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ABSTRACT

The potential offered by LiDAR (laser-induced direction and ranging) for the mapping of gravel-bed river environments is
addressed in this paper. A LiDAR dataset was obtained for a reach of the River Coquet, Northumberland, UK. Topographic
data were acquired from the field at the same time using theodolite-EDM survey of a number of cross-profiles across the
active river channel and bar units. These cross-profiles provide a means of comparing measurements from the LiDAR
data with ground survey. Ordnance Survey large-scale mapping was used to georeference the survey data, which were
then integrated with the LiDAR dataset using GIS software. A close correspondence between ground survey-derived
cross-profiles and those generated using LiDAR is observed. However, the presence of both vegetation and deep water
introduces anomalies in the LiDAR surface. Correction for these anomalies is needed to improve the accuracy of LiDAR
mapping in the UK context and similar river environments. It is concluded that LiDAR has potential as an accurate
survey tool for obtaining high resolution topographic data from unvegetated, exposed bar surfaces. Copyright  2003
John Wiley & Sons, Ltd.

KEY WORDS: LiDAR; river channel; cross-profile; surface quality

INTRODUCTION

Intensive mapping of river channel topography in large (>1 km) dynamic reaches using traditional ground

survey or analytical (manual) photogrammetry may exert a high demand on operator time and cost, especially

when including the survey of morphological detail which is at a scale larger than the gross channel-bar unit.

Sub-bar morphology (e.g. chute channels, sediment lobes) may be ignored to rationalize time in the field, or

at the photogrammetric plotter; however, these features may represent significant changes in sediment storage

within the channel system (Fuller et al., 2002). Whilst digital automated photogrammetry (e.g. Westaway

et al., 2000) can be used at a range of spatial scales to overcome some of these deficiencies, airborne LiDAR

is a potentially useful development for the acquisition of such terrain data. While differential GPS also has

potential for rapid topographic data acquisition (e.g. Brasington et al., 2000), areal extent does remain a

limiting factor. LiDAR, on the other hand, permits rapid gathering of topographic data for large areas, up to

90 km2 per hour (Marks and Bates, 2000).

LiDAR, variously termed in the literature as ‘laser-induced direction and ranging’ (e.g. Marks and Bates,

2000) or ‘light detection and ranging’ (e.g. Optech, 2001), provides laser-based measurements of the distance

between an aircraft carrying the sensor and the ground. The resulting measurements can be post-processed

to provide a digital elevation model with a precision within 15 cm (Fowler, 2000). LiDAR consequently

has significant potential for generating a high-resolution digital terrain surface of complex river channel

environments incorporating morphological features at a range of scales. Its precision when applied in gravel-

bed river systems is untested, and this paper evaluates the extent to which LiDAR may be used to provide

reliable measurements of topography in such environments.
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Airborne laser techniques have been widely applied in physical geography (Innes and Koch, 1998;

Bissonnette et al., 1997; McHenry et al., 1982; Parson et al., 1997; Irish and White, 1998; Gauldie et al.,

1996; Krabill et al., 1995; Wadhams, 1995; Ritchie et al., 1992, 1996). Within geomorphology, the use of

airborne laser scanning has focused particularly on the measurement of ephemeral channels and gullies (e.g.

Jackson et al., 1988; Ritchie and Jackson, 1989; Ritchie et al., 1994, 1995) and assessment of flood risk

(Marks and Bates, 2000).

The integration of LiDAR with airborne GPS facilitates the wider use of high resolution DEMs in physical

applications (e.g. Marks and Bates, 2000). The method of survey is rapid, relatively economic, allows survey

of difficult terrain, and large areas (for example a river catchment). This would appear to make it an attractive

alternative to ground-based survey methods. However, it is difficult to determine the level of precision of

LiDAR measurements for any one survey. This feature has been identified by Brinkman and O’Neill (2000),

who observe that elevations are generated from three sources: (i) the LiDAR sensor, (ii) the inertial navigation

unit (INU) of the aircraft and (iii) GPS. The LiDAR measurements must be corrected for the pitch, roll and

yaw of the aircraft, and the GPS information allows the slant distances to be corrected and converted into a

measurement of ground elevation relative to the WGS84 datum. The measurements are taken from side to

side in a swath as the aircraft flies along its path; those measurements at the centreline of the swath are more

precise than those near the edge. Brinkman and O’Neill (2000) also observe that both horizontal and vertical

precision depend on the flying height (where horizontal precision is 1/2000th of the flying height); horizontal

precision will thus be ‘accurate to 15 centimetres or better’ when the flying height is at or below 1200 m

