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We present results of the time blocking approximation (TBA) for giant resonances in light-, medium-, and

heavy-mass nuclei. The TBA is an extension of the widely used random-phase approximation (RPA) adding

complex configurations by coupling to phonon excitations. A new method for handling the single-particle

continuum is developed and applied in the present calculations. We investigate in detail the dependence of the

numerical results on the size of the single-particle space and the number of phonons as well as on nuclear matter

properties. Our approach is self-consistent, based on an energy-density functional of Skyrme type where we used

seven different parameter sets. The numerical results are compared with experimental data.
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I. INTRODUCTION

Self-consistent mean-field models have been developed

over the decades into a powerful tool for the description of

nuclear structure and dynamics all over the periodic table

[1–4]. Time-dependent mean-field theory allows us to simulate

a great variety of excitations and dynamical processes [5]. Gi-

ant resonances are described well in the small amplitude limit

where the space of one-particle–one-hole (1p-1h) excitations is

explored, which is, in fact, identical to the widely used random

phase approximation (RPA). Here one is able to calculate mean

energies and total transition strengths. In order to describe

also the fine structure of bound states and the total width of

giant resonances one has to include correlations beyond 1p-1h.

Such calculations have been performed in self-consistent as

well as in non-self-consistent approaches. Extended theories

may include, e.g., two-particle–two-hole configurations [6]

or one may consider the fragmentation of the single-particle

states due to the coupling to phonons [7–10]. Within the

latter approach isoscalar electric monopole resonances and

quadrupole resonances were well reproduced in medium- and

heavy-mass nuclei [9–13]. In light nuclei like 16O the present

theory is unable to reproduce the experimental isoscalar cross

sections quantitatively, as important decay channels are still

missing. This will be discussed in Sec. III.

One might assume that mean-field theories which describe

bulk properties of nuclei, such as the Thomas-Reiche-Kuhn

(TRK) sum rule and the nuclear symmetry energy [14], as

well as shell effects, should also reproduce rather well the

centroid energies of the giant dipole resonance (GDR). This

is not the case, however, as has been worked out in systematic

surveys based on RPA spectra [15–17]. It was impossible

*J.Speth@fz-juelich.de

to describe ground-state properties and the centroid energy

of the GDR both in light and heavy nuclei with the same

effective interaction. The problem is more serious than it might

appear at a first glance because the physics of the GDR is

closely connected with the neutron skin thickness and the

low-lying dipole strength: the so-called pygmy resonances

[18–20]. These states are presently investigated experimentally

because of their impact on the isotope abundance produced in

supernova explosions [21].

Recently we showed that the explicit inclusion of quasi

particle-phonon coupling may help to solve the problem of

mean-field theories in reproducing the centroid energies of

the GDR [22]. Within the time blocking approximation (TBA)

[8,9], i.e., including 1p-1h ⊗ phonon configurations explicitly,

we obtained a reasonably good quantitative agreement with

the experimental data for the GDR in light (16O), medium

(48Ca), and heavy (208Pb) nuclei. As we went beyond the

mean-field approach we had to adjust new Skyrme forces,

where we concentrated on the GDR in 16O within the

conventional 1p-1h RPA. If we confine ourselves in the

TBA to the contribution of the most collective phonons,

the TBA hardly changed the 1p-1h RPA result in 16O but

moved the GDR in 48Ca and 208Pb closer to the experimental

values. The isoscalar giant monopole resonance (GMR) and

giant quadrupole resonance (GQR) were shown in a short

note [10] using an improved version of TBA that derived

all matrix elements consistently from the given (Skyrme)

energy-density functional and calculated them without any

approximations and included the single-particle continuum,

thus avoiding the artificial discretization implied in earlier

TBA calculations. The present publication discusses in detail

the formalism of the short note [10]. Moreover, we present a

new treatment of the single-particle continuum which allows

us (i) to include exactly the velocity dependent terms and

the spin-orbit interaction and (ii) to eliminate the unphysical
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effects generated in the 1p-1h ⊗ phonon configurations when

employing a discretized single-particle basis.

We scrutinize the phonon-coupling model by studying the

dependence of the results on the numerical parameters of the

model (more formal details were presented recently in [23]).

The theoretical spectral distributions for the GMR, GQR, and

GDR of 16O, 40Ca, 48Ca, and 208Pb are compared with the

experimental ones. We use seven different Skyrme parameter

sets in order to find out how these giant resonances depend on

some specific gross properties of nuclear matter.

The paper is organized as follows. In Sec. II A we present

the basic formulas of the self-consistent RPA and TBA. In

Sec. II B we present seven different Skyrme parameter sets

which reproduce the usual ground-state properties and give

reasonably good results for isovector as well as isoscalar

electric giant resonances. The Skyrme parameter sets were

characterized in terms of nuclear matter properties (NMPs)

from which we consider in particular four key quantities:

incompressibility K , effective mass m∗/m, symmetry energy,

and enhancement factor for the TRK sum rule κTRK (equivalent

to isovector effective mass). We investigated in detail the

influence of these four NMPs on the GDR and the giant

isoscalar monopole and quadrupole resonances. Problems

connected with the tuning of the parameters are discussed

in Sec. II C. Details of the calculation scheme are given in

Sec. III. In Sec. III A we discuss the single-particle basis and

in Sec. III B the effect of the exact continuum treatment on our

results. In Sec. III C we investigate in detail the dependence of

the TBA results on the number of phonons included. Section IV

presents our results. In Sec. IV A we compare our final results

with experimental data, and we analyze the results in Sec. IV B.

In the last section we summarize our investigations.

II. THE METHOD

A. The basic equations

1. Conventional RPA

The original derivation of the RPA equations in nuclear

physics is based on the time-dependent Hartree-Fock methods

where one considered small amplitude dynamics about a

Hartree-Fock ground state [24]. From this derivation, one may

obtain the impression that the RPA is a very limited approach.

This is actually not the case if one considers the derivation

within the Green function method. All details and the explicit

expressions can be found in Ref. [25]. The transition matrix

element of a one-particle operator between the exact ground

state of an A-particle system and an excited state m is given as

〈Am|Q|A0〉 =
∑

ν1ν2

Qeff
ν1ν2

χm
ν1ν2

. (1)

Here Qeff are effective operators and χm are the quasiparticle-

quasihole matrix elements which are given by the equation

(ǫν1
− ǫν2

− �)χm
ν1ν2

=
(

nν1
− nν2

)

∑

ν3ν4

F ph
ν1ν4ν2ν3

χm
ν3ν4

, (2)

where Fph is the renormalized particle-hole interaction. All

relations have been been derived without any approximations.

