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Abstract

Background: Affymetrix GeneChip Array and Massively Parallel Signature Sequencing (MPSS) are

two high throughput methodologies used to profile transcriptomes. Each method has certain

strengths and weaknesses; however, no comparison has been made between the data derived from

Affymetrix arrays and MPSS. In this study, two lineage-related prostate cancer cell lines, LNCaP and

C4-2, were used for transcriptome analysis with the aim of identifying genes associated with

prostate cancer progression.

Methods: Affymetrix GeneChip array and MPSS analyses were performed. Data was analyzed with

GeneSpring 6.2 and in-house perl scripts. Expression array results were verified with RT-PCR.

Results: Comparison of the data revealed that both technologies detected genes the other did not.

In LNCaP, 3,180 genes were only detected by Affymetrix and 1,169 genes were only detected by

MPSS. Similarly, in C4-2, 4,121 genes were only detected by Affymetrix and 1,014 genes were only

detected by MPSS. Analysis of the combined transcriptomes identified 66 genes unique to LNCaP

cells and 33 genes unique to C4-2 cells. Expression analysis of these genes in prostate cancer

specimens showed CA1 to be highly expressed in bone metastasis but not expressed in primary

tumor and EPHA7 to be expressed in normal prostate and primary tumor but not bone metastasis.

Conclusion: Our data indicates that transcriptome profiling with a single methodology will not

fully assess the expression of all genes in a cell line. A combination of transcription profiling

technologies such as DNA array and MPSS provides a more robust means to assess the expression

profile of an RNA sample. Finally, genes that were differentially expressed in cell lines were also

differentially expressed in primary prostate cancer and its metastases.
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Background
Profiling the expression pattern of genes in a tissue or cul-
tured cells is often a starting point for exploratory
genomic studies. Serial analysis of gene expression
(SAGE) [1] is a technology for gene expression studies that
can provide whole transcriptome coverage; however, it is
slow and relatively labor intensive because each clone that
is generated during library construction must be
sequenced. The invention of DNA microarray technology
[2,3], in combination with sequence information for the
human genome [4,5] has provided the ability to rapidly
assess the transcriptome profile of an RNA sample. A
recently developed technology called massively parallel
signature sequencing (MPSS) [6] allows the transcriptome
of an RNA sample to be determined without prior
genomic knowledge of the organism under study. An
advantage that MPSS has over DNA microarrays is that
expression of unknown genes can be observed since no
sequence specific nucleic acid probes are required for
detection. MPSS is akin to SAGE in that it uses short
sequence tags to identify transcripts, however, the tech-
niques differ in the method used for sequence determina-
tion. In MPSS, sequencing of the entire library occurs in
parallel on microbeads by multiple rounds of enzymatic
cleavage followed by ligation of labeled adaptors to iden-
tify the sequence revealed by the enzymatic cleavage; as
opposed to chain termination DNA sequencing of indi-
vidual clones in SAGE. MPSS has been used to profile the
gene expression of animal cell lines [7], Arabidopsis [8,9],
and maize [10].

Prostate cancer is the most common cancer diagnosed in
American males and the second leading cause of cancer
death in men [11,12]. Primary prostate cancer typically
requires androgen to maintain its growth. Consequently,
the growth and clinical effects of progressive prostate can-
cer characteristically respond to androgen ablation ther-
apy. Although androgen ablation initially retards the
growth of metastatic prostate cancer, ultimately, the dis-
ease escapes androgen blockade and evolves to an andro-
gen independent state [13,14]. The later stages of
progressive prostate cancer are characterized by a high fre-
quency of bone metastasis [15]. Since androgen inde-
pendent prostate cancer causes significant morbidity,
ultimately leading to mortality, and since there is no gen-
erally effective therapy for this state of prostate cancer,
characterizing differences between androgen-responsive
and androgen-independent prostate cancer is of great
importance, and may reveal mechanisms or targets for
molecular therapy. In this study, we compare the ability of
Affymetrix GeneChip DNA microarrays and MPSS to
determine gene expression profiles of two prostate cancer
cell lines. We determined the transcription profile of
LNCaP [16,17] and LNCaP derived C4-2 cells [18], with
the aim of identifying genes involved in the progression of

prostate cancer as modeled by the transition of LNCaP to
C4-2 and their expression pattern in prostate cancer.

