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ABSTRACT

An approximate solution of the multigroup neutron diffusion kinetics
equations with delayed neutrons in two-dimensional geometry can be ob-
tained by matrix splitting methods based on an Alternating-Direction
Implicit (ADI) scheme. The method is shown to be consistent and numer-
ically stable. An exponential transformation of the semi-discrete equa-
tions reduces the truncation error so that the method becomes useable
for practical computations. The results of numerical experiments are
presented to illustrate the accuracy and stability of the method. These
results indicate that another splitting method based on an Alternating-
Direction Explicit scheme is slightly superior.
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Chapter I

INTRODUCTION

The current trend toward very large power reactors, in which the

space-time effects can become limiting design considerations (Refs. 1, 2),

requires the development of methods of predicting the transient behavior

of the neutron flux as a function of position as well as time. An enormous

amount of effort has been directed toward this problem.

In the following dissertation ws shall be concerned with methods of

calculating the flux in two-dimensional geometry for reactor transients

sufficiently rapid that time derivatives of the flux are not negligible.

This eliminates xenon oscillation problems, burnup calculations, and

other long period reactor changes.

The methods to be presented are intended to be applicable to a very

general class of problems. However, it is intended that they should be

useful as "numerical standards" against which other faster, but more

approximate, methods can be tested, and in the analysis of reactor

accidents.

To obtain the flux, we use the multigroup neutron diffusion kinetics

equations with delayed neutrons. The problem can be written in the

semi-discrete form (see Appendix A):

A T (1. 1)
dt =A aIt

where I'is a vector of group fluxes and delayed neutron densities at

*See, for example, References 1, 6, 7, 8, 14, 18, 19, 20, 22.
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every mesh point in the reactor and A is the 'A' matrix which describes

the kinetic properties of the reactor. The multigroup equations and the

'A' matrix are discussed in detail in Appendix A.

Formally, the solution of the initial value problem (1. 1) can be writ-

ten (for A constant):

q(t) = exp(t A) 1(0), (1. 2)

where T(0) are the initial conditions. The purpose of this thesis is to in-

vestigate methods of computing an approximate numerical solution of

Eq. (1. 1) which are based on an Alternating-Direction Implicit (ADI)

type of approximation (Ref. 3). These are part of a general class of

"Matrix Splitting" methods (Refs. 4, 5).

The problem (1. 1) is difficult to solve because the characteristic

times of the system vary from the asymptotic period (order of seconds)

to the prompt neutron life time (fractions of microseconds for some sys-

tems). Stated another way, the eigenvalues of A vary from order +1 in-

verse second to order -10 inverse second. Also, the methods are diffi-

cult to analyze mathematically because A is not Hermitian, and because

the spacial dependence of the problem prevents its being Fourier trans-

formed.

In Chapter II the basic method will be presented and analyzed from

a mathematical point of view, then several modifications of the basic

method will be presented and discussed. Numerical solutions for several

sample problems have been obtained using these methods, as well as using

other methods currently under development (Refs. 6, 7) or in use (Ref. 8).

In Chapter III these methods will be compared with respect to accuracy
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and computing time.

The computer code, STKADI, written in FORTRAN IV for the MIT

System/360/65 computer to test the methods is described and listed in

Appendix D.
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Chapter II

THEORY

1. Properties of the 'A' Matrix

Before discussing methods of obtaining an approximate solution of

Eq. (1. 1) we shall first review some of the properties of the matrix A.

A is a real, square, irreducible matrix with non-negative off-diagonal

elements. This is an "essentially positive" matrix by Def. 8. 1, page 257

of Varga (Ref. 9). Thus by Varga's Theorem 8. 1, exp (tA-K) is positive

for all t > 0, and by Theorem 8. 2, A has a real, simple eigenvalue, w ,

such that

i) to 0 there corresponds a positive eigenvector e ,

ii) if w. is any other eigenvector of A, then Real (w.) is less than

o , and

iii) o is increased if any element of A increases.

In addition, we know from Theorem 8. 3 that exp (tA) exhibits asymp-

totic behavior given by

.flexp(tA) ~ K exp( 0 t), (2.1)

as t -- co, K some constant independent of t.

This leads us to the following observations about the solution, T, of

Eq. (1. 1) for non-negative initial conditions:

i) $'(t) > 0 all t > 0 since exp(t-A) > 0, and '(0) > 0, 1(0) * 0,

ii) as t becomes large, ||Z(t) 11 is bounded by K exp(o 0 t), and

iii) we can subtract a constant diagonal matrix from A to make an

A' whose largest eigenvalue is zero.



13

Furthermore, by Theorem 1 in Appendix B, the solution behaves

asymptotically like:

$(t) a exp( 0 t) e 0  as t - oo, (2. 2)

where a = (e9, (0)) -0.

2. The Alternating-Direction Implicit Method

The solution (1. 2) of Eq. (1. 1) can be obtained in principle from the

convergent series:

exp(tA) V(O) = (I+ tA +(tA) 2 /21 +... (tE)n/! +...) T(0). (2.3)

This is generally not feasible in practice for two reasons:

i) the number of terms required, and the number of computations

needed for each additional term make the computing time prohibitive,

and

ii) round-off error will swamp the solution long before the series

converges.

To obtain an approximate solution of Eq. (1. 1), we replace the time

derivative by a forward difference over a time interval, At, and calcu-

late a series of approximate solutions XF at discrete times, t., assuming

A constant over At. The algorithm for computing qj+1 from Tj is ob-

tained as follows:

A is split into the sum of two parts:

A = A + A2 (2.4)

where

A1 X + 2 =+ L
-. & -. & -. b

A 2 = Y + L.
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X is a symmetric matrix of one half of the diagonal terms of A and the

off-diagonal stripes associated with diffusion in one direction. Y con-

tains one half of the diagonal and off-diagonal stripes associated with

diffusion in the perpendicular direction. (See Appendix A.) U contains

the remaining elements of A which appear above the diagonal, and L

those which appear below. Then with h = At/2, we write

j + 1 / 2 - j + 1 / 2 + A 2

(2. 5)

j+1 _hj+ 1/2 - j+ 1/2 + j+ 1

h A1 TA2T 1

or equivalently,

f+/hA 2= (hiA+/ j, (2. 6 a)

(TI-hA;) Uj+1 2 j+1/2, (2. 6b)

where Tj+1/2 is an intermediate vector which is actually computed.

The name Alternating-Direction Implicit derives from the diffusion

term in one direction being handled implicitly in one half step, and ex-

plicitly in the next, according to the scheme of Peaceman and Rachford

(Ref. 3). The L and U matrices are treated as in the Gauss-Seidel

method, with the L and U alternately implicit.

The linear systems implied by Eqs. (2. 6) can be easily solved by

taking advantage of the block structure of the matrices. After the matrix

multiply (I - hA ) is performed, we are left with a system that looks
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like Fig. 2. 1 if we divide out h and incorporate I/h into the diagonal

blocks. The system Y1 u = can be solved quickly by elimination

since Y is tridiagonal. Starting in group 1, we solve for all U1 , which

is then available for back substitution when solving for u 2 . The process

is repeated until all the energy group fluxes are obtained. The delayed

groups then require solution of systems. A nG+i G+i which is trivial

since 'A. is diagonal. For the next half-step the procedure is the same,
1

except the solution proceeds from bottom to top. No iterations are re-

quired at any stage of the computation.

By substituting (2. 6a) into (2. 6b) we obtain a formal expression for

the advancement matrix E

j 1 _ (h) ir = (If- h 2 ) (I+ h (+hA ) . (2.7)

3. Properties of ADI

The advancement matrix B(h) can be rewritten in a form more con-

venient for analysis:

E(h) = I + 2h(I- hA2  F 1)~ . (2.8)

This gives immediately:

Property 1 - For the exactly critical, *steady-state reactor, T = A i = 0,

- 1 -& _ .
T = B' (h) I = TI, which is the exact solution, independent of h.

For the general problem we are more concerned with:

Property 2 - The advancement matrix B(h) is a consistent approximation

to the solution of (1. 1).

MIN 1101"IMI IMIP
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"Consistency" assures us that the method does in fact approximate the

solution N(t) for "sufficiently small" time steps. The consistency prop-

erty is proven in Theorem 5, Appendix B.

If we assume h sufficiently small that we can expand B(h) in a power

series, we get

.h) = + 2hA + 2h 2 A 2 + . ... (2.9)

Comparing this to the expansion:

exp(AtA) = exp(2hA) = I + 2hA + (2hA) 2 /21 + ... , (2. 10)

we arrive at

Property 3 - B(h) agrees with the expansion of exp(AtA) to terms in

and hence is said to be "accurate to order (h "

This property is verified experimentally in Chapter III, Section 2.

Theorem 2, Appendix B, shows that the inverses, ( -hA ) and
-11

(-hA 2 ) , are non-negative. Since the fundamental eigenvector, e ,

is positive, we can establish:

Property 4 - If o >-- 0, the component of the solution vector P in the

direction of e is nondecreasing.