Therefore conservation laws can be applied. For example,

the effective electric operators reduce to the bare ones due

to Ward identities in the long-wavelength limit. The derivation

of the RPA equation starts with the equation of motion (Dyson

equation) for the one-particle Green function. The basic input

is the mass operator � which includes all information on the

many-body system. The most general form is given as

� = �(r,p,ǫ). (3)

It depends on the coordinate r, the momentum p (non-locality),

and the energy ǫ.

Note that the RPA equations derived here are formally

identical with the corresponding equations derived in the linear

response limit of time-dependent density-functional theory

(TDDFT) in the next section. The crucial difference is the

mass operator in Eq. (3) which is energy dependent in a general

many-body theory whereas it turns out to be independent of

energy in TDDFT. As the various quantities in the general

case and in linear response are different, we also use different

symbols.

In the general case, the expression for the effective mass

has the form

m

m∗
=

(

1 + 2m δ�
δp2

)

F
(

1 − δ�
δǫ

)

F

. (4)

The nominator is called k mass and the denominator E

mass [26]. They are related to the nonlocality and energy

dependence of the mass operator, respectively. If the mass

operator does not depend on the energy, the denominator

is equal to 1. In the case of a totally energy-independent

mass operator, the formulas become much simpler as the

single-particle strength is equal to one [27]. The effective

operators are in all cases equal to the bare operators and also

the particle-hole interaction is not renormalized.

In our extended model (the TBA), we introduce complex

configurations by coupling phonons to the single-particle

states. This introduces an energy dependence into the mass

operator in first order [28]. For this reason the single-particle

strength is less then 1 and we obtain a contribution to the E

mass. This is the well known shift due to phonon coupling.

All this is correctly taken care of in the TBA. But we will not

address single-particle effects explicitly later on.

2. Self-consistent RPA

Our approach is based on the version of the response

function formalism developed within the Green function

method (see Ref. [25]). In the general case the distribution

of the strength of transitions in the nucleus caused by some

external field represented by the single-particle operator Q is

determined by the strength function S(E) which is defined in

terms of the response function R(ω) by the formulas

S(E) = −
1

π
Im �(E + i�), (5)

�(ω) = −〈Q|R(ω)|Q〉, (6)

where E is an excitation energy, � is a smearing parameter,

and �(ω) is the (dynamic) polarizability.
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The first model used in our calculations is the self-consistent

RPA based on TDDFT with the energy density functional

E[ρ]. The TDDFT equations imply that [ρ,h] = 0 where ρ

is the single-particle density matrix satisfying the condition

ρ2 = ρ, and h is the single-particle Hamiltonian,

h12 =
δE[ρ]

δρ21

. (7)

The numerical indices here and in the following denote the

set of the quantum numbers of some single-particle basis.

It is convenient to introduce the basis that diagonalizes

simultaneously the operators h and ρ:

h12 = ε1δ12, ρ12 = n1δ12, (8)

where n1 = 0,1 is the occupation number. In what follows the

indices p and h will be used to label the single-particle states

of the particles (np = 0) and holes (nh = 1) in this basis.

In RPA, the response function is a solution of the following

Bethe-Salpeter equation (BSE):

RRPA(ω) = R
(0)

(ω) − R
(0)

(ω)V RRPA(ω), (9)

where R
(0)

(ω) is the uncorrelated 1p-1h propagator and V

is the residual interaction. The 1p-1h propagator R
(0)

(ω) is

defined as

R
(0)

(ω) = −(ω − �
(0)

)−1MRPA, (10)

where the matrices �
(0)

and MRPA are defined in the 1p-1h

configuration space. MRPA is the metric matrix

MRPA
12,34 = δ13 ρ42 − ρ13 δ42. (11)

The matrix �
(0)

has the form

�
(0)
12,34 = h13 δ42 − δ13 h42. (12)

In the self-consistent RPA based on the energy density

functional E[ρ] one has

V12,34 =
δ2E[ρ]

δρ21 δρ34

, (13)

so the quantities h and V appear to be linked by Eqs. (7) and

(13).

The propagator RRPA(ω), being a matrix in 1p-1h space,

is a rather bulky object. For practical calculations, it is more

convenient to express it in terms of RPA amplitudes zn
12 by

virtue of the spectral representation

RRPA
1234(ω) = −

∑

n

zn
12

sgn(ωn)

ω − ωn

(

zn
34

)∗
, (14)

where n labels the RPA eigenmodes and ωn is the eigenfre-

quency. Inserting that into Eq. (9) and filtering the pole at

ω = ωn yields the familiar RPA equations

∑

34

(

�
(0)
12,34 +

∑

56

MRPA
12,56 V56,34

)

zn
34 = ωn zn

12, (15)

where the transition amplitudes zn are normalized by the

condition
∑

12,34

(

zn
12

)∗
MRPA

1234 zn′

34 = sgn(ωn) δn, n′ . (16)

These equations determine the set of eigenstates n with

amplitudes zn
12 and frequencies ωn.

3. Phonon coupling model

The second model is the quasiparticle-phonon cou-

pling model within the time-blocking approximation (TBA)

[8,9,12,29] (without ground state correlations beyond the

RPA included in [8,9,12,29] and without pairing correlations

included in [9]). This model, which in the following will be

referred to as TBA, is an extension of RPA including 1p-1h ⊗

phonon configurations in addition to the 1p-1h configurations

incorporated in the conventional RPA. The BSE for the

response function in the TBA is

RTBA(ω) = R
(0)

(ω) − R
(0)

(ω)[V + W̃ (ω)]RTBA(ω), (17)

W̃ (ω) = W (ω) − W (0), (18)

where the induced interaction W̃ (ω) serves to include contri-

butions of 1p-1h ⊗ phonon configurations.

