is nevertheless well captured 

by a fine, locally almost regular grid. 

In memoriam 

Jaap Noordmans, the first author of this paper, died July 23, 1999, after several years of 

illness. He was much devoted to the subject of sparse grids and he worked with much 

enthusiasm on this paper, that was meant to become a part of his PhD thesis. He prepared 

all computations and figures shown. We discussed the draft paper until a month before his 
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death. We all admire the way he fought his illness, and we very much miss his person and 

his enthusiastic cooperation. 
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