This assures us that the fundamental component will grow when it should,

although it does not guarantee that it will grow faster than all other com-

ponents, nor that it will grow with the correct period.

Equation (2. 7) can be rewritten in the form
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-j - -)-1 (
B (h) = (I/h-A 2 ) (I/h+A 1 )(I/h*A )~ /h+A 2 ). (2. 11)

In the limit as h becomes very large, I/h becomes negligibly small, and

B(h) - (-A 2) (A 1 )(-A )~ (A 2  I.

Thus:

Property 5 -As the time step becomes very large, the advancement ma-

trix, BJ(h), approaches the identity operator, I.

This property helps explain the observed tendency for the ADI to under-

predict the growth (or decay) of the solution as the time step is increased.

More precisely, the growth (or decay) of each eigenvector in the solution

is underpredicted, depending on the product h I. Thus, if the initial con-

dition contains a large amount of a component with a large negative eigen-

value, that component will die away very slowly, resulting in considerable

error in the computed solution vector, even though the fundamental is well

approximated.

The eigenvalues of BJ(h) are the solutions of

tJ(h) V. = v (2. 12)
1 1 1

or if we let

1 + hv.

.= 1- hv(2. 13)1i 1 - hv.

we can write (2. 12) as

(1+hv )(f-hA 1 f-h M2) i~ = (1 hv)(+hA (I hA

This reduces to

... .. ... .....
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-- - 2- - -
hA v =hv v. + (hv ) h A 1A2 i. (2. 14)

Thus the eigenvalues v and eigenvectors vi are solutions of the charac-

teristic equation:

(I+h2A A A v. = v.v.. (2. 15)1 2 i i

Comparing (2. 15) to the characteristic equation for A,

A = . e (2. 16)1 1I1

we see that vi and v. are approximations to o and ei accurate to order

(h2). Furthermore, the eigenvalues of Bj(h) are approximately

1 + hv. 1 + hw.

i = 1 - hv 1- hw. + O(h)
1 1

2ho. 2
= e 1 + 0(h2). (2. 17)

4. Stability

To be useable a numerical method cannot allow some error in the

solution vector to grow faster than the correct solution; that is, the

method must be stable. To insure stability, \we require that the solu-

tion should remain bounded for finite time and finite time step. More

precisely, we use the definition of stability of Richtmyer and Morton

(Ref. 10):

Definition: The advancement matrix, B(At), is stable if there exists a

constant, b, such that

IIBN (At) j b (2. 18)
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for

0 < NAt = T, O < At 4 -T.

This condition can be satisfied if the solution grows by no more than a

factor (1 +KAt), K some constant, with each time step.

We must impose an additional requirement on the definition above.

bj 2
B (h) contains quantities of the form h v D fAx arising from the approx-

imation to the diffusion operator which become very large as A x2 be-

comes very small. The upper bound in (2. 18) must be either independent

2
of Ax , or, if this is too strict a requirement, then an upper bound must

exist with the ratio r = h v D /Ax 2 held fixed.

We first consider the stability of the problem obtained by setting the

intragroup transfer terms (including delay-group transfers) to zero to

obtain the symmetric matrix, a = X + Y. Thus:

S(h) = (I- hY (I+hR)(I-h) (I+hY). (2. 19)

Theorem 3 shows that ej(h) is unconditionally stable if and only if all the

eigenvalues of X and Y are non-positive. Using Gerschgorin's Theorem,

we can show that this is true if the net group production term on the diag-

onal,

g =Xg( 1-p)(v f) g - ,ag (2.20)

is, negative.

The matrix Bj(h) can be written as a sum of (2. 19) and a bounded

perturbation of order (h). Thus:

Ed(h) = 6"(h) + h(Q2h), (2. 21)
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where IIQ(h) 11 < q, all h. Bj(h) certainly cannot be stable if (h) is

not, and conversely if 23(h) is stable and Q(h) bounded, Ed(h) must be

stable. (See Ref. 10.)

(h) can be shown to be stable as follows:

Ej(h)N 2) - 2 (I+ hA(I- -1

CIA1)C hA- 1) hA 2)
.~ ~ C . .' (Ih h ~A6$

,- hX 2) 1

(I- hA2) (hI - i) . ..

(I - h-A2) B'(h)N h 2*

Now

B'(h) = 6 1 (h) B 2 (h),

with

B 1(h) = (I+ hA 1) - hA' )~

and

E 2 (h) = (I+ A 2 2

Now we can manipulate B 1 (h) to obtain

B 1 (h) = I-hi)~ (I + hX) + 2h(I - hA 1)- U(I - h)-

(2. 22)
= ( I (h) + 2hQ(h).



22

Now if Condition (2. 20) is satisfied, Theorem 4 establishes that Q 1 (h) is

bounded:

Q 1 (h)fj q (2.23)

Furthermore, all the eigenvalues of X are negative, and

p(n1(h)') = 1 1 (h)J1 < 1.

Thus

jJBl(h) 11 < 1 + 2hq1 < eatq (2.24)

Similarly,

2 (h) j 1 + 2hq2  e

Consequently,

II'B(h)N 1. 11 (1 - hA 2) ' (h)N 

ShA

SC e qT = b

IlaI-h 
2

(q +q 2 )t N

11 - 11 (1 - hA.2

(2. 26)

since the condition number

-.(Ih| - h I(I hA)

is bounded by a constant for 0 < h < T < o.

If t he time step varies over the computation, or the elements of A

are functions of time, then we select the maximum J|I 1| 1 and lI 2 | 1, and

(2.25)
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perform the same analysis.

The above analysis has not assumed that the reactor is homogeneous,

has placed no restriction on the number of neutron or delayed groups, and

has placed no restriction on h or T other than that they be real, posi-

tive and finite. The only restriction is that the diagonal production term,

T ,g be negative, a condition which is almost always satisfied in prac-

tice. Thus the basic method is unconditionally stable.

5. Fractional Step Method

Physically meaningful problems have flux distributions which are

everywhere positive. Consequently any negative elements which would

appear in the approximate solution T would render the solution unuse-

able in practice. Unfortunately, since the matrices (I+hA2 ) and1+ hA1)

are non-negative only for very small h, the ADI does not necessarily

produce a positive solution even when the initial vector is positive. Since

we know that the exact solution with positive initial conditions is positive,

we seek a method which shares this property.

The advancement matrix

B (At) = (I- At A2)~ ( (I AtA )1 (2. 27)

is a consistent approximation, and is non-negative. It is accurate to

O(At) and stable for all At. Unlike the basic ADI method, it is not ex-

act for the exactly critical problem, nor can the solution be guaranteed

to grow when it should. In fact, for very large At,



24

lim -B(At) =lim 2 (I/At-A 2 )- (I/At-A 1 )
At-oo At-oo At

1 1 2 1
S (-A 2 ) (-A1)A

At

Thus for large At, the solution decreases as At increases.

6. Frequency Transformation

Numerical experiments have shown that the basic ADI method of

Section 2 is not sufficiently accurate. A large improvement in the accu-

racy of the method results from a simple change of variable. We define

a transformation from the relation

- Ot -
I'=e ' (2.28)

with Q a diagonal matrix. The equation for i' then becomes

=T e -0t(A - E-) e t'

A' I T (2. 29)

If T(t) has a basically exponential behavior, then ''(t) should be a smooth

modulation, and hence well approximated by a simple difference.

Now (2. 29) is identical in form to (1. 1). We thus attempt a solution

as before. We first integrate over h to obtain

y h

T'(h) - '(0) = A'(t) -'(t) dt
0

=hA'(h/2) 1'(h) + hA'2(h/2) '(0), (2. 30)

evaluating A'(t) half way between the end points.

....................
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By reversing the roles of A' and A'2(t) on the next half step, and using12

some algebra, we obtain

T = exp Q2 h n) (I-h(A 2

+ h A1 -$ - hA A - h(A21

exp(1 h ) , (2.31)

after using (2. 28) to transform back to '.
tQ..

The matrix exp(t 0) is a diagonal matrix of elements (e 11) and con-

sequently is simple to evaluate. The remaining terms of (2. 31) are the

basic ADI method applied to the matirix (A-Q). We shall call this the

"Transformed ADI" - method, and the matrix,

B(h,)= exp( h) I-h( A 2 ~ 2 -

(I+h(A, -I) (I-h(Al - 1 I+h A2

exp (h ), (2.32)

the "Transformed Advancement Matrix." Since 0 has units of sec~, we

shall call it the "Frequency Matrix," and its elements "frequencies."

i is to be chosen in such a way as to minimize the error in the solu-

tion. It is not obvious a priori how to do this, but a method which has

proven extremely successful in practice is to take advantage of informa-

tion available from the previous step, and compute

Z " .. - 11 1 '1 " . ......... .....
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log

i = 2h .(2. 33)

Thus the solution growth over the previous step is used to estimate 0 to

be used in the present step.

This requires storing ' as well as , so that the transformed

ADI requires three times as much storage as the basic ADI method. For

the first step S = 0 is used.