The matrix W (ω) in Eq. (18) is defined in the 1p-1h

subspace and can be represented in the form

W12,34(ω) =
∑

c, σ

σ F
c(σ )
12 F

c(σ )∗
34

ω − σ �c

, (19)

where σ = ±1, c = {p′,h′,n} is an index of the subspace of

1p-1h ⊗ phonon configurations, n is the phonon’s index,

�c = εp′ − εh′ + ωn, ωn > 0, (20)

F
c(−)
12 = F

c(+)∗
21 , F

c(−)
ph = F

c(+)
hp = 0, (21)

F
c(+)
ph = δpp′ g

n
h′h − δh′h gn

pp′ , (22)

and gn
12 is an amplitude of the quasiparticle-phonon interaction.

These g amplitudes (along with the phonon’s energies ωn) are

determined by the positive frequency solutions of the RPA

equations and the emerging z amplitudes as

gn
12 =

∑

34

V12,34 zn
34, (23)

where V12,34 is the same residual interaction (13) as used in

RPA. In our DFT-based approach the energy density functional

E[ρ] in Eqs. (7) and (13) is the functional of the Skyrme

type with free parameters which are adjusted to experimental

data. In this case E[ρ] already effectively contains a part

(actually the stationary part) of the contributions of those

1p-1h ⊗ phonon configurations which are explicitly included

in the TBA. Therefore, in the theory going beyond the RPA, the

problem of double counting and of ground-state stability arises

[30]. To avoid this problem in the TBA, we use the subtraction

method. It consists of the replacement of the amplitude W (ω)

by the quantity W̄ (ω) = W (ω) − W (0) as given in Eq. (17).

In Ref. [31] it was shown that, in addition to the elimination

of double counting, the subtraction method ensures stability

of solutions of the TBA eigenvalue equations.
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B. Basics on the Skyrme functional and related parameters

From the variety of self-consistent nuclear mean-field

models [2], we consider here a nonrelativistic branch, the

widely used and very successful Skyrme-Hartree-Fock (SHF)

functional. A detailed description of the functional is found

in the reviews [2,16,32]. We summarize the essential features:

The functional depends on a few local densities and currents

(density, gradient of density, kinetic-energy density, spin-orbit

density, current, spin density, and kinetic spin density). It

consists of quadratic combinations of these local quantities,

corresponding to pairwise contact interactions. The term with

the local densities is augmented by a nonquadratic density

dependence to provide appropriate saturation. One adds a

simple pairing functional to account for nuclear superfluidity.

The typically 13–14 model parameters are determined by a fit

to a large body of experimental data on bulk properties of the

nuclear ground state. For recent examples see [3,4,15].

The properties of the forces can be characterized, to

a large extent, by nuclear matter properties (NMPs), i.e.,

equilibrium properties of homogeneous, symmetric nuclear

matter, for which we have some intuition from the liquid-drop

model [33]. Of particular interest for resonance excitations

are the NMPs which are related to response to perturbations:

incompressibility K (isoscalar static), effective mass m∗/m

(isoscalar dynamic), symmetry energy asym (isovector static),

and TRK sum rule enhancement κTRK (isovector dynamic). We

aim at exploring the effect of phonon coupling under varying

conditions and thus use here parameter sets from recent fits

presented in [15] which provides a systematic variation of

these four NMPs.

Table I lists the selection of parameter sets and their NMPs.

SV-bas is the base point of the variation of forces. Its NMPs

are chosen such that dipole polarizability and the three most

important giant resonances (GMR, GDR, and GQR) in 208Pb

are well reproduced by Skyrme-RPA calculations. Each one

of the next four parameter sets vary exactly one NMP while

keeping the other three at the SV-bas value. These 1+4

parameter sets allow us to explore the effect of each NMP

separately. It was figured out in [15] that there is a strong

relation between each one of the four NMPs and one specific

giant resonance: K affects mainly the GMR, m∗/m affects

mainly the GQR, κTRK affects the GDR, and asym is linked to

the dipole polarizability [34].

TABLE I. Nuclear matter properties for the Skyrme parameter

sets used in this study: incompressibility K , isoscalar effective mass

m∗/m, symmetry energy asym, and Thomas-Reiche-Kuhn sum rule

enhancement κTRK. The first five parameter sets stem from [15], the

last two from [22].

K (MeV) m∗/m asym (MeV) κTRK

SV-bas 234 0.90 30 0.4

SV-kap00 234 0.90 30 0.0

SV-mas07 234 0.70 30 0.4

SV-sym34 234 0.90 34 0.4

SV-K218 218 0.90 30 0.4

SV-m64k6 241 0.64 27 0.6

SV-m56k6 255 0.56 27 0.6

Finally, the last two parameter sets in Table I were

developed in [22] with the goal to describe, within TBA, at the

same time the GDR in 16O and 208Pb. This required pushing

up the RPA peak energy, which was achieved by low asym

in combination with high κTRK. To avoid unphysical spectral

distributions for the GDR, a very low m∗/m was used.

C. The problem of tuning a parameter set

Looking only at average resonance energies, the tuning

of parameter sets is simple. As mentioned before, the three

giant resonances which we consider couple each one almost

exclusively to one property: the GMR to the incompressibility

K , the GDR to the TRK sum rule enhancement κTRK, and the

GQR to the isoscalar effective mass m∗/m. This suggests that

one can adjust these three resonances independently as needed.

However, problems appear when looking at the detailed

spectral distributions. We observed in our investigations that

the shift in average resonance energies usually does not

correspond to a global shift of the spectral distribution,

but rather to a redistribution of strength over the spectrum.

However, such redistribution can lead to unrealistic profiles.

Figure 1 shows detailed spectra for four parameter sets.

SV-kap00 as compared to SV-bas corresponds to a shift of κTRK

from 0.4 (for SV-bas) down to 0. This has no effect on the GQR

FIG. 1. Dipole strength (lower panel) and quadrupole strength

(upper panel) for four parameter sets as indicated. The smooth spectra

are obtained from folding with Gaussians of linearly increasing width

Ŵ = max(0.2,(E − 8)/5) MeV.
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and leads to a visible downshift of the GDR. This downshift

also changes the profile to the extent that the high-energy

bump at 16 MeV in SV-bas now appears at 14 MeV and,

more importantly, becomes much smaller. Thus the way from

SV-kap00 to SV-bas already changes somewhat the profile, but

at a harmless level.

Now we try to up-shift the GDR by enhancing dramatically

κTRK to 0.8 while keeping m∗/m = 0.9 at the value of SV-bas.

