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In industrial production, it is highly essential to extract faults in gearbox accurately. Speci
cally, in a strong noise environment, it
is di�cult to extract the fault features accurately. LMD (local mean decomposition) is widely used as an adaptive decomposition
method in fault diagnosis. In order to improve themodemixing of LMD,ELMD (ensemble LocalMeanDecomposition) is proposed
as local mode mixing exists in noisy environment, but white noise added in ELMD cannot be completely neutralized leading to
the in�uence of increased white noise on PF (product function) component. 	is further leads to the increase in reconstruction
errors. 	erefore, this paper proposes a composite fault diagnosis method for gearboxes based on an improved ensemble local
mean decomposition. 	e idea is to add white noise in pairs to optimize ELMD, de
ned as CELMD (Complementary Ensemble
Local Mean Decomposition) then remove the decomposed high noise component by PE (Permutation Entropy) while applying the
SG (Savitzky-Golay) 
lter to smooth out the low noise in PFs. 	e method is applied to both simulated signal and experimental
signal, which overcomes mode mixing phenomenon and reduces reconstruction error. At the same time, this method avoids the
occurrence of pseudocomponents and reduces the amount of calculation. Compared with LMD, ELMD, CELMD, and CELMDAN,
it shows that improved ensemble local mean decomposition method is an eective method for extracting composite fault features.

1. Introduction

When a gearbox fails, the detection signal usually exhibits
nonlinear and nonstationary characteristics [1, 2]. Combined
Time-Frequency Analysis is a hotspot of signal processing
research [3, 4]. It can provide information both in the time
domain and the frequency domain, which is a vital method
of fault diagnosis [5, 6]. Previously employed methods
include window Fourier transform [7], Continuous Wavelet
Transform [8, 9], Wigner-Ville distribution [10], and S-
transformation [11]. However, these methods have several
limitations.	ewidth of window function inwindow Fourier
transform is unchangeable [12]. 	e function of localization
in time and frequency domain is not executed simultaneously
[13, 14]. Even though Continuous Wavelet Transform (CWT)
is capable of observing the time and frequency information

of signals at the same time, it is not suitable as an adaptive
processing method.

Empirical Mode Decomposition (EMD) is an adaptive
time-frequency processing method, which is o�en used in
the analysis and processing of nonlinear and nonstation-
ary signals [15, 16]. 	is method can promptly decompose
complex signals into a 
nite number of Intrinsic Mode
Functions (IMF). 	e IMF components consist of the local
characteristic signals of the original signal at dierent time
scales.	e complete time-frequency spectrum of the original
signal is obtained by Hilbert transform of each eigenmode
function [17, 18]. Although the adaptive EMD method is
able to obtain the complete time frequency distribution of
the original signal, there are certain limitations such as
undershoots, overshoots, edge eects, and mode mixing [19].
Mode mixing refers to the fact that one component of the
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IMF may contain dierent time scales, or the same time
scale may decompose into dierent mode components. Noise
interference, intermittent signals, and pulse interference all
cause mode mixing. Colominas and Wang [20, 21] proposed
to add white noise to the original signal to improve the
accuracy of EMD decomposition; Wu et al. [22] proposed
Ensemble Empirical Mode Decomposition (EEMD), which
is performed a�er dierent white noises are added to the
original signal. 	e corresponding components obtained by
multiple decompositions are averaged to obtain the 
nal IMF
component. However, the added white noise amplitude and
the number of integrations aect the decomposition accuracy
of the EEMDalgorithm [23, 24].	ere is no available formula
that can determine this parameter; therefore, Yeh et al.
[25] proposed Complementary Ensemble Empirical Mode
Decomposition (CEEMD), which 
rst adds two opposite
white noise signals to the original signal and then decompose
by EMD, and CEEMD reduces the reconstruction error
caused by white noise. However, CEEMD not only increases
the amount of computation, but also produces more pseu-
docomponents when the added magnitude and number of
iterations are not appropriate.

Local Mean Decomposition (LMD) is an adaptive pro-
cessing method for nonlinear and nonstationary signals pro-
posed by Jonathan S. Smith [26]. LMD can decompose non-
stationary and multicomponent signals into several Product
Functions (PFs).	e instantaneous frequency of each PF has
a physical signi
cance, and each PF component corresponds
to a certain physical process. 	e PF is a single-component
amplitude modulation-frequency modulation (AM-FM) sig-
nal, so the essence of LMD is to adaptively decompose a
multicomponent signal into multiple single-component AM-
FM signals, which makes LMD especially suitable for dealing
with nonstationary and nonlinear signals. Comparing LMD
to EMD [27, 28] shows that LMD can suppress the endpoint
eect to a certain extent and has the advantages of less
false components and fewer iterations. However, in the fault
feature extraction, noise may be distributed to make the
decomposition result exhibit mode mixing.