If Q were held constant throughout the calculation, and the condition

(a- 9 - S.i) < 0 (2. 34)
gg i

were always satisfied, then the transformed ADI would have the same

stability properties as ADI. However, O is changed at each step, allow-

ing feedback effects to cause instabilities.

If the solution has become asymptotic, i. e. ,

-j = j-1 (2.35)

and

then

j+ 3/2wh I2h~-hA2-I-(A-o A-)e1/2wh -j

= ~~ e~ j2h I - h(A -I - h -(A A o l4 (A.

Hence (A-w) '4 = 0 since the inverse matrices are non-negative. Thus

o = W0, and T e . This means that asymptotically the growth is exact
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and the solution is proportional to the fundamental eigenvector of the sys-

tem. Thus we say the solution is "asymptotically exact."

7. Iterative ADI Method

It is not always true that an Order (At 2) method is superior to an 0(At)

method. To illustrate, consider the following rather simple example:

-49.5 50.5

50.5 -49.5

for which

e1
~ 1 e 1

and

[1
=2 100, e = -'J

Note that the eigenvalues are greatly different in order of magnitude. Let

us consider two approximations to exp(AtA):

B 1(At) = (+ hA)(I- hA), (2.36)

B2(At) = (I - At A), (2.37)

and an initial vector,

2

x = e 1+ e = (2. 38)
12 2 

0
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If we take time step At = . 1, and operate with B 1 , B 2 and exp(AtA) sepa-

rately on each eigenvector, we get the results shown in Table 2. 1. Thus,

Table 2. 1. Comparison of 0(At 2) and 0(At) approximation.

Coefficient of Each Component in Solution

Component Ei (0(At 2 )) B 2 (0(At)) exp(AtA)

e 1.106 1. 111 1.105

e2 -. 667 .0909 .000042

Ilx(At) 11 1. 292 1. 113 1. 105

error .187 .008 .0

although B 1 better approximates the growth of e 1 , B 2 better approxi-

mates the decay of e 2 , and, in the final result, B 2 gives the better ap-

proximation.

Although the above example is contrived, it is not a completely un-

realistic example. For real reactor problems, the eigenvalues are

separated by many orders of magnitude, such that hu f > 1 for the larg-

est (in magnitude) eigenvalues. Since one picks time steps such that the

fundamental and perhaps a few of the smaller (in magnitude) eigenvalue

components of the solution are well approximated, most of the error in

the solution by the ADI method comes from the larger eigenvalue compo-

nents. If these are present in a large amount in the initial vector, which

they may well be in a problem with much spacial dependence, the error

will be quite large. Thus for some problems an approximation like B 2

may be preferable to an approximation like the ADI.
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To use the advancement matrix

-. A-tf (2. 39)B(At) = (I - At A-)~ 2 9

we must solve a system of equations:

(Y - At A) 9j+1 _ (2.40)

at each step. This is simply the linear system

U X = Y, U = ~I - AtA (2.41)

which can be solved by an ADI iterative method as follows: Assuming a

starting value of X obtained by some method (ADI for example), define

a splitting of G analogously to the ADI method

G =G 1 + G 2  (2.42)

G = At(f/2AtA 1 ) (2.43)

U2 = At(I/2At A2 ). (2.44)

The iteration scheme then becomes

(Rk+G1) -k+1/2 _ k 2 'k +

(2.45)

( 2 k+1 k 1 k+1/2 +
(R k G2 ) Xk+ (Rk= G1 + Y

where Rk is some positive diagonal acceleration (or optimization) matrix.

If this method is to be used in practice, some scheme for determining op-

timal Rk to speed convergence would have to be invented. However, to

test the method the selection

Rk = 1/2 (2. 46)
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was made because it was particularly easy to code with the subroutines

already available.

An alternative strategy for treating large eigenvalue components is to

reduce the time step of the ADI method. In order to be competitive, the

Iterative ADI method must employ fewer iterations to achieve the same

error reduction than the alternative requires additional steps. In a rather

artificial test problem to which the method was applied, it did as well

as the ADI, but for the one "practical" problem to which the method was

applied, it was very little improvement over the basic method with the

same time step, and required four times as much computing. (See

Chapter III, Section 5.)

Another iterative method, TWIGL (Ref. 8), uses a much faster iter-

ation scheme, but still appears to require more iterations than other, non-

iterative methods require steps, although comparisons are difficult since

these problems were not run on the same machine. The TWIGL method

is compared with other methods in Chapter III, Section 4. In general, it

appears that the longer time step that iterative methods allow costs more

in terms of computing time than non-iterative methods.

8. Comparison and Summary

The various ADI methods discussed in this chapter are summarized

in Table 2. 2. The requirement that o be negative is not considered as

a practical restriction, and is assumed to hold for all methods.

Of the four methods, only the Frequency Transformation can be un-

stable for some problems. However, the results in Chapter III demon-

strate conclusively the great superiority of this method over the others



Table 2. 2. Comparison of various methods.

Truncation
Error Eigenvalue Eigenvector Advantages Comments

0(At2)ADI

Fractional
Step

Iterative
ADI

Frequency-

Transformed
ADI

O(At)

O(At)

better
than

O(At2

1+h + ( 2
1 - hw.

1

1-tc, + O(At)

1
1 - Atw.

I

& 2
e+ o(h

e + O(At)

e.
1

w At e
0

e

(asymptotically)

Uncondition-
ally stable

Advancement
matrix is
non-negative

Improved ap-
proximation
for compo-
nents having
large negative
eigenvalues

Asymptotically
exact, trunca-
tion error
much better
than basic ADI

Truncation
error too high
in practice

At's small
enough to make
this method ac-
curate are also
small enough to
make ADI non-
negative

Requires itera-
tion at each step

Unstable for
some problems

W..

I I11,1 I11 10 1 11a _ 
I - _ _ _ -. _-_II__ ,

Method
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for a broad class of problems. The other three methods may have some

limited application to problems where the Frequency Transformation is

unstable, but otherwise it is the method of choice.

I
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Chapter III

RESULTS

1. Introduction

The ADI method and variations described in Chapter II have been coded

in FORTRAN IV for the IBM 360/6 5 computer. The listing and program

description of STKADI are in Appendix D. Several trial problems have

been run to test the method. The results of these numerical experiments

will be discussed in the following sections.

The same problems have also been run on the computer codes LU-

MAC (Ref. 6) and MITKIN (Ref. 7). LUMAC is a two-dimensional ver-

sion of GAKIN (Ref. 22) which uses a buckling approximation for the sec-

ond dimension. MITKIN uses a splitting method very similar to STKADI,

except that it is based on an "Alternating-Direction Explicit" approach.

The solutions from these two codes will be compared with those from

STKADI.

The storage requirements of STKADI are summarized in Table 3. 1.

In addition, the program itself requires 11, 500 eight byte words of core

storage. Thus a problem of 1000 mesh points, 10 groups, 6 delayed

groups and 20 regions requires 120,000 words.

The observed computing times per step on the 360/65 are listed in

Table 3. 2 for various trial problems with and without the frequency trans-

formation, and compared to the reported computing times for the MITKIN

and LUMAC codes.

The number of floating-point multiplications (and divisions) in one

step of STKADI is given by
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Table 3. 1. Storage requirements.

Data Stored
Number of Words of

Storage Required

Diffusion Coefficients

Intragroup Transfer Terms

Delayed Neutron Production Terms

Delayed to Neutron Group Transfer
Terms

Delayed Group Decay Constants

Flux Vector

Frequency Vector

Flux Vector for Previous Step

Total

N

G

I

R

4 X G X R

G2 XR

G X I X R

I X G XR

I

N X (G+I)

N X (G+I)

N X (G+I)

3N(G+I) + RG(G+ 21+4) + I

number of mesh points

number of energy groups

number of delayed groups

number of regions

Table 3. 2. Computing times.

I STKADI

1

1

1

1

6

.21

.45

.89

.94

.23

Computing time in seconds/step

STKADI MITKIN
(frequencies)

.36

.71

1.51

1.49

.41

.33

. 56

1.34

1.20

N G

81

81

361

171

38

2

4

2

4

2

LUMAC

.46

.90

1.75

1.75
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Nf(G, I) = N(186 + 81 + 561 + 2G2 ), (3. 1)

where terms small compared to N are neglected. In addition, the fre-

quency transformation requires two exponential and one logarithm evalu-

ation for each unknown.

Assuming that the total computing time per step is proportional to the

number of floating point multiplications, and the additional computing time

required by the frequency transformation is proportional to the number

of unknowns, the total computing time can be written

T = aN(f(G, I) + y (I+ G)). (3.2)

We obtain the constants using the data in Table 3. 2. They are

a = . 41 X 10 sec/step/mesh point

15.2 with frequencies

0. without frequencies.

Thus the 1000 mesh point, 10 group, 6 delayed group problem requires

40 seconds per step or about 70 minutes to do a 100-step problem.

2. CASE 1 - Two Group Bare Homogeneous Reactor

CASE 1 is a two energy group, one delayed group thermal system.