This leads to the blue curves in the figure. It is gratifying to see

that the GQR remains where it should be. The GDR makes the

wanted up-shift. However, this happens at the price of a totally

unrealistic double humped structure of the GDR. Mind that

the upper bump appears in such a pronounced manner in spite

of the energy-dependent folding width. Mere enhancement of

κTRK seems thus no solution to the wanted up-shift of the GDR.

The former solution was to use much lower m∗/m = 0.56 to

suppress the double hump. This is successful for the GDR

(purple line); however, it is disastrous for the GQR, showing

too high GQR position and a grossly unrealistic low-energy

spectrum. This is a severe deadlock for global improvement

at the level of RPA. The situation becomes more graceful if

phonon coupling is included with TBA, as we will see later.

III. DETAILS OF THE CALCULATION SCHEME

A. Single-particle basis and residual interaction

The response functions both for RPA and TBA, Eqs. (9)

and (17), are solved in a discrete basis defined as a set of

solutions of the Schrödinger equation with box boundary

conditions. Both equations are solved in the same large

configuration space. A new method to include the continuum

in the discrete basis representation is explained in Appendix.

The residual interaction V in Eqs. (9) and (17) is derived

from the energy functionals according to Eq. (13). In the case

of the energy density functional E[ρ] built on the Skyrme

forces, the amplitude V determined by Eq. (13) contains zero-

range (velocity-independent) and velocity-dependent parts.

The scheme for taking into account the zero-range part of the

residual interaction adopted in our calculations is described in

Refs. [9,13]. A detailed description of the computation of the

matrix elements in connection with the Skyrme functional is

found in [23].

We will consider only doubly-magic nuclei. They have

closed shells and pairing is inactive. The box sizes in the RPA

and TBA calculations are 15 fm for 16O, 40,48Ca and 18 fm

for 208Pb. The single-particle basis in which we solve the RPA

and TBA equations includes single-particle states up to εmax =

100 MeV (see our discussion in the next two sections). In the

TBA calculations we apply the subtraction recipe (18) [31]. As

mentioned before, this procedure eliminates double counting,

resolves stability problems, and restores the Thouless theorem.

B. Effect of the exact continuum

The present TBA calculations use a new technique which

allows a continuum treatment in connection with full self-

consistency RPA, as outlined in the Appendix. This method

uses the discrete basis representation and recovers the exact

method [35] of treatment of the continuum in the coordinate

FIG. 2. ISGMR in 16O calculated within fully self-consistent RPA

based on the Skyrme energy density functional with the parameter

set T6. [36]. Fractions of the E0 EWSR are shown. Upper panel: the

CRPAc.r. function obtained by making use of the method of Ref. [37]

is presented by the red solid line. The CRPA100 function obtained

in the discrete basis with εmax = 100 MeV is presented by the black

dashed line. Lower panel: the CRPAc.r. function (red solid line) is

compared with the DRPAc.r. function (black dashed line) obtained by

the same method as in Ref. [37]. Smearing parameter � = 200 keV

was used in all the calculations.

representation if the discrete basis is sufficiently complete

(εmax high enough) and the radius of the box (Rbox) is

sufficiently large (see the Appendix). To check the accuracy of

our method, we first compare the results obtained within the

continuum RPA (CRPA) in the discrete basis representation

(hereafter called CRPAd.b.) with the results of the CRPA in

the coordinate representation (CRPAc.r.). As an example, we

consider calculations of the GMR in the fully self-consistent

CRPA based on the Skyrme energy density functional with the

parameter set T6 [36] producing the nucleon effective mass

m∗/m = 1. As was shown in Ref. [37], the fully self-consistent

CRPAc.r. scheme in this special case has a relatively simple

form. The results for the nucleus 16O are shown in Fig. 2. The

function F (E) presented in this figure is the fraction of the

energy-weighted sum rule (EWSR) defined as

F (E) = E S(E)/m1, (24)
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where S(E) is the strength function defined in Eq. (5) and

m1 =
∫

dE E S(E) is the energy-weighted moment of S(E)

determined by the known EWSR [38].

In the upper panel of Fig. 2 the CRPAc.r. results are

compared with CRPA100 obtained in the discrete basis with

Ecut = 100 MeV. The details of these CRPAd.b. calculations

are the same as in Ref. [10] (that is, the SHF equations were

solved in the box with the radius Rbox = 15 fm by making use

of the Numerov method with the radial mesh size h = 0.05

fm and with decreasing h at r < 1 fm, see Ref. [39]). The

equations of the CRPAc.r. were solved in r-space with the

same mesh spacing h = 0.05 fm and the box size Rbox = 15

fm.

All these calculations used a smearing parameter � =

200 keV. The difference between the CRPA100 and CRPAc.r.

curves is small and hardly visible. The CRPA300 obtained in

the discrete basis with Ecut = 300 MeV and CRPAc.r. curves

are practically indistinguishable, so we do not show them. In

the lower panel of Fig. 2 the discrete RPA (DRPA) results

obtained by the coordinate representation method of Ref. [37]

are compared with the CRPA function for 16O and, again,

� = 200 keV. In this case, the difference between these results

is large.

Thus we see that the magnitude of the continuum effects on

nuclear excitations is different in light and heavy nuclei. To see

the trend we have calculated the GDR in the nuclei 16O, 48Ca,
132Sn, and 208Pb within two schemes: CRPAd.b. and DRPAd.b.

using the Skyrme parameter set SV-bas [40]. The results are

presented in Fig. 3. In this figure, the photoabsorption cross

sections normalized to the classical values σclass. = 5
3
π〈r2〉 are

shown. The mean-square radii 〈r2〉 have been calculated for

each nucleus using its Skyrme-Hartree-Fock ground-state. The

σclass. are 378.5 mb for 16O, 654.5 mb for 48Ca, 1204.0 mb for
132Sn, and 1605.1 mb for 208Pb. As can be seen, the effect of

the single-particle continuum is strongest in the light nuclei
16O and 40Ca. In the 16O nucleus, the CRPA and DRPA results

significantly differ at � � 400 keV. Even at � = 1 MeV the

difference is noticeable. It disappears only at � = 2 MeV. In
48Ca the difference between the CRPA and DRPA becomes

small at � � 1 MeV. The same is true for 132Sn, though on the

FIG. 3. Photoabsorption cross sections in the nuclei 16O, 48Ca, 132Sn, and 208Pb calculated within the CRPA (red solid lines) and the DRPA