In recent years, LMD has been widely used in damage
identi
cation. Wang et al. [29] have combined local mean
decomposition and energy dispersion rate for low-speed heli-
cal gearbox fault diagnosis. Wang [30] has proposed a bearing
fault diagnosis method based on local mean decomposition
and multiscale entropy. Liu [31] has combined local mean
decomposition and kernel principal component analysis and
applied to 
ber optic gyroscope vibration error analysis. To
address the problem of mode mixing in LMD, Chen et al.
[32] have proposed an overall local mean decomposition
method based on noise-assisted analysis, namely ensemble
local mean decomposition (ELMD). It adds white noise with

nite amplitude to the original signal, then decomposes
the signal with white noise by LMD, repeats the above
process many times, adds dierent white noise to the original
signal each time, and 
nally calculates the average of all the
decomposed PF components to get the 
nal decomposition
result. However, ELMD is limited by the number of white
noise additions, so the completeness of ELMD is poor
because the white noise cannot be completely neutralized,

and false components will appear when the selection of the
amplitude and iteration number of white noise additions
is inappropriate. Moreover, the added white noise being
random the signals decomposed by ELMD are dierent every
time.	erefore, a�er ELMDdecomposition of these dierent
signals, dierent decomposition layers will be obtained. In
order to solve the above problems of ELMD, the 
rst method
is to 
ll the missing PF component with a time series of
amplitude 0. However, this may cause the last few PFs to
have almost no energy and hardly represent the relevant
information of the signal. 	e second method is to set a
certain number of layers so that ELMDdecomposes the same
number of layers each time, but this will cause ELMD to be
no longer fully adaptive.

Based on the above analysis, this paper proposes a
gearbox composite fault feature extraction method based on
an improved ELMD. Considering that permutation entropy
(PE) can eectively amplify the weak changes in a time series,
it has important application in signal mutation detection.
	e entropy can re�ect the uncertainty of the time series:
the smaller the randomness of the time series, the smaller
is the obtained entropy, and the larger the randomness of
the time series, the larger is the obtained entropy [33, 34].
Hence the abnormal signal can be removed by calculating
the permutation entropy. In addition, the SG 
lter is used
to remove the noise in the low noise component. 	e SG

lter is a best 
t in the time domain by using the least
square method through themoving window. It can eectively
remove the noisewithout changing the shape andwidth of the
original signal [35]. First, the original signal is decomposed
by CELMD, and then the abnormal signals are detected
using permutation entropy.	e normal signal is decomposed
by LMD a�er being reconstructed. Since most of the noise
is 
ltered by CELMD and permutation entropy, the PF
component obtained will contain only a small amount of
noise, the residual noise is removed by SG 
ltering to obtain
the 
nal decomposition result.

In summary, considering that CELMD can eliminate
abnormal signals makes LMD overcome the mode mixing
phenomenon and reduce the reconstruction error. Permu-
tation entropy can measure the noise level of the signal,
which can avoid the occurrence of pseudocomponents and
reduce the calculation amount. Finally, the residual noise is
removed by SG 
ltering. In this paper, CELMD, permutation
entropy, and SG 
ltering are combined to obtain the gearbox
fault feature extraction method based on improved ELMD.
	e eectiveness of the proposed method is proved by its
application on the simulated signal and the measured signal.

2. Theory Behind the Methods

2.1. Permutation Entropy. Permutation Entropy (PE) is an
average entropy function used tomeasure the complexity of a
one-dimensional time series.	is function is highly sensitive
to signal transformation and can amplify the microsignal in
the system. 	is method can detect the dynamic mutation of
complex system well and can also detect the nonlinear and
nonstationary signals. Permutation entropy has been widely
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used in medicine, meteorology, and other 
elds, and now it
is gradually being applied to mechanical fault diagnosis. 	e
basic algorithm for permutation entropy is [36]

(1) Phase Space Reconstruction of Time Series. A phase
sequence can be obtained by performing phase space recon-
struction on a time series {�(�), � = 1, 2, . . . , �} with a length
of N:

� =
[[[[[[[[[[[[[[

� (1)� (2)...� (
)...� (�)

]]]]]]]]]]]]]]

=
[[[[[[[[[[[[[[

� (1) � (1 + �) ⋅ ⋅ ⋅ � (1 + (� − 1) �)� (2) � (2 + �) ⋅ ⋅ ⋅ � (2 + (� − 1) �)... ... ...� (
) � (
 + �) ⋅ ⋅ ⋅ � (
 + (� − 1) �)... ... ...� (�) � (� + �) ⋅ ⋅ ⋅ � (� + (� − 1) �)

]]]]]]]]]]]]]]

(1)

Here 
 = 1, 2, 3, . . . , �; � + (� − 1)� = �;m is the embedded
dimension and � is the delay time. In the reconstruction
matrix Y, each Y(j) is a reconstructed component, so there
are K reconstruction components in Y.