The reactor is a homogeneous square, 200 cm on a side with nine mesh

points (ten intervals) in each direction. A positive step change in reac-

tivity of about forty cents is inserted at time zero by a decrease of

.0000369 cm~ in the thermal capture cross section. The initial condi-

tions correspond to the steady state. Data are given in Appendix C.
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The solution was calculated using various time steps with and without

the frequency transformation. The results at t = . 4 second are shown in

Table 3. 3. The percentage error is plotted in Fig. 3. 1.

From Table 3. 3 and Fig. 3. 1 it is clear that the frequency transfor-

mation is far superior to the basic method. The former achieves less

than 1% error with time steps of about . 00 1 second, the latter requires

time steps of one-tenth this or smaller to achieve the same error. How-

ever, the transformation increases the computing time by about 70% so

that the over-all improvement is about a factor of six.

Table 3. 3. Results for CASE 1 at . 4 second.

Without Frequencies With Frequencies

At (sec) Group 1 Group 2 Group 1 Group 2

Exact 1. 566 .600 1. 566 .600

.0080 1.002 .384 1.061 .407
(36. %) (36. To) (32.%) (32.%)

.0040 1.010 .387 1.389 .532
(35.%) (35. %) (11. %) (11. %)

.0020 1.037 .398 1.647 .631
(34.%) (34.%) (-5.2%) (-5.2%)

.0010 1.127 .432 1.572 .603
(28.%) (28.%) (-.4%) (-.4%)

.0005 1.315 .504 1.566 .601
(16.%) (16.%) (-.06%) (-.06%)

.00025 1.482 .568
(5.3%) (5. 3%)

.000125 1.544 .592
(1.3%) (1. 3%)

Note: Numbers in parentheses ( ) are percentage errors.
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10% --...

x

without frequencies

-with frequencies

.1% ---

.0001 .001 .01

time step in seconds

Fig. 3. 1. Error for CASE 1.
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Note that the thermal flux (without frequencies) for At = . 008 and

At = . 004 differs by only . 8%, which in the absence of other information

might lead one to conclude that the solution had converged and was accu-

rate to within 1%. Obviously this conclusion would be incorrect. This

points out the danger of using the agreement of the solution at two dif-

ferent time steps to establish convergence. However, looking at the

differences between the solution at the three largest time steps reveals

that the percentage difference actually increases with decreasing time

step, revealing that the solution is not converged. This can be used as

a quick check on convergence of any method which has a characteristic

error curve like Fig. 3. 1.

2
The asymptotic convergence rate of the basic method is 0(At2) as

expected, while the convergence rate for the transformed method is

slightly faster.

3. FOURGP - Four Group Bare Homogeneous Fast Reactor

FOURGP is a four energy group, one delayed group fast system.

The reactor is a homogeneous square, 150 cm on a side with nine mesh

points (ten intervals) in each coordinate direction. A positive step change

in reactivity of about 60 cents is inserted by changing the critical value

of v by +. 00172. Initial conditions correspond to the steady state of the

system. Data are given in Appendix C.

Solutions were obtained with STKADI using the frequency transfor-

mation at time steps of . 2 X 10-5 and . 4 X 10-5 seconds. These are

compared with the solution obtained from MITKIN in Table 3. 4.

The MITKIN results at a time step of . 4 X 10-5 seconds are superior
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Table 3. 4. FOURGP results - comparison with MITKIN.

Thermal flux, with frequencies.

MITKIN
(At=. 4E -5)

005473
(-. 15%)

006378
(-. 0 5%)

.007148
(-. 0 1%)

.007805

(.01%)

008364

(. 02%)

STKADI
(At=. 4E-5)

.004949
(-9. 7%)

.005927
(-7. 1%)

.006931
(-3.0%)

.007793
(-. 14%)

.008489

(1. 5%)

STKADI
(At=. 2E-5)

.005419
(-1. 1%)

.006352

(-. 5%)

.007139
(-. 13%)

.007804
(.01%)

.008366

(.06%)

Note: Numbers in parentheses ( ) are percentage errors.

to the STKADI results at one-half this time step. Recalling that MITKIN

takes less execution time than STKADI, it is apparent that MITKIN is

better than STKADI for this problem by a factor of at least two.

4. TWIGL Problems - Two Group Non-Homogeneous Reactor

This series of problems was prepared at Bettis Atomic Power Labo-

ratory (Ref. 11) to test the TWIGL (Ref. 8) Code. The reactor consists

of a square core surrounded by a blanket with blanket in the interior as

well. It is completely symmetric. The geometry is shown in Fig. 3,.2.

The transient is induced by changing the thermal cross section in

region 1. Three different transients were studied: a positive step change

in reactivity, a positive ramp change in reactivity, and a negative ramp

Time
(sec)

.00000

.00016

.00032

.00048

.00064

.00080

Exact

.004475

.005481

.006381

.007149

.007804

.008362
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21

3

18

1 2 1

414
0

Ax=8.0 cm
e 2 3 2

Ay=8.0 cm

8

1 -Driver Region 1 2 1

2 -Core Region 4

3 -Blanket Region

1

1 4 8 14 18 21

x mesh points

Fig. 3. 2. TWIGL. geometry.

change. Solutions were obtained from the TWIGL, LUMAC, MITKIN and

STKADI codes.

Data are given in Appendix C.

4. 1 Positive Step Change

A positive step change in reactivity of about 50 cents is introduced

at time zero by reducing the thermal capture cross section in region 1

by .0035 cm~ .

Although the problem is space-dependent, the change in flux shape

is quite small. The thermal flux at the mesh point at the exact center

of the reactor is used as a basis of comparison. All other points behave

similarly.
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STKADI solutions were calculated with and without frequency trans-

formation using several different time steps. Results are summarized

in Table 3. 5.

Table 3. 5. Results of TWIGL case, positive step change.

Thermal Flux at Center of Core

Frequencies

yes

no

yes

no

yes

no

yes

no

yes

no

.02

31.

30.

33.

18.

27.

17.

17.

16.

16.

16.

29

71

21

85

56

18

95

82

82

76

Time (sec)

.10 .20

34.

25.

31.

19.

53.

17.

17.

16.

02

62

01

59

60

34

61

84

34. 33

30. 05

Initial flux is 16. 75

The great superiority of the transformed method over the untrans-

formed is again evident. The latter is converged at 25 microsecond time

steps, while the former is acceptably accurate at a time step ten times

as large.

Table 3. 5 shows the tendency of the ADI to approach the identity oper-

ator as the time step becomes large. Both methods exhibit this, although

At (sec)

. 25

. 25

. 25

.25

. 50

.50

.10

.10

.20

.20

E-04

E-04

E-03

E-03

E-03

E-03

E-02

E-02

E-02

E-02

.30

34. 64

32. 27

wl..W_. -- Adwxd"Ltw - , , , , , . , ,
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the transformed method approaches unity much more slowly. The result

at t = . 1 sec, At = . 0010 seems anomalous. Apparently the frequencies

at the beginning of the transient were quite large, and became "locked in"

on subsequent steps because the ADI was so close to the identity that the

frequencies could not decrease.

The transformed ADI method is compared with the other methods in

Table 3. 6. The computing times required by STKADI and MITKIN were

Table 3. 6. TWIGL results - comparison with other methods.

Thermal Flux at Center of Core

TWIGL
(at=. 001)

16. 75

26. 70

30. 78

32.40

LUMAC
(EP1=. 00008)

27. 29
(2.2%)

31.48
(2.3%)

33.06
(2.0%)

33. 15

33. 54

34.01

34.31

MITKIN
(At=. 0002)

27. 32
(2. 3%)

31. 50
(2. 3%)

33. 13
(2. 2%)

33.97
(2. 5%)

34. 63
(3. 3%)

STKADI
(at=. 00025)

27. 15
(1. 7%)

33.21
(7.9%)

33.94
(4.8%)

33.90
(2. 3%)

33. 88
(1.0%)

34. 03
(.05%)

34.33
(.07%)

Note: Numbers in parentheses ( ) are the percentage deviation from

the TWIGL results.

t
(sec)

.00

.01

.02

.03

.04

.05

. 10

.20
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very similar since a larger At compensates for STKADI's longer computing

time per step. LUMAC takes three times as long for this problem. TWIGL

was run on another machine, so that computing times are not comparable.

All the methods agree quite closely so that there appears to be little

to choose among the four methods on the basis of accuracy. Hence MIT-

KIN and STKADI are superior to LUMAC because of their shorter running

times.

Table 3. 7. TWIGL positive ramp - comparison of results.

Flux in Center

TWIGL
(At=. 0 1)

18. 76

21.74

25. 96

32.37

34. 05

34. 24

34.39

34.54

of Core

LUMAC
(EP 1=. 0008)

21.73
(-. 03%)

32.49
(.38%)

34. 83
(1. 7%)

MITKIN
(At=. 00 1)

17.26

18. 79
(. 16%)

21. 75
(.05%)

25. 95
(-. 02%)

32.31
(-. 16%)

34. 12
(. 22%)

33. 57*
(-2. 0%)

33. 23
(-3. 4%),

33. 19
(-3.9%)

STKADI
(At=. 00025)

17.30
(. 2%)

18. 70
(-. 33%)

21.66
(-. 37%)

25. 84
(-. 47%)

32. 15
(-. 66%)

34. 58
(1. 58%)

34. 29
(. 14%)

34.44
(. 15%)

34.60

(. 18%)

At changed to . 0 10 sec.