(black dashed lines) with different smearing parameters �: �1 = 200 keV, �2 = 400 keV, �3 = 1 MeV, and �4 = 2 MeV. The discrete basis

representation with Ecut = 100 MeV is used both in the CRPA and the DRPA. The calculated cross sections have been normalized to the

classical values σclass. = 5

3
π〈r2〉 (see text for more details). The results are obtained with the Skyrme force parameter set SV-bas [40].
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FIG. 4. Discrete and continuum TBA results for 16O which were

obtained with the parameter set SV-m64k6. The fractions EWSR

for GMR and GQR and photoabsorption cross section for GDR are

presented in the upper, middle, and lower panels, respectively. The

DTBA for smearing parameters � = 400 and 700 keV are given by

blue dashed and red dashed-doted lines, respectively. Thick green

and thin brown full lines represent CTBA with � = 400 keV and

experimental data, respectively. The data are taken from Refs. [43,44].

whole this difference here is less than in 48Ca. These results

are in agreement with the conclusions of Refs. [7,41,42]. In the

heavy nucleus 208Pb, the effect of the single-particle continuum

is small and is manifested only at � � 200 keV.

In Fig. 4, for 16O, and Fig. 5, for 40Ca, we compare the TBA

results obtained with the exact continuum treatment (CTBA)

and the discretized approximation (DTBA). Here, blue dashed

and red dashed-dotted lines represent the DTBA results for

smearing parameters � = 400 and 700 keV, respectively. The

expression “strength” in the Y axes mean fractions EWSR for

GMR and GQR and photoabsorption cross sections for GDR.

The experimental data for GMR and GQR in 16O were taken

from Ref. [43] and for GDR in 16O from [44]. The data for
40Ca were taken from Refs. [45] and [46], respectively. The

figures show that, for light nuclei, increasing �(DTBA) damps

the artificial fine structure of the discrete approach. But, at the

same time, it wipes out important physical features. Hence, it

is impossible to reproduce CTBA results for strength functions

of light nuclei by using the DTBA, both with small and large

smearing parameters.

FIG. 5. Same as in Fig. 4 but for 40Ca. The corresponding data

are taken from Refs. [45,46].

The experimental profiles for the two isoscalar resonances

in 16O look very different from the isovector GDR and from

all resonances in heavier nuclei. The theoretical GQR shows

a narrow peak whereas the experimental strength is nearly

continuously distributed over more than 20 MeV. The same

is true also for the experimental GMR strength. Here the

theoretical strength distribution is very broad and shows at least

some qualitative similarity. There are little differences between

the various parameter sets. The question arises, why are we

not able to reproduce theoretically these two resonances while

the results in the heavier nuclei are in good qualitative in many

cases even in quantitative agreement with experiment? For the

GQR the explanation is simple: The dominant decay channel of

the GQR in 16O is the α decay into the ground state and the first

excited state of 12C [47]. In the range 18–23 MeV the α-decay

width is 90% of the total decay width and in 23–27 MeV it is

70%. This reaction mechanism is included in neither RPA nor

TBA. This is probably the reason why theory overestimates the

peak height of the cross section and does not reproduce the very

broad experimental distribution. While the theoretical GQR

cross section in 16O shows a well concentrated resonance, the

theoretical monopole distribution is very broad, as no narrow

single-particle resonances can contribute. It resembles more

the experimental pattern but is at least a factor of 2 too high

in the resonance region. The situation is completely different
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for the GDR. Our continuum calculation reproduces nearly

quantitatively the shape and magnitude of the experimental

distribution. The reason is that the GDR is dominated by the

1�ω transitions which practically exhaust the TRK sum rule.

However, the peaks of the distribution are typically 1 MeV too

low for the present Skyrme parameter set.

Figure 5 compares DTBA and CTBA for the case of 40Ca.

The agreement between theory and experiment is very good

for the GQR and GDR. In the case of the GMR our theoretical

distribution is about 2 MeV too high compared with the

experimental distribution.

It should be emphasized that all our results, except for those

cases which are explicitly stipulated otherwise, were obtained

with the exact treatment of the sp continuum. Therefore, in

most of the cases, we use the simple abbreviations RPA and

TBA instead of CRPA and CTBA.

C. The dependence on the number of phonons and on the size

of the single-particle basis in the complex configurations

In all the TBA calculations we use a large single-particle

(s.p.) basis both in the phonons and in the complex (1p-1h ⊗

phonon) configurations; that is, a large number of 1p-1h states

in these configurations. As it was mentioned in Sec. III A, the

upper limit for s.p. energies in all calculations for all nuclei was

εmax = 100 MeV. At the same time, only collective phonons

were used in the complex configurations.

The dependence of the theoretical results on the number of

phonons used in the calculation is of crucial importance. For

this reason we investigate this question in some detail. The

result of our investigations for the GDR in 16O is summarized

in Fig. 6. The energies E0 and the widths Ŵ where derived from

the theoretical cross section by a Lorentzian fit. We performed

TBA calculations with and without the subtraction procedure.

The two approaches give very different results. For comparison

the RPA results are shown in the left upper corner of each

figure.

In the left column of Fig. 6, the dependence of E0 and Ŵ is

presented as a function of the maximal phonon energies E
phon
max .

From Table II, one obtains the connection between E
phon
max and

the number of phonons considered in each calculation. The

single-particle basis in which we solve the RPA and TBA

equations includes s.p. states up to εmax = 100 MeV with

angular momenta up to Lmax = 17. In the right column the

same quantities are shown as a function of the lower cutoff for

transition strength Bcut of the phonons, where

Bcut = B(EL)/B(EL)max; (25)

B(EL)max is the maximal reduced probability of the excitation

of the phonon states with the given angular momentum L. The

connection between Bcut and the number of phonons can be

found again in Table II. A too large number of phonons causes

two problems: violation of the Pauli principle and double

counting. We reduce these problems as we restrict ourselves in

FIG. 6. Energy (lower part) and width (upper part) of the GDR in 16O obtained from TBA calculations. The energy E0 and the width Ŵ are

the corresponding parameters of a Lorentzian fit to the theoretical results. In the left corner of each figure the RPA result is given. In the left

column we present E0 and Ŵ as a function of the maximal phonon energy E
phon
max used in complex configurations. In the right column we present

E0 and Ŵ as function of the minimal collectivity Bcut of the phonons but with fixed value E
phon
max = 80 MeV. Table II gives the relation between

values E
phon
max , Bcut, and the number of phonons.
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TABLE II. Relation between E
phon
max and the number of phonons

used in 1p-1h ⊗ phonon configurations for 16O. The force SV-m64k6

was used. The phonons were obtained in the sp basis with εmax =

100 MeV and angular momenta up to Lmax = 17. Only collective

phonons were used in our actual TBA calculations; that is, phonons

with Bcut ≡ B(EL)/B(EL)max � 0.2. (see also the text). Under these

conditions, the number of phonons is fixed by the maximum phonon

energy E
phon
max . The effect of the noncollective phonons is demonstrated

for small values Bcut in the last two columns.