Methods
Cultured cells and RNA preparation

LNCaP and C4-2 cells were cultured in RPMI 1640 media
supplemented with 5% fetal calf serum. Cells were har-
vested when 70–80% confluent. RNA was prepared from
107 cells using an RNeasy Mini Total RNA kit (Qiagen,
Valencia, CA). RNA purity was assessed by UV absorbance
and its quality with an Agilent 2100 Bioanalyzer and RNA
6000 Nano Labchips (Agilent, Foster City, CA).

Prostate tissues

All tissue samples were obtained under the University of
Washington Institutional Review Board protocol number:
00-3449-A03, based upon the following methods. Nor-
mal prostate parenchyma and primary prostate cancer tis-
sue samples were collected from radical prostatectomy
specimens following a standard procedure. To minimize
RNA degradation, upon receipt of the radical prostatec-
tomy specimen 3 mm thick transverse sections were made
after inking the exterior surface (the surgical margin). Tis-
sue blocks from the posterior aspect of each alternate
transverse section were embedded in Tissue-Tek OCT
(Sakura Finetek, Torrance, CA) and snap frozen in isopen-
tane that had been pre-cooled in liquid nitrogen. Frozen
sections of these blocks provided a template for identify-
ing the portion of the blocks that contained cancer. A
small fragment of cancer-enriched tissue (approximately 2
× 1 × 1 mm) was excised. Lymph node and bone metasta-
sis specimens were collected from Rapid Autopsy of donor
patients [19]. All tissue samples were placed in RNA Later
(Ambion, Austin, TX) and stored at -20C prior to process-
ing. RNA was prepared from these samples using STAT-60
(Tel-Test, Friendswood, TX). Briefly, 50–100 mg of tissue
were placed in 1 ml STAT-60 and homogenized with an
OmniTH using Omni Tip disposable generator probes
(Omni, Marietta, GA). RNA was extracted with the addi-
tion of 0.2 ml chloroform. After centrifugation, the aque-
ous phase was centrifuged with 0.5 ml isopropanol. The
RNA was resuspended in THE RNA solution (Ambion,
Austin, TX). RNA purity and quality were assessed by
absorbance and agarose gel electrophoresis.

Affymetrix Arrays

Gene expression in LNCaP and C4-2 cells was analyzed
with Human Genome U133 Plus 2.0 GeneChips (Affyme-
trix, Santa Clara, CA). Two individual biological replicate
samples of LNCaP and C4-2 RNA were assayed. Gene-
Chips were prepared, hybridized, and scanned according
to the manufacturer's instruction. Briefly, 1 µg total RNA
was reverse transcribed with a poly-(T) primer containing
a T7 promoter, and the cDNA made double-stranded. An
in vitro transcription was done to produce biotinylated
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cRNA, which was then hybridized to the GeneChips. The
chips were washed and stained with streptavidin phyco-
erythrin using an Affymetrix FS-450 fluidics station, and
data was collected with Affymetrix GeneChip Scanner
3000.

MPSS

One sample of total RNA from C4-2 and LNCaP cell lines
were submitted to Lynx Therapeutics (Hayward, CA) for
MPSS analysis. The samples were processed and analyzed
as described by Brenner et al. [6,20]. Briefly, mRNA was
reverse transcribed and the cDNA was digested with the
restriction enzyme DpnII. The cDNA fragment between
the poly-(A) tail and the DpnII site was cloned. The result-
ant library was amplified and conjugated to microbeads.
The microbeads were loaded into flow cells and the signa-
ture sequences were determined by a series of enzymatic
reactions. The abundance for each signature in the pool
was represented as transcripts per million (tpm).

Gene expression analysis by RT-PCR

Reverse transcriptase-polymerase chain reaction (RT-PCR)
was used to validate expression. For the cell lines, 1 µg
RNA was reverse transcribed with superscript II reverse
transcriptase (Invitrogen, Carlsbad, CA) at 50C for 50 min
followed by 10 min at 70C. For tissue specimens, 1 µg
RNA was reverse transcribed with Clontech Advantage RT
(Clontech, Palo Alto, CA) at 42C for 1 h followed by 5
min at 94C. Primers for PCR [see Additional file 1] were
designed to produce amplicons from 100–300 bp. PCR
was carried out at 95C 30 s, 55C 30 s, 72C 1 min for 35
cycles. PCR products were resolved on 2% agarose gels.