Note: Numbers in parentheses ( ) are percentage deviations from
TWIGL results.

Thermal

t

(sec)

.02

.05

.10

.15

.20

25

30

.35

.40

.........
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4. 2 Positive Ramp Change

A positive ramp change in reactivity of about 2. 5 dollars per second

is introduced over the time interval . 0 < t <. 2 seconds by reducing the

-1
thermal capture cross section in region 1 by (.0035)(t/.2) cm~

The results'are compared in Table 3. 7 with TWIGL, LUMAC and

MITKIN. Agreement is excellent.

4. 3 Negative Ramp Change

A negative ramp change in reactivity of about 80 dollars per second

is introduced in the interval . 0 < t < . 02 seconds by increasing the ther-

mal capture cross section in region 1 by .03 (t/.02) cm~

The results are compared in Table 3. 8 with TWIGL and MITKIN.

Table 3. 8. TWIGL negative ramp - comparison of results.

Thermal Flux at Center of Core

t TWIGL
(sec) (At=. 00 1)

.000

.010

.020

.030

.040

16.750

8.154

4.594

4.442

4. 385

MITKIN
(At=. 0002)

16. 750

7.445
(-8. 7%)

4. 573
(-. 5%)

4.388
(-1. 2%a)

4. 385
(. 0%)

S TKADI
(at=. 00025)

16.750

8.178
(. 3%)

4.605
(. 2%)

4.141
(-. 6%)

4. 377
(-. 2%)

Note: Numbers in parentheses ( ) are percentage deviations from
TWIGL results.
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As with the positive ramp, the agreement is excellent.

5. OBLONG - Non-Homogeneous, Non-Symmetric Reactor

The TWIGL problem is completely symmetric and shows very little

change in flux shape over the transient (<5%). A severe test of a space-

time method requires a sample problem with no symmetries whatsoever,

and a significant change in flux shape. The OBLONG problem was de-

signed for that purpose (Ref. 12).

The reactor is a four energy group, one delayed group system. It

is a rectangle, 160 by 80 cm divided into four regions as shown in Fig. 3. 3.

Region 1 is a driver region, region 2 is a blanket region, and regions 3

and 4 are a water reflector.

The transient is induced by a ramp change in the thermal cross sec-

tion in region 3 over the time interval . 0 < t 4. 2 seconds. Data are

given in detail in Appendix C.

Solutions were obtained from STKADI with the frequency transfor-

mation, using various time steps. The results are presented in Tables 3.9

through 3. 12 for the fast and thermal fluxes at the points in regions 1 and

3 shown by crosses in Fig. 3. 3.

The MITKIN results quoted are the most accurate available (Ref. 13).

They differ from the MITKIN results at twice and four times the time

step by only a few parts in 1000. Also, the good agreement with the

LUMAC results, which are converged to within one per cent (Ref. 6),

indicates that the MITKIN solution is accurate to better than a fraction

of one per cent.

The STAKDI results are in extremely poor agreement. Errors in
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1 19

Region 1 - driver

Region 2 - blanket

Region 3 - water reflector, perturbation

Region 4 - water reflector

+ - flux test points

x direction - 19 mesh points

y direction - 9 mesh points

Fig. 3. 3., OBLONG geometry.

excess of 5% persist even at a time step of one quarter that used by MIT-

KIN. The results are not even self-consistent - differences between suc-

cessive STKADI runs are as large as the discrepancy with MITKIN. After

the end of the ramp, the solution exhibits a large but damped oscillation.

MITKIN also shows this behavior, but to a much lesser extent (Ref. 13).

The failure to converge for reasonable time steps and the excessive

oscillations in the solution indicate that the ADI is not a satisfactory

method for this problem.

The iterative ADI method (ITRADI) is about 25% efficient for this

problem, taking 4 iterations per step to converge. The solution obtained

is almost -exactly the same as the STKADI solution at the same time step,

-QWWW"' __ ___ '_ _ . ......... . . I



OBLONG results, fast group, region 1.

Group 1 flux at point (2, 8)

t MITKIN
(sec) (4t=. 0005)

. 000

.025

.050

.075

.100

. 150

.200

.250

.300

.4463

.4515

. 4566

.4620

.4677

.4804

.4954

.4961

.4965

LUMAC
(EP1=. 8E-4)

.4569
(. 06%)

STKADI
(At=. 000125)

STKADI
(At=. 00025)

.4468
(-1. 0%)

.4525
(-. 910)

STKADI
(IAt=. 0005)

4463
(-1. 2%)

.4463
(-2. 3%)

.4640
(.4%)

.4730
(1. 1%)

.4830
(.5%)

.4930
(-. 5%)

.5123
(3. 2%)

.4781
(2. 2%)

.4985
(3.8%)

.5064
(2. 2%)

.5225
(5. 3%)

.5194
(4. 6%)

.4508
(-3. 6%)

.4918
(-. 7%)

.5609
(13. %)

.4464
(-4. 5%)

.4486
(-9. 5%)

.4624
(-6. 9%)

STKADI
(At=. 0010)

.4462
(-1. 2%)

. 4463
(-2. 3%)

.4463
(-3. 4%)

.4463
(-4. 6%)

.4463
(-7. 1%)

.4463
(-9. 9%)

.4464
(-10. %)

.4465
(-10. %)

ITRADI
(&t=. 0010)

.4463
(-4. 6%)

.4465
(-9. 9%)

I~I HUll

Table 3. 9.



OBLONG results, fast group, region 3.

Group 1 flux at point (11, 2)

t MITKIN
(s ec) (At=. 000 5)

. 000

.025

.050

. 075

.100

.150

. 200

.250

. 300

. 1341

. 1363

.1385

. 1408

.1432

.1488

. 1552

.1555

o 1556

LUMAC
(EP1=. 00008)

.1385
(.0%)

STKADI

(A~t=. 000 125)

. 1350
(-1. 0%)

.1375
(-. 7%)

STKADI

(at=. 00025)
STKADI

(At=. 0005)

. 1342
(-1. 6%)

. 1346
(-2. 8%)

. 1419
(. 8%)

1453
(1. 4%)

1499
(. 8%)

.1551
(-. 07%)

. 1605
(3. 2%)

.1473
(2.8%)

.1554
(4. 5%) -

. 1604
(3.3%)

. 1653
(6.4%)

. 1640
(5. 4%)

.1394
(-2.7%)

. 1558
(.4%)

.1768.
(13.%)

.1371
(-4. 3%)

. 1413
(-8. 9%)

.1489
(-4. 3%)

STKADI

(At=. 00 10)

1341
(-1. 6%)

.1342
(-3. 1%)

- 1343
(-4. 6%)

. 1346
(-6.0%)

. 1359
(-8.6%)

. 1382
(-11. %)

.1411
(-9. 2%)

. 1438
(-7. 6%)

ITRADI

(,&t=. 00 10)

.1352
(-5. 6%)

. 1403
(-9. 6%)

co

'I-r

(sec) (At=. 0005)

Table 3. 10.



OBLONG results, thermal group, region 1.

Group 4 flux at point (2, 8)

t MITKIN
(sec) (At=. 0005)

.000

.025

.050

.075

. 100

.150

.200

.250

.300

.0359

.0364

. 0368

.0372

. 0376

.0387

.0399

.0399

.0400

LUMAC

(EP1=. 8E-4)

.0368
(.07%)

.0381
(1.2%)

.0389
(.6%)

.0398
(-.2%)

.0412
(3. 1%)

STKADI
(At=. 000125)

.0360
(-1.0%)

.0364

(-. 9%)

.0374
(.4%)

.0385
(2. 2%)

.0401
(3. 7%)

.0408
(2.2%)

.0420
(5. 3%)

.0418
(4. 6%)

STKADI

(At=. 00025)
STKADI

(At=. 0005)

.0359
(-1.2%)

.0359
(-2. 2%)

.0363
(-3. 5%)

.0396
(-. 7%)

.0451
(13%)

. 0360
(-4. 5%)

.0361
(-9. 3%)

.0373
(-6. 7%)

STKADI

(At=. 0010)

.0359
(-1. 2%)

. 0359
(-2. 3%)

.0359
(-3. 4%)

. 0359
(-4. 5%)

.0359
(-7. 1%)

.0359
(-9. 8%)

.0359
(-10. %)

.0360
(-10. %)

co

PIIN l

ITRADI
(at=. 00 10)

.0359
(-4. 5%)

.0360
(-9. 8%)

Table 3. 11.



OBLONG results, thermal group, region 3.