Bcut 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.05 0.01

E
phon
max 80 80 10 20 40 80 100 80 80 80

Nphon 42 52 1 6 55 66 69 117 166 325

the actual calculations on phonons with Bcut � 0.2. Between

E
phon
max = 40 MeV and E

phon
max = 80 MeV the energy and width

remain stable if one applies the subtraction procedure. This

corresponds to 55 phonons and 66 phonons, respectively (see

Table II and the text). In the right column the effect of an even

larger number of phonons is presented. Here the transition

strength parameter Bcut ranges from 0.4 down to 0.01. Here one

sees strong changes only for the extreme cases of Bcut = 0.05

and 0.01. Note that the decrease of the GDR width in the

TBA as compared to the RPA shown in Fig. 6 is explained

by the different energy shifts of the RPA states in 16O, which

is a consequence of the small number of low-energy 2p-2h

configurations in this nucleus. The large spreading widths in

other nuclei (e.g., in 208Pb) lead to the opposite effect.

TABLE III. Dependence of the resonance energy and width

(Lorentzian parameters E0 and Ŵ) on the size of the sp basis used in

phonons and in 1p-1h ⊗ phonon configurations for 208Pb with Bcut =

0.2. The size of the basis is characterized by the maximum energy

εmax. For the GDR, the calculated parameters were photoabsorption

cross sections while for GMR and GQR the fractions EWSR were

used. The force SV-m64k6 was used. All the values are given in MeV.

εmax 50 100 150

E
phon
max RPA 40 40 40

subtract. no yes no yes no yes

GDR E0 15.0 13.5 14.4 13.3 14.3 13.3 14.3

Ŵ 4.60 4.63 4.57 4.61 4.53 4.63 4.54

GMR E0 14.4 13.3 14.1 13.1 14.0 13.0 13.9

Ŵ 1.53 2.09 2.15 2.08 2.18 2.04 2.14

GQR E0 12.8 11.1 11.9 10.9 11.8 10.8 11.7

Ŵ 1.04 1.10 1.13 1.10 1.19 1.10 1.24

The same is true also for the isoscalar resonances GMR

and GQR, as can be seen in Fig. 7. From this investigation we

conclude that our results in 16O are stable for εmax = 100 MeV

and 55 phonons.

In Table III we compare again TBA results obtained with

and without the subtraction procedure as a function of the

s.p. space. Here we used Bcut = 0.2 which corresponds to

40 phonons. The results where the subtraction method was

applied are very stable.

FIG. 7. Same as in Fig. 6 but for the GMR and GQR in 16O.
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IV. RESULTS

We concentrate on the three most important giant reso-

nances: the isoscalar giant monopole resonance (GMR), the

isoscalar giant quadrupole resonance (GQR), and the isovector

giant dipole resonance (GDR).

A. Comparison with experiment

In Fig. 8, the theoretical cross sections of the GMR, GQR,

and GDR are compared with the experimental ones for 208Pb.

The theoretical results are calculated with the seven Skyrme

parameter sets which we presented in Table I of Sec. II B.

The peak energy of the GDR is expected at 80A− 1
3 =

14 MeV in 208Pb[14]. The experimental photoabsorption

strength shows a Lorentzian-like distribution with only minor

fluctuations [48]. The RPA is not able to reproduce the

experimental strength distribution. There are two major peaks

for all seven Skyrme parameter sets used. The centroid energies

of both peaks depend sensitively on the specific parameter

set employed. Since we include the nuclear continuum,

discretization effects are ruled out as a possible explanation of

the unrealistic double humped structure. An energy dissipation

mechanism other than the RPA is needed. The phonon coupling

provides such a mechanism. The TBA produces a strength

distribution with only one major peak for all parameter sets

employed. The quantitative agreement with the experimental

strength is reasonably good for five of the seven parameter

sets, while the sets SV-kap00 and SV-sym34 perform less

well.

FIG. 8. Spectral strength distributions for 208Pb and the three modes under consideration: isoscalar monopole (left panels), isoscalar

quadrupole (middle panels), and isovector dipole (right panels). Photoabsorption strength is shown in case of the dipole mode. Results are

obtained with the seven Skyrme parameter sets discussed in Sec. II B. Compared are strengths derived from RPA (blue dashed) and TBA (full

red) with experimental data (full brown) from [48] for the GDR and [49] for the GMR and the GQR.
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FIG. 9. Same results as in the previous figure but for 48Ca. The data are taken from [46] for the GDR and from [45] for the GMR and the

GQR.

The experimental GQR strength is centered near 12 MeV.

The RPA produces a peak in the vicinity of the experimental

one, but overestimates the experimental peak height by ap-

proximately a factor 2, while simultaneously underestimating

the width. The TBA introduces a larger width and thus leads

to an improved description of the data.

The experimental peak energy of the GMR is reproduced

both by the RPA and the TBA, while the peak height is reduced

by the TBA.

In Fig. 9 we compare our theoretical results for 48Ca with

the data.

The experimental GDR strength in 48Ca shows a Lorentz-

like distribution with one peak at approximately 18 MeV. RPA

yields consistently a too high and too narrow peak as compared

to the experimental strength, and shows up to two major

peaks. The sets SV-kap00 and SV-sym34 generate the largest

discrepancies in comparison with data, as was also observed

in 208Pb. The other five parameter sets reproduce the energy of

the experimental peak reasonably well, but overestimate the

strength. Including the phonon coupling within the TBA, a

reduction of the peak height is obtained, but the TBA result

still overestimates the data. The sets SV-m64k6 and SV-m56k6

which were fine-tuned [22] to reproduce the GDR in 208Pb and
16O show a fair agreement with the data.