Data analysis

Affymetrix data was analyzed with GCOS version 1.0 soft-
ware package (Affymetrix). Scanned images of the arrays
were converted to numerical data by GCOS and outputted
to tab delimited text files containing Affymetrix ProbeSet
ID, signals, present or absent detection calls, and detec-
tion P-values for each feature on the array. The data was
imported into GeneSpring 6.2 (Silicon Genetics, Red-
wood City, CA) and analyzed to determine expression
profiles. The raw data was filtered to mask genes with sig-
nal intensities less than 50, which is at the background
threshold, and to retain only genes that were called
present by GCOS in both replicates. In order to map
Affymetrix ProbeSet IDs to NCBI GeneIDs (previously
Locuslink IDs) the Affymetrix ProbeSet annotation file
"HG-U133_Plus_2_annot.csv" was parsed by perl scripts
available at the Institute for Systems Biology (ISB) website
[21]. If a GeneID was present in the "LocusLink" column,
that GeneID was used for mapping. If not, the sequences
in the columns "SwissProt" and "RefSeq Transcript ID"
were queried against the mapping provided by Locuslink
or its successor EntrezGene. If one GeneID could be

mapped, it was used. Information from Affymetrix's "Tar-
get Description" column was not used. GeneIDs with no
mapping to the Affymetrix ProbeSet were considered to be
unrepresented in the Affymetrix dataset. Affymetrix
ProbeSet annotation files are downloadable and are
updated regularly. For this work, an annotation file down-
loaded in the second quarter of 2004 was used. The
Affymetrix data was visualized with Mathematica version
5.0 (Wolfram Research, Champaign, IL).

MPSS data was received from Lynx Therapeutics in the
form of tab delimited text files that listed signature DNA
sequences and the bead counts for individual sequences.
Many signatures were manually mapped using a graphical
web interface provided by Lynx: the Signome browser.
Other non-repetitive signatures were mapped with perl
scripts by combining 3'-most signatures of all high-quality
sequences known to correspond to a GeneID. Sequences
acquired directly from Locuslink or EntrezGene were con-
sidered to be of high quality. Sequences from UniGene
were considered to be of high quality only if they were of
"complete cds" Refseqs or had both a predicted polyade-
nylation signal and a polyadenylated end. The counts of
all signatures mapping to a GeneID were summed to get
the tpm for that GeneID, for most genes the majority of
counts were contributed by a single signature. GeneIDs
with no signatures were considered to be unrepresented in
the MPSS dataset. The perl scripts used to map MPSS tags
to GeneIDs are also available at the ISB website [21]. The
processed MPSS data was imported into GeneSpring in
the form of a tab delimited text file containing GeneID
and tpm counts associated with the genes. The datasets
were filtered to retain genes with signal of ≥ 1 tpm, and the
resulting lists of genes were considered to be the transcrip-
tomes of the cell lines. MPSS data was also visualized with
Mathematica.

For direct comparison of Affymetrix data to MPSS data we
used only GeneIDs with at least one MPSS signature and
did not consider ProbeSets with an "X" suffix. For a
GeneID to be considered present in Affymetrix data, at
least one ProbeSet assigned to that GeneID had to have a
"present" call. For a GeneID to be considered absent, all
ProbeSets assigned to that GeneID had to have an
"absent" call. Each GeneID may be represented up to four
times, for the two replicate Gene Chips analyzed for each
of the two samples. A present call increases the odds that
a transcript is expressed at a higher level, but does not rule
out the possibility of zero expression. Likewise, an absent
call increases the probability that expression is truly zero,
but does not rule out the possibility of significant
expression.
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Results
Overall expression profiles