Group 4 flux at point (11, 2)

t -M4TKIN
(sec) (At=. 000t)

. 000

.025

.050

.075

* 100

* 150

.200

.250

.300

. 9684

1.0101

1.0540

1.1013

1.1525

1.2686

1.4075

1.4105

1.4116

LUMAC
(EP1=. 00008)

1.056
(. 2%)

1.166
(1.2%)

1.278
(.7%)

1.410
(.2%)

1.451
(2. 8%)

STKADI
(At=. 000125)

1.0010
(-. 9%)

1.0474
(-. 6%)

1.1105
(.8%)

1.1855
(2. 9%)

1.3278
(4. 7%)

1.4565
(3. 5%)

1.5023
(6. 5%)

1.4920
(5. 7%)

STKADI
(At=. 00025)

STKADI
(At=. 0005)

.9950
(-1. 5%)

1.0255
(-2. 7%)

1.1204
(-2. 8%)

1.4133
(.4%)

1.6094
(14. %)

1.1006
(-4. 5%)

1.2914
(-8. 2%)

1.3498
(-4. 4%)

STKADI
(At=. 0010)

.9939
(-1. 6%)

1.0223
(-3. 0%)

1.0535
(-4. 3%)

1.0873
(-5. 6%)

1.1614
(-8. 4%)

1.2498
(-11.%)

1. 2726
(-9. 8%)

1.2889
(-8. 7%)

ITRADI
(At=. 0010)

1.0879
(-5. 6%)

1.2652
(-10. %)

eji0

"IEEE

Table 3. 12.
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and is certainly no more accurate. Several other modifications of the

basic ADI method were also tried on this problem. They were unstable.

Thus it appears that methods based on the splitting (2. 4) are inappropriate

for this problem.

6. Other Methods

Several variations of the basic method were considered, and rejected.

Table 3. 13 outlines these variations and the reason for rejection.



Table 3. 13. Unusable methods.

Reason for Rejection

1. Iterating~on the frequency
matrix, S2, to obtain an
improved approximation

2. Selecting 5% at step j from:

3. Leaving group transfer
terms entirely explicit

4. Using a weighting scheme
for the o terms on the

diagonal of A; that is, 9E
was left on the RHS and
(1-9)o was taken to the
LHS

5. Leaving U matrix implicit
on both half steps

6. Weighting schemes for other
elements of A matrix

7. Recalculating 0 every half
step

8. Rearranging order of com-
putation to:

(I+hA (I - hA 1)

(I+hA2)(1 - hA2 )

9. Using two or three pre-
ceding time steps to cal-
culate the frequency

10. "Smoothing" the frequency
matrix by averaging at
each mesh point over four
nearest neighbors

Iteration did not converge for model
problem

A simple trial problem showed that
it was unstable

Accurate to only 0(At), requires
storing both old and new flux

For the OBLONG problem the follow-
ing results were obtained (with fre-
queneles):

9 =. 0 - unstable
9 = . 5 - exactly the same as

STKADI
9 = 1. 0 - unstable

Unstable for OBLONG problem using
frequencies

A wide variety of ADI schemes were
tested at Bettis and found to be- unsat-
isfactory because of high truncation
error and instability (Ref. 14)

Unstable for OBLONG problem

Unstable for OBLONG problem

Either unstable or less accurate than
standard method for OBLONG prob-
lem, depending on weighting factors
used

Unstable for OBLONG problem

Method

52
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Chapter IV

CONCLUSION

1. Conclusion

The ADI method with the frequency transformation is superior to all

other ADI methods considered for the general kinetics problem. How-

ever, the Alternating Direction Explicit (ADE) method (Ref. 7) with fre-

quency transformation is comparably accurate in some cases, and far

superior in others, to the ADI. Since the ADE is also a faster method,

the ADI method is inferior to it for the solution of the general kinetics

problem.

The failure to STKADI to treat the OBLONG problem adequately is

the decisive factor in this conclusion. To be generally applicable, a

space-time method must be able to handle problems with a great deal of

spacial dependence. STKADI was not able to do this, and consequently

cannot be regarded as a promising method.

2. Recommendations for Further Work

The ADI method handles the spacial differencing by splitting the hor-

izontal and vertical differencing matrices; the ADE by splitting into a

lower and an upper triangular matrix. Other differencing schemes (nine

point, triangular, etc.) are possible which suggest different splittings,

which may lead to even lower truncation error. Work should be continued

to find even better splitting methods for the problem (1. 1).
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Appendix A

THE NEUTRON DIFFUSION KINETICS EQUATIONS

The time-dependent neutron flux in the multigroup diffusion model is

given by

1
v

g

_Tg

at -V-DV + x
gg g

G

G I

+ Tggjcgj + fgiici

g'=1 i=1

and the delayed neutron precursor density is given by

(A. 1)

ac

g'=1

Pi(v -)g i , - Xici,

where the symbols are defined in Table A. 1 (Refs. 1, 2, 15, 16, 18, 19, 20).

We approximate the diffusion term V - D VcI4 for two-dimensional geom-

etry using the five-point central differencing scheme (Refs. 2, 15, 17):

V - D V* D g/Ax 2 {g,1, k+1 - 2 * g, 1, k + eg,1, k-1

+ D /A 2c 4g, 1+1, k - 2*g,1,k k g, 1-1, k, 

shown schematically in Fig. A. 1. We number the fluxes at each mesh

point as shown, and place them in a column matrix:

(A. 2)

(A. 3)

U

(v a- f)g, (1-p)NI
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g, 1

g, 2

= . (A. 4)

Lg,NI
The central difference operator then becomes a pentadiagonal matrix,

W g, which couples the flux at each point to the four neighboring points.

(Fig. A. 2.) W g can be split into a tridiagonal differencing matrix in one

direction, Y , and a tridiagonal differencing matrix in the other direction,

X (Figs. A. 3 and A. 4).

Equations (A. 1) and (A. 2) can now be written in matrix form:

d l G I

dt g g g gg g gi i
g1=1 i= 1

1 < g < GI

(A. 5)

dC G

= . 1 , - 10,dt =ig' ii1
g'=1

1 < i < I (A.6)

where the matrices are defined in Table A. 2. g C . are column matrices,
g' i

v ,, T ,, P , and A are diagonal matrices.
gT ggs ig

The system of Eqs. (A. 5,A. 6) can be written in matrix form as

= A T., (A. 7)

where I is the column matrix:

, , I - "- ........... .
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Table A. 1. Definition of symbols - scalars.

g neutron energy group index

G total number of neutron energy groups

i delayed precursor group index

I total number of delayed groups

k vertical spacial index

Nk total number of mesh points in vertical direction

1 horizontal spacial index

N1 total number of mesh points in horizontal direction

N total number of mesh points

j time step index

t time (seconds)

T final time, end of transient

At time step (seconds)

h one-half time step (h=At/2)

v group speed (cm/sec)
g -2

+ group scalar flux in cm /sec

D group diffusion coefficient (cm)

X group fission yield

v number of neutrons per fission (may depend on g)
-1

(O-g macroscopic group fission cross section (cmI)

-rg ,macroscopic transfer cross section from group g' to group g
(for g'=g, T is minus, the group removal cross section)

th
f gi fractional yield of i group precursors into group g

X. delayed neutron decay constant (sec )
1

delayed group yield fraction

@~ total delayed yield

c i precursor group concentration

V. divergence operator

V gradient operator

I summation operator
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(A. 8)

G

_1

and A is the 'A' matrix shown in Fig. A. 5. Equation (A. 7) is the multi-

group diffusion problem in "semi-discrete" form.

Table A. 2. Definition of symbols - matrices.

iz flux vector
g

delayed precursor vector

T gg, intragroup transfer matrix

F gi delayed group to energy group transfer matrix

Pig delayed group production matrix

W pentadiagonal diffsuion matrix for two dimensions

X tridiagonal diffusion matrix in x direction

Y tridiagonal diffusion matrix in y direction

A diagonal delayed precursor decay constant matrix

I the identity matrix

total flux vector (all group fluxes plus all delayed precursors)

A the 'A' matrix

B(h, ) the advancement matrix which takes I into Tjl

0 frequency transformation matrix

JJ. 11 any natural matrix norm
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Fig. A. 1. Two-dimensional mesh.

7

Fig. A. 2. Central differencing matrix, Wg
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Fig. A. 3. Differencing matrix, Y for 'y' direction.

Fig. A. 4. Differencin matrix, Z for 'x' direction.
a .



W1 T2 T1 T1 FI Fl2  F13

T2 W2 T23 T2F a  F22 F23

T31 T32 W3 T3 F3  F32  F33

A T41 T4 T43 W4 F1  F2  F43

P11  P12  P13  P34  A1

21 22 P23  P24 A 2

31 32 33 34 3

Example shown is for a 4 energy group, 3 delayed group problem.

Fig. A. 5. The 'A' matrix.
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Appendix B

THEOREMS

Theorem 1 - As t approaches infinity, the solution vector 4(t) =exp(At) 0

approaches a e

of A.