(Brinkman and O’Neill, 2000). In complex topography, small lateral offsets associated with the INU and GPS

will be translated into vertical error in the LiDAR surface. This is less of a problem on open, unvegetated

surfaces than in areas with tall vegetation cover. If the flight layout can be optimized for GPS (with at least

six satellites in view) then precisions of 7–8 cm are theoretically achievable.

The Environment Agency (EA) has commissioned LiDAR surveys of a number of river and coastal envi-

ronments. The output from the flights and subsequent data processing is a series of DEMs with densities in the

order of 64 600 topographic measurements per km2 (Marks and Bates, 2000). This is equivalent to a resolution

of 3Ð9 m�1 (
p

1 000 000 m2/
p

64 000 measurements). Figure 1 depicts a mosaic of two adjacent 1 km2 tiles

(nt9502 and nt9602) viewed as an illuminated surface from the southwest. No vertical exaggeration has been

applied. As well as showing the undulation of the valley sides, and some faintly visible palaeochannels on

the floodplain, vegetation cover is clearly visible. In the study area, white patches indicate where the LiDAR

sensor has failed to make a reading. It should be noted that these data gaps are all in the river channel.

Superimposed on Figure 1 is the outline of the area incorporating the study reach on the River Coquet

at Holystone (OSGR: NY 958027), located some 25 km downstream from the river’s source in the Cheviot

Hills and draining a subcatchment area of some 225 km2 (Figure 2). The contemporary active channel at

Holystone is locally divided by expanses of bare gravel, but has well defined pool–riffle units, fitting the

criteria for a wandering channel type (Ferguson and Werritty, 1983), and displaying a complex assemblage

of channel, bar and sub-bar morphology (Fuller et al., 2002). From historical maps dating back over the past

150 years, the Coquet in this locality is seen to be characterized by a high degree of lateral instability and

channel avulsion. Recent calculations show volumes of sediment in excess of 2000 m3 to be reworked on

an annual basis within the reach (Fuller et al., 2002). The question remains, however, as to the applicability

of LiDAR data in the context of reach-scale topographic mapping of such gravel-bed channel systems. In

order to address this, we compare measurements taken from the LiDAR data with spatially corresponding

measurements obtained from tachometric survey for a series of cross-sections along the reach.

METHODS

Post-processed LiDAR data, derived from a single pulse scanning sensor, were obtained by the EA throughout

the River Coquet catchment on 19 March 1998. No assessments of precision were available for this data set.

The LiDAR measurements were georeferenced using the WGS84 datum used by the NAVSTAR Global

Positioning System. Prior to any integration with Ordnance Survey (OS) data, all measurements had to be
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Figure 1. Perspective, viewed from the southwest, of the LiDAR elevation surface of a section of the River Coquet, showing the location
of the study reach. The area shown is 2 km ð 1 km. Flow is from northwest to southeast
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Figure 2. River Coquet catchment, Northumberland, UK, showing the location of the study reach

transformed to use the OSGB36 datum; this was carried out by the EA (Environment Agency, 1998). The

data were then interpolated onto a 2 m ð 2 m grid.

Coincident with the LiDAR flight, channel cross-profiles were surveyed from monumented pegs on the

riverbank using theodolite-EDM survey with a Total Station. This ground survey took one week around the

date of the LiDAR acquisition flight, thus ensuring minimal discrepancy between LiDAR and ground survey

cross-profiles due to morphological change. The ground survey measurements were made at every break of

slope across the channel. The locations of the ground survey measurements were georeferenced by comparison

with OS LandLine data. Of eighteen cross-sections used for sediment budgeting in the reach (Fuller et al.,

2002), six cross-sections were selected for detailed comparison (Figure 3). These were selected on the basis
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Figure 3. Location of cross-sections within the study reach. Cross-sections are numbered 3, 6, 9, 10, 13 and 14 run from northeast to
southwest along the river channel; ground survey points denoting the base of bank are denoted by small black dots. Gaps in the LiDAR

data set are denoted by white zones

that they covered the full range of channel morphology within the reach. Tying both the ground survey and

LiDAR to a common planar coordinate system allowed accurate comparison of one with the other.