In the Affymetrix datasets, a low stringency evaluation of
the transcriptome was determined by selecting genes that
were detected at a raw fluorescence signal intensity of ≥
50, which is higher than the average background signal
level of 35 ± 3 for the LNCaP chips and 43 ± 7 for the C4-
2 chips. The data was also parsed to select genes called
present in both replicates of each cell line. We chose the
cutoff points of ≥ 50 raw-signal and a call of present in
both replicates for Affymetrix data because it was the most
liberal method of determining if a gene was expressed by
a cell-line. In establishing the cutoff points it was our aim
to limit bias in our initial data analysis so that further
analyses would have the maximum potential data to work
with. Gene lists produced by the initial low stringency
analysis were considered to be the transcriptome of each
respective cell line. We define "gene" as a National Center
for Biotechnology Information (NCBI) GeneID with cor-
responding expression level information from our data-
set. Together, the LNCaP and C4-2 cells expressed 10,308
genes. Individually, LNCaP cells expressed 9,841 genes
and C4-2 cells expressed 9,653 genes. Comparison of the
genes expressed by LNCaP and C4-2 cells revealed that
9,186 of the genes were expressed in common, 655 genes
were unique to LNCaP and 467 genes were unique to C4-
2. To further refine the data for unique genes, select genes
were culled from each cell-type specific dataset. For exam-
ple, in the LNCaP dataset of unique genes all genes with
raw signals <100 in LNCaP and >100 in C4-2 were
removed. Next, all genes with GCOS software calls of
absent in LNCaP and present in C4-2 were removed. The
final number of genes unique to LNCaP was 172. The
same filtering process was applied to the C4-2 dataset to
produce a final list of 149 genes. Affymetrix data for
LNCaP and C4-2 cell lines including .CHP files can be
obtained from our website [22].

MPSS data was pared down to a gene list for each dataset
that contained a GeneID number and the tpm for that
gene. Similar to the initial analysis of Affymetrix data,
simplified MPSS gene lists were evaluated at low strin-
gency to determine the transcriptome of LNCaP and C4-2
cell lines. All genes present at ≥ 1 tpm in either one of the
two datasets were enumerated. Like the Affymetrix data,
the ≥ 1 tpm cutoff was chosen because it was the most lib-
eral definition of gene expression for the MPSS data.
Together, the LNCaP and C4-2 cells expressed 8,572
genes. Individually, LNCaP expressed 7,863 genes and
C4-2 cells expressed 6,539 genes. Comparison of the low
stringency gene lists revealed that LNCaP expressed 2,033
unique genes and C4-2 expressed 709 unique genes. To
further refine the data, genes with a tpm of >3 in either
sample were retained and genes with a tpm of <3 in both
samples were eliminated from the overall expression pro-

file. A tpm of 3 approximately corresponds to one tran-
script per cell [7] and is near the reliable detection limit of
the current MPSS protocol. The refined data contained
5,806 genes common to the cell lines, 1,797 genes unique
to LNCaP, and 658 genes unique to C4-2. MPSS data for
LNCaP and C4-2 cell lines can be obtained from our web-
site [22].

Correlation between Affymetrix and MPSS data

To determine the degree to which the Affymetrix and
MPSS data correlate, the transcriptomes assessed by each
technique were compared by NCBI GeneID with Match-
miner build 127 [23] merge algorithm and in-house perl
scripts. Data from Matchminer and perl scripts were simi-
lar, and we present the data from our in-house analysis.
Raw, low stringency selection data for both cell lines con-
tained 10,308 and 8,586 GeneIDs for the Affymetrix and
MPSS datasets respectively. Merging the datasets identi-
fied 3,050 genes detected by Affymetrix but not detected
by MPSS, 1,328 genes detected by MPSS but not detected
by Affymetrix, and 7,258 genes detected by both. In all, a
combined transcriptome of 11,636 genes was established
for LNCaP and C4-2.

We next directly compared the cell type-specific data pro-
duced by Affymetrix and MPSS (Fig. 1). For LNCaP, the
Affymetrix dataset contained 9,841 genes, while the MPSS
dataset contained 7,863 genes. Merging the LNCaP data-
sets showed that 3,180 genes were unique by Affymetrix,
1,169 genes were unique by MPSS, and 6,661 genes were
detected by both technologies. For C4-2, the Affymetrix
dataset contained 9,653 genes, while the MPSS dataset
contained 6,539 genes. Merging the C4-2 datasets showed
that 4,121 genes were unique by Affymetrix, 1,014 genes
were unique by MPSS, and 5,532 genes were detected by
both technologies [see Additional file 2].