. 1
0

eo, where a = (i'r,e 0), and w is the largest eigenvalue
00

Proof -We write 40 as a linear combination of e and v, where (v, e =

0, that is, 0 = a e 0+ pv. Now

a(e ,e 0 ) + P( v) = (e ),

or

since

a = (N0, L0),

(e 0 ) = 1.

We can now write

4j(t) = exp(At) (a e + p )

= a exp(o 0 t) e + P exp(At) v

= a exp(wot)( eo+P/a exp(Et) v),

where

B = A- I.
0

Note that the largest eigenvalue of B is 0, and all the others are given

by X. = o. - w and have real parts less than zero. (See Sec. 2. 1.) Now

we put B in Jordan form:



JS= BS=

1

3 .9

where each of the blocks on the diagonal is of the form

J. =
1

x.
1

1

x.
1

1

x. 1

a p by p matrix where pi is less than or equal to the multiplicity

of the i th eigenvalue, and the X 's are arranged in order of nonincreasing

real part.
ii is a 1 X 1 matrix since the largest eigenvalue of B is sim-

ple. Now

exp(Et) v = exp(S JS t) v

= & ( - +1/2 -- 1 (t)2 + .

-- 1 - -ept -- 1 I xpt -a=Sexp(j t) S v = S exp( t) a,

But

64

(B. 1)

(B. 2)

J. is
I

a S v. (B. 3)
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0

exp( 2t)

exp(t)

0

Furthermore, since A

exp(Z3t) (B. 4)

and B share the same eigenvectors, e0 is

the eigenvector of B corresponding to eigenvalue 0, and the transforma-

tion S also puts A into Jordan form. That is,

JI t .

Se=

K

0

1

0

0
,

0 0 0

-A1
Jh,

and

,-& T
e ,

x

x

JSe0 =w0 Se03

(B. 5)

Hence

Thus

0
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ev

x

x

0

x

x
a

that is, the first element of S v is zero since e0 is orthogonal to v.

Now

exp(It) '7 =

1 0

a
2

a
3

exp(J 2t)

exp(J 3 t)

1

(B.6)

0

exp(T
2t) a 2

exp(J
3 t) a 3

Thus J1S' exp(Jt)S v I < Js' 11

n p.-1

JJs'j1 t , I exp(tRe\ ) as

i=2

exp(Zit) I *1a i I1 approaches

i=2

t approaches infinity, using

Lemma 8. 1 from Varga (Ref. 9). Now, since Re X is less than zero,

all i greater than 1, this norm goes to zero for large t. Hence

e9+p/a exp(Et) v -Ao JJ = jlp/a exp(tt) v 11 approaches zero as t

approaches infinity, and the vector e + p/a exp(Bt) v approaches e ,

-
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completing the proof.

-- 1
Theorem 2 - The matrix (I - hA_) is non-negative for all h, provided

that the diagonal absorption term, a, is negative everywhere for all

groups.

First we must prove the following lemma:

Lemma 1 - If C is a diagonally dominant, real n by n matrix, and

a.40 for alli*j, andau. > 0, gll i, then c~aJ 
1

1
is non-negative and non-

singular.

Proof - Let 0 = D - (U+L), then UD -I - D~(U+L). Now U and

are non-negative since D contains the diagonal terms of 0.

-1 + -i -
D (U+L) is non-negative. Now

Also

a..

p(U~ (U+L)) <max < 1
idj ant

since a is diagonally dominant. Let B = D (U +L), then

the series

converges (see Isaacson and Keller, Ref.

(B. 7)

since p(U)<1,

17, p. 15). But since B > 0,

I0 , (U 1 ~ ) 0, a ~ I - _.> 0, (D5~) 0, and CtDO .

We can write the matrix (I-hA1 ) -1

Hence

as

(I - 1 = h(-h(+U))~ C=(I - h(I- hZ) U (I- h .

Now X has positive off-diagonal terms and negative diagonal terms.
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X is diagonally dominant if o < 0. Thus (I - hX) satisfies the conditions
gg

of the Lemma, and thus (I-hX) is non-negative. Now since U is non-

negative,

Y = hr - hX)- U > 0.

Now V is block upper triangular so that V = 0 where m is the number

of energy groups plus the number of delayed groups. Hence the series

-. &~- -4 -1 -3 -1 -

converges and is equal to -V) 1 . Thus I - h(I - hX) U) > 0. Thus

( -hf - hX) U) 1 I --4 ) -6, and the theorem is proved.

Corollar - I - 2) , all h, if agg < 0.

Proof - Replace A 1 by A = Y + L in the proof of the Theorem. The

result follows identically.

Extension - (I - hA 1) and C - hA 2)~ are non-negative if hG'gg < 1.

Proof - The matrix i - hX) is still diagonally dominant if 1 > h a .

-b-1
Hence the result of the theorem still follows. Similarly for I - hA 2)

Theorem 3 - if a = 0 + (2 is symmetric, then the advancement

matrix ( (h) is unconditionally stable if and only if all the eigenvalues

of Z 1 and 22 are less than or equal to zero.

Proof - The advancement matrix 6j(h) is given by

(h) = -6ha 2) 
1 +ha 1 )(I - ha 1 ) (I+ha2). (B. 8)

Now the similarity transformation
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(Y-hc 2 ) $d(h)(I- h 2  = (a+h )(I - h -1 I+h h2 )(-h -1

(B. 9)

does not alter the eigenvalues if (I - h 2 ) is nonsingular. Thus

P Ed*(h)) = p((I+h )(I- ha 1 (I+h 6 2)(- h 6 2 )-

4 ('+h 6)( - h ?11- 1~ (+h02)(I -h 2 )-

= p((I+hC)( -h ).) p((-+h ?2 )(T- h 6-)2

since and C2 are Hermitian. Consequently,

1 a 1 +ha.

p( 6(h))4 max - max 2 , (B. 10)
i 1 - ha i 1 -a

1 2
where ai , a are the eigenvalues of a ..02, respectively.

If all the a's are less than zero, p( N(h)) < 1, and d(h) is stable

since a matrix is stable if its largest eigenvalue is less than 1. If all

a 0 and all a < 0, or all a < 0 and-all a 2 0, then p( d(h)) < 1 and

Bj(h) is again stable.

Furthermore, if the largest a. and a. are both zero, then p($(h) 41,

and the possibility of p( 6'(h)) = 1 exists. If p(dj(h)) = 1, then there must

exist an eigenvector, x, of ed(h) such that

xh) R = "= (I+2h(I- 2)~ ( - h 1 )

or
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- 1 - -h - -1

Now (I - h Q2) and (I - h Q -1 are nonsingular, non-negative matric es,

hence we must have x x = 0, which requires that d2 have eigenvalue

zero with eigenvector x. Now since $0(h) x is a consistent approxi-

mation to exp('t) R, then for sufficiently small h, 0S(h) x is arbitrarily

close to exp(Ct) x. But 63(h) R" = independently of the time step, thus

exp(Qt) x = x = exp(w0 t) x as t approaches infinity, and the largest

eigenvalue of ( is zero. Thus x is the solution vector, and 4 J(h)

applied to any other vector will decrease. Thus J3 (h) is stable in this

case; also.

1 1
However, if any a > 0, then for the time step for which 1 - ha = 0,

the matrix (I - h6) is singular, and the solution will exhibit an unbounded

growth. Thus the ADI is not unconditionally stable. Similarly, if any

a > 0, the ADI is not unconditionally stable.
1

Theorem 4 - The matrix Q1 (h) = (I - hA )U(I -hX) is bounded in

norm for positive h if o- is negative.

g-
Proof - The matrix (I - hA) U can be written

-. -1 d 1 -
= (I -hV) V (B. 11)

where V = rT - hZ) U. Now I - hX) is a block diagonal matrix, and

U is nonzero only in blocks above the diagonal. Thus V is nonzero only

in the blocks above the diagonal and Vm = 0, where m is the number of
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energy plus delayed groups. Consequently the series

(I - hV) = (I+ (hV)+ (hV) 2+... (hV)m-

converges. Then

(I - h ) Y (I + (hY+ (h)+. (hyV_)m1

=. ((hyv) + (hV) 2+. (hi) m-

Thus

11hV 11

11hV 1* 1

I(I -h )_ Y 1 { l~hY|11+ JhY|2 ... +

~ 1 J(hV) JI 1

-m

(B. 12)

11hV' = 1.

hVl = (-hX)~ hUf.

At this stage we need the following:

Lemma - If the matrix (rI-E)~ is non-negative and nonsingular for

r > 0, then (r I - B) is a nonincreasing function of r.

Proof -Let us consider an r1 and r2 such that r2 -r e > 0, where E

is small. Thus

Now,
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1 - & - 1

(r 1I -)(r2I - -B) =I - E(r 2I -4),

and

r2 1 2

=I+ E(r2Y- B)~ + (Er2 _& - -) +...

which converges for sufficiently small E to

(r 2 I -B(r JI - B) + C,

with C >.- 0.