Georeferenced height values were calculated from the LiDAR data at 0Ð25 m intervals along the six cross-

sections using the surface profiling facilities available in Arc/INFO GIS. In total, this supplied 9152 estimates

of elevation for the cross-sections. By comparison, there were only 551 measurements of elevation available

from the ground survey. This engenders the problem that the measurements derived from the LiDAR surface

were not taken at precisely the same positions along the cross-profile as those from the ground survey. To

resolve this, the surface profiling facilities in Arc/INFO were used to generate interpolated values from the

digital elevation model at a set of regularly spaced locations, within the mesh spacing of the model. Cubic

splines (Press et al., 1989) were fitted to these measurements (a spline has the useful property that it passes

through all the observed data points), and values were then interpolated from the spline function at positions

corresponding to those along each cross-section at which ground survey elevations were obtained.

Elevations from the ground survey data were adjusted to the LiDAR elevation at the monumented peg

for each cross-section, so that the first data point in all cross-sections had the same z-value as the LiDAR

elevation for that specific location. This has the effect of removing the systematic bias component of the

error associated with both the LiDAR measurement and the survey of the monumented peg. Assessing the

magnitude and variation in the bias component requires further research however.
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RESULTS AND DISCUSSION

The measurement of channel cross-profiles using LiDAR and ground survey is compared in Figure 4. Several

features are immediately apparent. At the time of survey, a number of mid-channel and lateral gravel bars

along with isolated sections of the banks were colonized by stands of mature Alnus glutinosa. While much of

this has disappeared since the 1998 survey as a result of a series of major flood events, this woody vegetation

is evident on the cross-section LiDAR plots as ‘spikes’ in the elevation data. No spikes are seen in the ground

survey data as vegetation was ignored. The zones of deeper water, evident in Figure 2 as white zones, are

also replicated here as gaps in the LiDAR coverage in cross-sections 3 and 14. In addition, the nature of

the single return measurement used here means deeper water is poorly represented in cross-sections 10 and

13. Elsewhere there is reasonable correspondence between the ground and LiDAR coverages, although no

consistent pattern of superposition is apparent. The absolute differences in elevation between the LiDAR

and ground survey profiles are shown in Figure 4. These differences are tabulated for the different surface

characteristics along each profile (Table I).

It is evident that the mean difference figures exceed Fowler’s (2000) estimation of precision (15 cm); this

is due to discrepancies introduced by tall vegetation (trees) and deep water. When the figures are examined

for the different surface characteristics, it is clear that the best correlation between LiDAR and ground survey

is provided by the gravel bar surfaces. With the exception of cross-profile 6, the figures for the gravel surfaces

are consistent with Fowler’s estimation of precision.

A one-way ANOVA test is appropriate to consider whether there is sufficient evidence for these differences.

Tests were carried out on the whole data set as well as each of the cross-sections and the F-tests were seen to

be significant at the 5 per cent level in all cases (Table II). However, these results only indicate that, for each

test, at least one of the means is different from the rest. It is helpful to carry out post hoc tests to determine

which of the three pairs of substrate means are significantly different. The results of a Scheffé test are shown

in Table II for those substrate pairs which are significant at the 5 per cent level and some reasons for these

differences are also summarized. (The Scheffé test permits post hoc multiple comparisons between a set of

means; Scheffé, 1959.)

The LiDAR-generated cross-profiles are incomplete where there is deep water (e.g. cross-profile 3) and

distorted where trees are present (e.g. cross-profiles 6, 9, 13 and 15). The absolute differences from the

ground surface vary from 1Ð579 m (due to deep water) to 3Ð908 m (due to trees), where the degree of

difference attributable to vegetation reflects the influence of first return data. Due to the distorting effects

of vegetation, elevation values are difficult to delineate from base topography using a single return LiDAR

survey. The LiDAR data provided by the EA trade off the frequency of measurement by the detector against

pulse separation, a problem also encountered by Marks and Bates (2000). As Marks and Bates point out, the

detector registers only the pulse returned from the terrain surface (vegetation or topography), and elimination

of vegetation effects through height differencing of the first and last returns or the full return waveform (such

as by Weltz et al., 1994) was therefore impossible. Some workers have made initial attempts to address this

by gridding the data and applying a simple variance filter (Marks and Bates, 2000); however, this approach,

while appearing a reasonable initial attempt to deal with this complex issue, inevitably leads to some loss of

resolution (Marks and Bates, 2000). An alternative approach could be to use georeferenced aerial photography

(if available) to distinguish and classify vegetation, permitting more vigorous elimination of LiDAR spikes

in vegetated areas.