Raw signal comparison

If the Affymetrix signal is highly correlated to the amount
of transcript, it can be used to directly estimate the proba-
bility of the presence or absence of a particular transcript.
To evaluate this correlation, we compared the Affymetrix
signal to the MPSS tpm for each possible GeneID (Fig. 2).
A number of factors could affect the implementation of
this approach: (1) the Affymetrix signal is influenced by
the distance of the ProbeSet from the 3' end of the tran-
script, (2) the Affymetrix signal is influenced by sequences
of the probe pairs in a ProbeSet, (3) a ProbeSet assigned
to a GeneID may be measuring a set of splice variants that
is different from the set of splice variants measured by
MPSS, and (4) gene models are imperfect in that the bio-
informatics assigning ProbeSets and signatures to
GeneIDs is prone to error. Furthermore (5), measurement
of outliers for either or both technologies can randomly
obscure the correlation between tpm and Affymetrix
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signal. To minimize these influences, we: (1) used only
GeneIDs with at least one MPSS signature, (2) did not
consider ProbeSets with an "X" suffix, (3) used the
ProbeSet with the strongest signal for that condition if
more than one ProbeSet was assigned to a GeneID, and
(4) used established statistical methods [24,25] to limit
spurious data contributed by outliers. Note that Affyme-
trix does not endorse the use of signal to predict transcript
level.

MPSS tpm and Affymetrix detection calls

The GCOS "detection P-value" is endorsed by Affymetrix
as a tool for classifying transcript presence or absence.
There are three possible values: (1) "present", for detec-
tion P-values < 0.04, (2) "absent", for P-values ≥ 0.06, and
(3) "marginal" for intermediate P-values. To estimate the
effect of using these default P-value cut-offs for declaring
a gene present or absent, we correlated them for each
GeneID to the tpm obtained by MPSS. We observed that
GeneIDs with an "absent" detection call have a 91%

chance of also having zero MPSS tpm, but also have a 2%
chance of having a MPSS tpm of more than 30 (Fig. 3).
GeneIDs with a "present" detection call have a 45%
chance of also having an MPSS tpm greater than 10, but a
39% chance of having zero MPSS tpm.

Detection of cell line-specific genes

The Affymetrix and MPSS data was analyzed to determine
which genes were "unique" to either cell line. For exam-
ple, to be considered "unique" to C4-2 cells a gene was
required to have an Affymetrix call of absent and not be
detected by MPSS in LNCaP cells. Lists of the genes that
are "unique" to C4-2 [see Additional file 3] and LNCaP
[see Additional file 4] according to both Affymetrix and
MPSS were compiled. C4-2 expressed 33 "unique" genes
while LNCaP expressed 66 "unique" genes. We performed
RT-PCR on all 99 "unique" genes to confirm that they
were indeed unique or actually differentially expressed at
levels not detected by these expression-profiling methods.
Gene-specific primers were designed for all "unique"

Merged Affymetrix and MPSS transcriptome profilesFigure 1
Merged Affymetrix and MPSS transcriptome profiles. Number of genes detected by Affymetrix and MPSS expression 
profiling of LNCaP (top) and C4-2 (bottom) cell lines. The number of genes detected by both platforms is listed in the yellow 
area, genes unique to Affymetrix are in the green area, and genes unique to MPSS are in the red area. Thousands of genes were 
only detected by one technology in each respective cell line.
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genes. The result for a subset of genes is presented in Fig.
4. From the C4-2 gene list ARHE, PHF1, PLD1, PRG-3, and
ACAS2L were selected, and of these 5 genes, PLD1 and
ACAS2L were confirmed to be uniquely expressed by C4-
2; but ARHE, PHF1, and PRG-3 were not. The RT-PCR
results suggest that ARHE, PHF1, and PRG-3 are likely dif-
ferentially expressed and not unique. From the LNCaP
gene list PCDH11X, MBNL2, EPHA7, FLJ12895, and ETV1
were selected, and of these, ETV1 and EPHA7 were con-
firmed to only be expressed by LNCaP cells, but
PCDH11X, MBNL2, and FLJ12895 were not. Results for
the other "unique" genes are compiled as the presence (+)
or absence (-) of RT-PCR signal [see Additional files 3 and
Additional file 4]. Of the 33 C4-2 genes PLD1, ACAS2L,
CA1, CA9, ITM2A, CARD14, and GPR54 were verified to
be uniquely expressed. Of the 66 LNCaP genes ETV1,
PAK1, EPHA7, and HELLS were confirmed to be expressed
only by LNCaP cells.