The experimental GQR and GMR strengths are very broad

so that it is not obvious how to identify a peak energy. The

RPA produces one narrow resonance, in contrast to the data.

The TBA is able to reduce the GQR peak height, but still

overestimates the experimental strength, while for the GMR

strength the differences between RPA and TBA are small.

One may understand the present results as a hint that

there are additional energy dissipation mechanisms other

than phonon coupling which are relevant in light nuclei. The

experimental fact that the GQR in 16O decays mainly via α
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emission suggests a possible reaction channel not included

in the present approach. At present, it is not known how

to incorporate such complex reaction mechanisms into the

present framework.

B. Analysis of the results

In order to analyze the effect of the phonon degree of

freedom on the results, we characterize each resonance by

one number, the energy centroid, defined as the ratio m1/m0

of the first and zeroth energy moment of the corresponding

strengths. The moments are collected in exactly the same

energy windows which were used in the experiments. These

windows are 11 < E < 40 MeV for GMR and GQR in 16O,

15 < E < 30 MeV for the GDR in 16O, 10 < E < 30 MeV for

GMR in 40,48Ca, and 10 < E < 25 MeV for GQR in 40,48Ca,

The centroids E0 for the GDR in 40,48Ca and for the GDR,

GMR, and GQR in 208Pb were calculated in the window

E0 ± 2δ, where δ is the spectral dispersion (although with

constraint δ � 2 MeV).

Figure 10 summarizes the centroids for the three major

giant resonances in 208Pb (upper and middle) and the dipole

polarizability αD (lower panel). Let us briefly recall the trends

for RPA. Changing κTRK affects almost exclusively the GDR

such that lower κTRK yields a lower peak position. Changing

m∗/m affects the GQR where lower m∗/m means higher peak

position. Changing asym affects the dipole polarizability αD

with larger asym enhancing αD , although we see also a small

side effect on αD from changing m∗/m. Changing K has an

impact predominantly on the GMR, where lower K lowers

the peak energy. The combined changes of NMPs in the two

parameter sets SV-m64k6 and SV-m56k6 yield changes in

every mode.

The effect of the phonon coupling (moving from open to

closed symbols) does not change these trends in general. The

effects in detail depend very much on the actual parameter

set, but in all cases the energies are shifted downwards. The

lower panel of Fig. 10 shows the dipole polarizability αD .

The polarizability represents a static response, and TBA by

virtue of the subtraction method is designed such that it leaves

stationary states unchanged. Thus RPA and TBA results for

αD are exactly the same, which simplifies discussions in this

case. The large deviation of αD for SV-sym34 is the obvious

effect of asym. It is noteworthy that the combination of changes

to NMPs in SV-m56k6 cooperate to achieve a good description

of αD . Here, the low asym alone would have produced a too

low αD . But the low m∗/m drives αD back up again.

Figure 11 shows the same for the light nucleus 16O. It

is well known that the standard Skyrme forces produce all

too low GDR energies (second panel from below) while those

with exotically low effective mass (SV-m56k6 and SV-m64k6)

perform fine. The situation is exactly opposite for the GQR

(upper panel). Here the standard forces do well and the exotic

ones fail. The GMR is badly reproduced. All forces yield a

too high centroid energy. As the GMR and GQR are nearly

continuously distributed, the definition of a centroid energy

and a width depends strongly on the integration intervals

chosen and is used here only as a simple tool to facilitate

the discussion. To summarize the situation one may conclude

FIG. 10. Comparison of giant resonance energies in 208Pb for a

variety of Skyrme parameter sets as indicated. The energy centroids

E0 = m1/m0 are computed in the window E0 ± 2δ, where δ is a

dispersion (with the condition δ � 2 MeV).Open and filled symbols

show the values calculated in the frameworks of RPA and TBA,

respectively. The experimental data are taken from Refs. [48] for the

GDR, [49] for the GMR, and the GQR, and [19] for αD .

as follows: For 208Pb alone, the conventional RPA using the

parameter set SV-bas manages to provide a good description

for all four features. However, SV-bas fails badly for the GDR

in 16O and to some extent also for the polarizability (the

mismatch of GMR is ignored here). It is only the new force

SV-m56k6 in combination with TBA which manages to get the

GDR correct in both nuclei [22]. But this spoils GMR, GQR,

and αD(16O). Considering the whole synopsis, we realize that

there is no force which reproduces all three giant resonances

and the polarizability simultaneously in 16O and 208Pb, for

either RPA or TBA.

Figure 12 shows the differences of the energy centroids

between TBA and RPA for 208Pb and 16O. In all cases the

TBA energies are lower than the RPA results. This is probably

due to the first-order correction in the energy dependence of the

effective mass discussed in Sec. II A. The shifts are between

1 MeV for the GDR in 16O and about 200 keV for the GQR in

the same nucleus. The energy shifts of individual modes are

always of the same magnitude.
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FIG. 11. Same as in Fig. 10, but for 16O.

V. SUMMARY

The present paper is an extended version of a previous short

note [10]. It is concerned with the time-blocking approxima-

tion (TBA) which is an extension of the widely used random-

phase approximation (RPA) by complex configurations in

terms of 1p-1h states coupled to RPA phonons, and it addresses

a couple of basic questions in this scheme: proper treatment of

the continuum, restoration of stability of ground and excited

states, and size of phonon space.

First, we explain here details of the self-consistent con-

tinuum TBA, which is a new method for handling the

single-particle continuum. This method had been further

developed to include also the spin-orbit contribution such

that our new calculations are fully self-consistent. We then

present numerical results which demonstrate the advantages

of the continuum treatment as compared to the conventional

treatment in a discrete basis.

The phonon coupling modifies the residual two-body

interaction which, in principle, would require one to compute

a new, correlated ground state in order to stay consistent and

to achieve a stable excitation spectrum with nonimaginary

excitation energies. However, this would introduce a double

counting because most ground-state correlations are already

incorporated in an effective mean-field theory. The problem

is solved by the subtraction scheme, subtracting the stationary

FIG. 12. Difference between TBA and RPA for the giant reso-

nance energies in 208Pb and 16O for a variety of Skyrme parameter

sets as indicated.

(zero-frequency) part of the effective interaction. This leaves

the ground state unchanged and delivers stable excitations

throughout. It also helps to achieve convergence with phonon

number.