Aerial photographs have been used to estimate water depths in shallow gravel-bed rivers (e.g. Winterbottom

and Gilvear, 1997; Gilvear et al., 1998), and although such an approach is limited in scope to rivers with

shallow and relatively clear water, depth determination of up to one metre should be feasible with standard

colour photography. However, in this reach of the River Coquet, pools frequently exceed this threshold depth.

In attempting to overcome the same problem, Irish and Lillycrop (1999) recommend using multispectral

laser imagery allowing subtraction of the difference between the reflection from the water surface of the

shorter wavelengths from the longer wavelengths that can penetrate the water column. This approach permits

measurement of the bed surface beneath deeper water provided that associated problems with turbulence

and suspended sediment attenuating the penetration of light within a water column are not prohibitive. Such

multispectral data were not, however, available for the River Coquet. In their absence, there is therefore a
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Figure 4. Comparison between LiDAR and ground survey for six cross-sections on the River Coquet. Absolute differences between
LiDAR and ground survey profiles are also given
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Table I. Quantification of the absolute differences in metres between ground survey and LiDAR data

Cross-profile Absolute difference

Mean Vegetated Gravel Wet

3 0Ð305 – Ł 0Ð160 0Ð738
6 0Ð546 1Ð210 0Ð328 0Ð259
9 0Ð509 1Ð250 0Ð175 0Ð203

10 0Ð363 0Ð413 0Ð171 0Ð732
13 0Ð326 0Ð521 0Ð161 0Ð651
14 0Ð291 0Ð471 0Ð161 0Ð557

Ł No vegetation present on cross-profile 3.

Table II. Analysis of variance summary for the cross-profiles

Cross-profile ANOVA P Significant pairs Reason

Alldata F2,340 D 38Ð383 0Ð000
3 F2,24 D 9Ð167 0Ð001 Gravel – Wet Deep water on profile
6 F2,62 D 29Ð149 0Ð000 Vegetated – Gravel Trees present

Vegetated – Wet Shallow water
9 F2,69 D 16Ð628 0Ð000 Vegetated – Gravel Trees present

Vegetated – Wet Shallow water
10 F2,72 D 16Ð223 0Ð000 Gravel – Wet Deep water on profile
13 F2,50 D 4Ð925 0Ð011 Gravel – Wet Deep water on profile
14 F2,48 D 7Ð159 0Ð002 Vegetated – Gravel Trees present

Gravel – Wet Deep water on profile

virtue in adopting an integrated mapping approach by augmenting LiDAR using appropriately georeferenced

ground survey.

CONCLUSIONS

If errors, particularly those from vegetation, can be reliably quantified, the results presented here suggest

that LiDAR shows considerable potential for accurate mapping of gravel-bed river environments. The use of

single return LiDAR data provides an exceptional opportunity for initial reconnaissance of extended reaches

of channel systems. In the UK context, a multidisciplinary approach utilizing ground survey to augment data

gaps increases the resolution of such channel mapping exercises. In environments where vegetation is less

extensive, such as proglacial channel systems or braidplains, exclusive use of single return LiDAR may still

offer an accurate method of acquiring high resolution data for bar surfaces above inundation, or where flow

is sufficiently shallow that water depth does not distort the laser.

Ultimately, however, a scanning LiDAR that returns, as a minimum, first- and last-pulse information is

required for many environmental applications including floodplain hydraulic modelling (Marks and Bates,

2000). First-pulse LiDAR measures the range to the first object encountered, such as the vegetated surface.

Last-pulse LiDAR measures the range to the last object, represented in this study by unvegetated gravel bar

surfaces. By acquiring such first- and last-pulse data simultaneously, both tree heights and the topography of

the ground beneath can be addressed in a single pass (Optech, 2001).
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