MPSS "zeros"

MPSS analysis reports zero tpm for some genes that are
predicted to have an appropriate signature [24]. However,
other methods of detection such as RT-PCR or Northern
blot show that the gene is actually present in the RNA
sample [9,26]. To confirm the concordance between an
expression level of zero for a gene by MPSS and an
Affymetrix signal for the same gene we performed RT-PCR
on five genes expressed in C4-2 cells but not LNCaP and
five genes expressed in LNCaP cells but not C4-2 as deter-
mined by Affymetrix (Fig. 5). All ten genes were not
detected in C4-2 or LNCaP by MPSS. Of the C4-2 genes
UGT8, GALC, and FLJ23259 were detected in both C4-2
and LNCaP although at very low levels in LNCaP. Two
genes, FOXQ1 and ZNF533 were not detected in either
C4-2 or LNCaP cells. Of the LNCaP genes ZNF625,
TBRG4, and TRPV6 were detected in both C4-2 and
LNCaP, and SLC4A11 was detected at very low levels in

Signal comparison of Affymetrix and MPSS resultsFigure 2
Signal comparison of Affymetrix and MPSS results. GeneID with manually curated signature mappings are in black, and 
those with automated mappings are in gray. All values are in log10, except zeros, which are portrayed as -0.1. Each GeneID is 
represented four times (for the two replicate GeneChips analyzed for each sample). A general trend of a monotonic increase 
with Affymetrix signal saturation at high expression is observed. However, variability is too great to justify a specific curve fit.
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both. LOC286097 expression was only detected in LNCaP
cells. These results suggest that the MPSS zero phenome-
non is not a major problem for our study since the genes
were otherwise detected by Affymetrix analysis.

Expression of cell line-specific genes in prostate cancer 

metastases

The LNCaP and C4-2 unique genes were assayed by RT-
PCR for their expression in benign prostate, primary

Comparison of Affymetrix call with MPSS detectionFigure 3
Comparison of Affymetrix call with MPSS detection. A rank-order plot of Affymetrix ProbeSet detection calls corre-
lated with MPSS tpm for each GeneID is shown. The MPSS tpm associated with GeneID determined to be present (black) or 
absent (gray) were sorted by rank order, and then one thousand values were plotted, representing the 1/1000th quantiles. Very 
few genes predicted to be absent by Affymetrix have a large MPSS tpm; a number of genes predicted to be present by Affyme-
trix have a low MPSS tpm.



BMC Cancer 2005, 5:86 http://www.biomedcentral.com/1471-2407/5/86

Page 8 of 12

(page number not for citation purposes)

prostate cancer, lymph node metastasis, and bone metas-
tasis (Fig. 6). The expression of each gene was determined
in 3 different biological replicates and was consistent
among the replicates; figure 6 data is representative of the
replicates. The C4-2 genes PLD1, PRG-3, ACAS2L and
CARD14 were expressed in all tissue types. CARD14
expression appeared to be greater in primary cancer and
reduced in bone metastasis while that of ACAS2L and
PLD1 appeared to be equivalent. PRG-3 appeared to be
expressed at high levels in all samples except primary
prostate cancer where the expression level appeared low.
Expression of CA1 appeared to be high in bone metastasis
and low in lymph node metastasis. The LNCaP gene
EPHA7 was expressed in normal prostate and primary
prostate cancer only. Expression of ETV1 was detected in
all tissue types except lymph node metastasis. PAK1 was
expressed in all tissue types. We also assayed the expres-

sion of the LNCaP gene HELLS and the C4-2 genes CA9,
ITM2A, and GPR54. Since RT-PCR determined the expres-
sion of HELLS, CA9, ITM2A, and GPR54 were variable
among the test samples, a representative expression pro-
file was not included in figure 6.