A long-standing problem concerns the stability of the TBA

with respect to the choice of the number of phonons and the

size of the single-particle space. Here we present the results of

detailed calculations with systematically scanned numbers of

phonons. An important result is that the energies and widths are

stable over a large range if the subtraction method is included

in the TBA. This identifies a window of phonon numbers where

the results are robust.

We obtain that the main qualitative differences between the

TBA and RPA are (i) the fragmentation of the resonances in

the TBA producing the spreading width and (ii) the downward

shift of the peak resonance energies in the TBA.

Having a well tested numerical scheme for (continuum)

RPA and TBA at hand, we investigate the dependence of

the three main giant resonances on the basic properties of

a Skyrme parameter set: incompressibility, isoscalar effective

mass, symmetry energy, and TRK sum rule enhancement. And

we do that for RPA in comparison to TBA. TBA generally

down-shifts the peak resonance energies by up to 1 MeV. The

shift is about the same for all parameter sets for a given mode

and nucleus. It differs for the three modes and also depends on

the nucleus. Although the results show a reasonable general

agreement with the data, a parameter set which is able to
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describe equally well all three resonance modes in heavy as

well as light nuclei has not been found. For nuclei heavier

than 40Ca, however, there are several effective interactions

(SV-bas, SV-mass07, SV-K218) which, when used in TBA,

produce spectral strength distributions in fair agreement with

the data.
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APPENDIX: CONTINUUM IN A DISCRETE BASIS

REPRESENTATION

In the RPA and TBA the response function R(ω) is

a solution of the Bethe-Salpeter equations (9) and (17),

respectively. The propagator R
(0)

(ω) in these equations in the

discrete basis representation has the form

R
(0)
ph,p′h′(ω) = −

δpp′δh′h

ω − εph

, (A1)

R
(0)
hp,h′p′ (ω) =

δp′pδhh′

ω + εph

, (A2)

where εph = εp − εh.

Let us represent Eqs. (A1) and (A2) in the form

R
(0)
ph,p′h′(ω) = −δh′h 〈p|GMF(+)(εh + ω)|p′〉, (A3)

R
(0)
hp,h′p′(ω) = −δhh′ 〈p

′|GMF(+)(εh − ω)|p〉, (A4)

where

GMF(+)(ε) = GMF(ε) −
∑

h

|h〉〈h|

ε − εh

, (A5)

GMF(ε) is the single-particle mean-field Green function, |p〉

and |h〉 are the single-particle wave functions of particles and

holes. The superscript (+) in the notation GMF(+)(ε) means

that this function has the poles only above Fermi level. The

equivalence of Eqs. (A1)–(A2) and (A3)–(A4) follows from

the spectral expansion

GMF(ε) =
∑

h

|h〉〈h|

ε − εh

+
∑

p

|p〉〈p|

ε − εp

(A6)

and the orthonormality of the wave functions of the discrete

basis.

The discrete basis in this scheme is defined as a complete set

of solutions of the Schrödinger equation with the box boundary

conditions (b.b.c.). Let us introduce another complete set of

solutions of this equation obtained by imposing continuum

wave boundary conditions (c.b.c.). This set includes a finite

number of the discrete states of holes and particles and a

particle continuum. Respective mean-field Green functions

and the single-particle states will be denoted as G̃MF(ε), |p̃〉,

and |h̃〉.

The method of inclusion of the continuum in the discrete

basis representation consists of the replacement of the uncor-

related particle-hole propagator R
(0)

(ω) in Eqs. (9) and (17)

by the propagator R̃
(0)

(ω), which is defined by the formulas

R̃
(0)
ph,p′h′ (ω) = −δh′h 〈p|G̃MF(+)(εh + ω) |p′〉, (A7)

R̃
(0)
hp,h′p′ (ω) = −δhh′ 〈p

′|G̃MF(+)(εh − ω) |p〉, (A8)

G̃MF(+)(ε) = G̃MF(ε) −
∑

h̃

|h̃〉〈h̃|

ε − ε
h̃

. (A9)

Equations (A7)–(A8) are obtained from Eqs. (A3)–(A4) by

the replacement of the function GMF(+)(ε) by the function

G̃MF(+)(ε). The Green function G̃MF(ε) in Eq. (A9) is cal-

culated in the coordinate representation via the regular and

irregular solutions of the Schrödinger equation (with c.b.c.) by

means of the known technique [35]. The matrix elements of

G̃MF(+)(ε) are calculated with particle wave functions |p〉 and

|p′〉 of the discrete basis. Thus, the RPA and the TBA equations

(9) and (17) are solved in the discrete basis representation.

However, in contrast to the initial uncorrelated ph propagator

R
(0)

(ω), the propagator R̃
(0)

(ω) does not contain the discrete

poles ω = ±εph corresponding to the transitions between

the hole states and the discrete particle states with positive

energies, since these states are replaced by the continuum

included in the Green function G̃MF(ε).

This method recovers the exact method [35] of treatment of

the continuum in the coordinate representation if the discrete

basis is sufficiently complete and the radius of the box is

sufficiently large to ensure the equality |h〉 = |h̃〉.

As a criterion of the validity of this equality we choose

the absolute value of the difference between the energies of

the hole states calculated with continuum wave boundary and

box boundary conditions, respectively: �εh = εh − εh̃. In all

our calculations (with Rbox = 15 fm for 16O, 40Ca, and 48Ca

and Rbox = 18 fm for 132Sn and 208Pb) we have max |�εh| �
10−5 MeV.

However, the following should be noted. The wave func-

tions of the discrete basis |p〉 and |h〉 calculated with the b.b.c

form a complete set only inside the box. This fact does not

prevent the use of the method described above in the RPA and

TBA with the short-range residual interaction (e.g., with the

Skyrme forces) due to the natural radial cutoff introduced in

the matrix elements by the hole wave functions. This method

is also applicable if the direct term of the long-range Coulomb

interaction is included because the particle wave functions in

the matrix elements of this term are always multiplied by the

hole functions taken in the same space point. But the situation

is different in the case of the matrix elements of the exact

exchange term of the Coulomb interaction where the radial

cutoff is absent and therefore the basis should be complete in

the whole r-space. In our calculations the exchange Coulomb

term is treated within the local Slater approximation, so this

problem does not arise.
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