(r, - B)~ - (r2I-1~) + (r 2 f-B) C

Since (r2I- B) C is non-negative, every element of (r I -
- -1
B) must be

greater than or equal to the corresponding element of (r 21 -B) . Hence

(r 2 fr 1 - ~ . (B. 13)

Now since (r I - B) is continuous in r, and is nonincreasing for any r 2

and r1 arbitrarily close together, it must be nonincreasing for all r.

Thus

(B. 14)

and

(B. 15)

since multiplication by a non-negative matrix does not affect the inequality.

Thus

(I- hX) -<(X

(I- - hi) -1hU '< (-hX)~ - hU,
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Also since the matrices are non-negative, the norm must also satisfy the

same inequality:

(I - hX)' hUl 1 11(-hX) hUl1

11X I11 II lu 11

max K- hUl1
k k

IU 1

min Iv 9 /2a 9 1 =

since all IVkI> Ivgggg/21 by Gerschgorin's Theorem (Ref. 9).

Furthermore, the function (xm - 1)/(x - 1) is a nondecreasing func-

tion of x, and hence

hV1 m1 Pm l

jhV I1p-
(B. 17)

Also

1(I /h -X) I -< S-1 0 1

min Iv 0/2 1
(B. 18)

Finally, we have the result that

minI imm Iv og /21

m _
= qj, (B. 19)

where the bound q, depends only on reactor properties, and not on h v

2or AX.

P (B. 16)
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Corollary - Q 2 (h) is bounded under the same conditions as Q 1 (h).

The prQof is identical with the appropriate substitutions.

Theorem 5 - Bj(h) is a consistent approximation to the solution of Eq. (1. 1).

Proof - We first require the following lemma:

Lemma - If each of the matrices C 1(h) and C 2 (h) are consistent, then

the matrix B = C2 C 1 is also consistent.

This is proven by Reed as his Theorem 1, page 30 of Ref. 7.

Now from Eq. (2. 7) we have

= ~h (I ) hA2(1h1)1-A1) 1 CI+h

C 2 (h) C 1 (h) (B. 20)

Thus C 1 (h) is

0 (h) =I (- hA h)~ (+ 2)

=I+2h(I - hA )'A. (B. 21)

Using one of the common definitions of consistency (Ref. 10),

i (At) -
lim A - A x =Os (B. 2 2)

At-O A

for x a genuine solution of (1. 1), we obtain
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lim 11(I - hA ) A - ) x11= lim [(I -hA - I A x I
At-O

=lim h ((I - hA )A A
At-O

6 lim h hA ) - A x.
At-O

(B. 23)

Now since all the eigenvalues of A are negative, .the spectral radius of

(I-hA 1 ) is bounded by 1 as h becomes small. Consequently the norm

must be bounded by some constant, say P.

However, the term IIA1A x 11 presents some problems since as h

2 2 & &
goes to zero, so must Ax and Ay , and the norms of A 1 and A become

unbounded as Ax and Ay go to zero. However, the norm of A x must

2 2
remain bounded as Ax and Ay go to zero since x is a genuine solution

of (1. 1). However, y = A x = x must also be a genuine solution of (1. 1)

-- & & d-- M = ~
if x is, since = -- (x) = A = A which is identical to (1. 1). But if

is a solution A must be bounded. But since A is the sum of A1

and A 2 ' Aly must also be bounded. So |fA1 A x |1 is bounded for x a

genuine solution of (1. 1). Thus

C 1 (h) - I
lim h A hP p|AjAx x1

h-o-O h

= 0. (B. 24)

A similar proof holds for C 2 (h), and the result of the theorem follows.
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Appendix C

DATA FOR TEST PROBLEMS

C. 1. CASE 1 - Two Group Homogeneous Bare Reactor

Perturbation is a uniform step change in the thermal cross section.

Number of neutron energy groups = 2

Number of delayed precursor groups = 1

Geometry: Homogeneous square 200 cm on a side.

Ax = 20 cm

Ay = 20 cm

Precursor constants:

P I = . 0064, f = 1.0,

Group 1

.3 X 10 8

1.0

f21 = 0.0

Group 2

. 22 X 106

0.0

Material properties:

Group 1

1.35

.00114

2.41

. 000242

. 0023

Group 2

1. 08

.00137
(.0014069,

2.41

. 00408

. 00

critical)

Initial conditions:

Spacial shape:

Spectrum:

Cosine

1.0

. 382345

. 000347419

X 1 = .08,

v

X

D

e

v

0g
f

i-i+1
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C. 2. FOURGP - Four Group Bare Homogeneous Reactor

Perturbation is induced by changing critical value of v by +.0 1172.

Number of neutron energy groups = 4

Number of delayed precursor groups = 1

Geometry: Homogeneous square 150 cm on a side.

Ax = 15. 0 cm

Ay = 15. 0 cm

Precursor constants:
= .08, p 1 = .0074, f 1 1

Group 1

.25 X 1010

. 575

Group 2

.5 X 10

.425

f3 1 = .,

Group 3

.43 X 10

.0

f4 1
= .0

Group 4

.25 X 106

.0

Material properties:

D

0Y
c

V

o-f

i-i+1

Group 1

2.0291

.00237

3. 16578

.01316

.06532

Initial condition:

Spacial shape:

Spectrum:

Cosine

1. 0000000

11. 2690000

1.0066000

0. 0044746

0. 0133890

= . 0, = 1. 0,

v

x

Group 2

1. 1609

.00438

3. 16578

.00111

.00481

Group 3

. 76965

.03266

3. 16578

.0182

.00232

Group 4

.35676

. 1339

3. 16578

.38769

.00

U

i
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C. 3, TWIGL Reactor - Two Group, Non-Homogeneous System

Critical Configuration

Number of neutron groups = 2

Number of precursor groups = 1

Geometry:

21

18

Ax = 8.0 cm

Ay = 8.0 cm

.0) 14

8

4

1

1 4 14 18 218

x mesh points

where the numbers indicate the material composition of that space region.

Delayed constants:

= .08,

v

x

p 1 = . 0075,

Group 1

. 1 x 10 8

fil = 1.0, f 21 = 0.0

Group 2

.2 X 106

1.0 0.0

3

1 2 1

2 3 2

1 2 1
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Material properties:

Material 1

Group 1

1.4

. 0065

2. 1877

. 0035

0.01

Group 2

0. 4

.05

2.1877

0. 1

0. 0

Material 2

(same as material 1)

Material 3

Group 1

1.3

. 0065

2. 1877

.0015

.01

Group 2

0.5

0.02

2. 1877

. 03

0. 0

Perturbations which induce transients:

Material 1

Positive Step:

Positive Ramp:

Group 1

-. 0035
c

-. 0035 (t/. 2),
c

-. 0035

Negative Ramp: Ao-
c

+. 03 (t/. 02) ,9 . 0 < t < . 02

+03 t .02

D

C

V

a' f

Ti- i+ 1

D

C

o-f

-'i+1

t > . 0

t > . 2

+.03
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C. 4. OBLONG Reactor - Four Group Non-Homogeneous,

Non-Symmetric System

Critical Configuration

Number of neutron groups = 4

Number of precursor groups = 1

Geometry:

11

Ax = 8.0 cm

Ay = 8.0 cm

U-

0

Cl,
5

1

10 14

x mesh points

where the numbers indicate the material composition of that space

region.

Delayed constants:

p1 = . 0064, f1 1 = 0.0, f

1 2

2 3 4

1 21

f 31 = 0. 0, f 41 = 0. 0x.1 = . 08, f 21 = 1. 0,



Group 1

v . 1 X 10 10

x .0755

Material properties:

D

'c

vf

a-f

1-1i+1

Group 1

2. 7778

.0013

1.4507

.00136

.0586

Group 1

3. 3333

.00065

1. 4507

.0007

.0586

Group 1

4. 1667

.00077

D

'c

-f

a-..
1-Im+1

D

-c

af

i-i+1

0.0

0. 0

.0570

Group 2

. 1 X 109

0.245

Material 1

Group 2

1. 0753

.001

1.4507

.00197

.00197

Material 2

Group 2

1. 3889

.0005

1. 4507

. 0009

.0828

Material 3

Group 2

2. 0833

.00072

0.0

0. 0

.0822

Material 4

(same as material 3)

81

Group 3

.5 X 107

0.0

Group 3

.64103

.0097

1.4507

.0262

.085

Group 3

.83333

.0045

1. 4507

.0131

.0850

Group 3

1. 0753

.00051

0.0

0. 0

.0847

Group 4

. 2 X 106

0.0

Group 4

. 16260

.115

1.4507

.54

0.0

Group 4

2. 0833

.058

1. 4507

.274

0.0

Group 4

. 26247

.012

0.0

0. 0

0.0

. .. ................... 1-1 "I'll", 1- 111. 1 -. 1.- , . "I'll", III
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Perturbation which induces transient:

Material 3

Group 4

Positive Ramp: -. 003 (t/. 2),
c

-. 003

.0 < t .2

t .2
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Appendix D

COMPUTER PROGRAMS

(Only in first five copies)



M IUtibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to

provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The archives copy is missing the Appendix D
"Computer Programs" section. This is the most
complete version available.