Discussion
The strengths of microarrays and MPSS appear somewhat
complementary to one another. The degree to which
microarray and MPSS data correlate is valuable
information for researchers involved in gene expression
studies. The two technologies could theoretically provide
genome-wide coverage of a transcriptome. In practice, our
data shows that Affymetrix or MPSS alone does not cover
the transcriptome of LNCaP and C4-2 cell lines as evi-
denced by the detection of certain genes by one technol-
ogy but not the other. Therefore, previous single-
technique studies of LNCaP and C4-2 gene expression
[27-29] have likely captured parts of their transcriptomes.
Our merged Affymetrix and MPSS data have 11,010 genes
for the LNCaP transcriptome and 10,667 genes for the C4-
2 transcriptome; we believe that the numbers represent a
reasonably complete profile of the genes that are
expressed by these cells within the sensitivity range of the
technologies. However, a comparison of the Affymetrix
and MPSS data revealed a potentially surprising finding in
that the expression of thousands of genes was not
corroborated by the two technologies. In the LNCaP tran-
scriptome, 28.9% of the genes were only detected by
Affymetrix and 10.6% only by MPSS. In the C4-2 tran-
scriptome, 38.6% of the genes were only detected by
Affymetrix and 9.5% only by MPSS. Overall, we see that
the Affymetrix signals are correlated with MPSS tpm. It is
likely that some variability in this correlation comes from
both detection processes. However, we note that at high
tpm the signal strength tends to slow its increase with
respect to tpm. The curve flattening suggests that ProbeSet
signals may saturate for highly expressed transcripts,
which has been previously observed by James et al [30].
Such saturation, however, does not pose a problem for an
experimental design such as ours that focuses on the pres-
ence and absence of particular transcripts.

The GCOS "detection P-value" is recommended by
Affymetrix to assess the presence or absence of a gene in
an experiment. Our data shows that when the Affymetrix
detection call is related to MPSS tpm value for genes called
"absent" by GCOS greater than 90% of the genes also have
a tpm of zero, which indicates that the technologies have
a similar level of low-end sensitivity. However, when
genes called "present" by GCOS are compared to MPSS
tpm only 45% of genes also have a tpm greater than 10
and 39% of the genes have zero MPSS tpm. Many of these
zeros are likely to be due to the failure of MPSS to measure
certain splice forms of some GeneIDs, particularly those

RT-PCR verification of unique gene expressionFigure 4
RT-PCR verification of unique gene expression. (A) 
C4-2 genes: Lane 1–2 ARHE, 3–4 PHF11, 5–6 PLD1, 7–8 PRG-
3, and 9–10 ACAS2L. (B) LNCaP genes: Lane 1–2 ETV1, 3–4 
EPHA7, 5–6 FLJ12895, 7–8 MBNL2, and 9–10 PCDH11X. Odd 
lanes are C4-2 and even lanes are LNCaP cDNA. Many genes 
determined to be unique to a cell line by Affymetrix and 
MPSS analysis were actually not when assayed by RT-PCR.

RT-PCR verification of genes detected by Affymetrix analysis but not by MPSSFigure 5
RT-PCR verification of genes detected by Affymetrix 
analysis but not by MPSS. All genes were determined to 
be expressed at 0 tpm by MPSS and detected present in C4-2 
(A) or LNCaP (B) Affymetrix data. (A) Lane 1–2 UGT8, 3–4 
FOXQ1, 5–6 ZNF533, 7–8 GALC, and 9–10 FLJ23259. (B) Lane 
1–2 ZNF625, 3–4 TBRG4, 5–6 TRPV6, 7–8 SLC4A11, and 9–10 
LOC286097. Odd lanes are C4-2 and even lanes are LNCaP 
cDNA. The expression of genes not detected by MPSS but 
detected by Affymetrix was verified with RT-PCR.
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missing DpnII sites. Given the low correlation of Affyme-
trix "present" calls and MPSS tpm the usefulness of the
relationship as an absolute means to compare data sets is
limited.

Due to the detection limits of Affymetrix and MPSS tech-
nologies further analysis of the genes "unique" to LNCaP
and C4-2 cells was necessary. We used RT-PCR to deter-
mine the presence or absence of "unique" transcripts in
the LNCaP and C4-2 cell lines. Of the 33 genes from the
C4-2 "unique" list that we analyzed 21% were verified to
be unique to C4-2 cells relative to LNCaP by RT-PCR. Of
the 66 genes assayed from the LNCaP "unique" list 6%
were verified to be unique to LNCaP cells by RT-PCR. In
one case, our RT-PCR verification appears to validate
MPSS signals as low as 1 tpm. The gene PHLDA1 had a C4-
2 Affymetrix signal of 105 and was detected in both C4-2
and LNCaP RNA by RT-PCR [see Additional file 2]. An
interesting aspect of the RT-PCR verification was the
detection of many transcripts that were "absent" as deter-
mined by GCOS and had zero tpm. Qualitatively, it
appears that the majority (89%) of the "absent" and zero
tpm genes detected by RT-PCR in both cell lines are actu-
ally differentially expressed. Therefore, it may be more
appropriate to interpret an Affymetrix "absent" call or an
MPSS zero as a failure of the technology to detect the tran-
script and not its absence.

The biological reason for comparing LNCaP and C4-2 was
to identify genes associated with cancer progression. C4-2
is a more malignant progeny of LNCaP produced through
an in vivo process involving interaction between LNCaP
and human bone stromal cells [31]. Unlike LNCaP, C4-2
has metastatic potential and is hormone insensitive. We
postulated that C4-2 genes were likely to be found in
advanced cancers; the strongest candidate was carbonic
anhydrase 1 (CA1), expression of its transcript was
restricted to metastases with a possible increase in bone.
Our data suggests that CA1 expression is related to the
progression of prostate cancer from tissue-localized dis-
ease where the gene is not expressed to metastasis where
the gene is present. The expression data suggests that
clones expressing CA1 are selected in bone metastasis. The
expression pattern of the other tested genes was less nota-
ble in this regard. PRG-3 [32], an enzymatically inactive
member of the recently described plasticity-related gene
family of lipid phosphate phosphatases [33] is present in
normal prostate but appears to be expressed at a lower
level in primary tumor. Its expression pattern suggests that
PRG-3 may be expressed in basal cells in normal glands as
these cells are missing in tumor glands. Caspase recruit-
ment domain family member 14 (CARD14), expression
appeared to be elevated in primary cancer but reduced in
lymph node and bone metastasis. CARD14 has been
shown to interact with the apoptosis activator BCL10 and

Expression of C4-2 or LNCaP genes in prostate cancerFigure 6
Expression of C4-2 or LNCaP genes in prostate can-
cer. Shown are the results of RT-PCR analysis of C4-2 (a-e) 
and LNCaP (f-h) genes in benign prostate (lane 1), primary 
tumor (lane 2), lymph node metastases (lane 3), and bone 
metastases (lane 4). The tested genes are: (a) PRG-3, (b) 
PLD1, (c) CA1, (d) ACA2SL, (e) CARD14, (f) EPHA7, (g) ETV1, 
and (h) PAK1. Genes unique to cancer cell lines displayed dif-
ferential expression in prostate and prostate cancer 
metastases.
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activate NF-κB [34]. The increased expression of CARD14
may facilitate the activation of NF-κB in prostate cancer.
Ephrin receptor A7 (EPHA7) is a member of a large class
of cell-cell communication receptor-ligand pairs, expres-
sion of which was detected in benign tissue and primary
tumor but not in lymph node or bone metastasis. The
expression of EPHA7 has been observed to be elevated in
liver tumors, decreased in colon tumors, and unchanged
in lung or kidney tumors [35]. It is interesting to note that
increased expression of another ephrin receptor, EPHA2,
has been demonstrated in prostatic intraepithelial neopla-
sia, and shown to be associated with neoplastic transfor-
mation [36]. Finally, ETS translocation variant 1 (ETV1),
a member of the ETS transcription factor family, was
expressed in normal and primary tumor, not in lymph
node metastasis (although it is a LNCaP unique gene),
and potentially elevated in bone metastasis. Greater
expression of ETV1 may promote an aggressive phenotype
of metastasis through its recently documented activation
of human telomerase reverse transcriptase [37].

Conclusion
The data we have presented represents the first direct com-
parison of Affymetrix gene expression profiling with
MPSS. Given the methodological differences between the
expression analysis platforms it is not surprising that the
transcriptomes would differ, however, the degree to which
the datasets diverge is surprising. The differences we have
observed between Affymetrix and MPSS transcriptomes
strongly suggest that a more complete transcriptome will
be obtained when both technologies are employed. The
use of multiple expression analysis platforms could be
extended to other technologies such as cDNA microarrays,
cDNA library sequencing, or SAGE and would likely
further enhance the accuracy of the transcriptomes pro-
duced. In a practical application of multiple expression-
platform profiling, our analysis of C4-2 and LNCaP pros-
tate cancer cell lines has identified genes such as CA1,
CARD14, and EPHA7 that may be involved in prostate
cancer progression. In conclusion, the use of multiple
transcriptome profiling methodologies will provide more
complete datasets and may supply more reliable candi-
date genes for further investigation.
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