(2) Arrange the Reconstructed Components in Ascending
Order. Rearrange the jth reconstructed component in �(
) ={�(
) �(
 + �) ⋅ ⋅ ⋅ �(
 + (� − 1)�)} in ascending order, and
the position of each element in the reconstructed component
is referenced by �1, �2, . . . , ��. 	at is

� (
 + (�1 − 1) �) ≤ � (
 + (�2 − 1) �) ≤ ⋅ ⋅ ⋅≤ � (
 + (�� − 1) �) (2)

If there are equal values in the reconstructed component,
which is

� (
 − (�� − 1) �) = � (
 − (�� − 1) �) (3)

then, follow �� with ��, that is to say, if �� < ��, then
� (
 − (�� − 1) �) ≤ � (
 − (�� − 1) �) . (4)

	erefore, for any reconstructed component Y(j) of the
reconstruction matrix Y, a set of sequences can be obtained:�(
) = (�1, �2, . . . , ��) 
 = 1, 2, . . . , �. It is thought that there are
m! kinds of index sequences of dierent positions mapped by
m-dimensional vector space, and the same ascending order
sequence may exist in each reconstructed component, so k ≤
m!.

(3) Calculate Value of Permutation Entropy. Let the probabil-
ity of each position index sequence appear as �1, �2, . . . , ��.
According to the form of entropy, permutation entropy (PE)
of the k dierent index sequences of the time series is de
ned
as

�� (�) = − �∑
�=1
�� ln�� (5)

(4)Normalization of Permutation Entropy.	enormalization
of�� canmake the comparison of permutation entropymore
convenient. �� is normalized using m!:

�� = �� (�)ln�! (6)

where 0 ≤ �� ≤ 1.
	e value of�� re�ects the degree of randomness of the

time series {x(�), � = 1, 2, . . . , �}. If the time series is more
regular, �� is smaller and vice versa. 	e changes in ��
magnify small changes in the time series.

2.2. SG Filtering. 	e Savitzky-Golay 
lter is widely used
for data stream smoothing and noise reduction. 	e speci
c
algorithm is as follows [37].

Each M sample points near x in the original data are
taken, and x is set as the origin. 	at is, an array of windows
containing 2M+1 sample points centered on x is constructed
and an i-order polynomial is constructed to 
t the array:

� (�) = �∑
�=0
�� ⋅ �� (7)

where −� ≤ � ≤ �, � ≤ 2� + 1
	e 
tted residual is

� = �∑
�=−�

(� (�) − � (�))2 = �∑
�=−�

( �∑
�=0
�� ⋅ �� − � (�))2 (8)

	e smaller the �, the higher the 
t to the original data.
In order to minimize �, the partial derivative of � for each
parameter is 0:

#�#�� =
�∑
�=−�

2��( 	∑
�=0
�� ⋅ �� − � [�])2 (9)

	at is,

	∑
�=0
( �∑
�=−�

��+�)�� = �∑
�=−�

��� [�] (10)

	en this window array is moved until all the 
t points
of the original data are obtained. In this process, the noise
portion deviating from the normal curve trend is removed,
so the method has a smooth 
ltering eect on the data. In
this paper, SG 
ltering is used to remove noise in low noise
components. As shown in Figure 1, (a) is the original signal x,
(b) is the signal x1 a�er the high noise component is removed
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Figure 1: Noise-containing signal and noise-reduced signal.

by the noise and the Permutation entropy, and (c) is the result
of smoothing x1 by the SG 
lter. It can be seen that most
of the noise has been removed by the auxiliary noise and
permutation entropy, and the noise in the original signal can
be almost completely eliminated by S-G 
ltering.

2.3. Improved Ensemble Local Mean Decomposition Method.
	ere are three parameters of permutation entropy in
CELMD that need to be determined: length of the time series
(N), embedding dimension (m), and time delay ($).

Time series length N: the time series length used here is
N = 2000.

Embedding dimension m: in the calculation of PE, if the
value of m is too large, the time series will be homogenized
a�er the reconstruction of phase space, which will increase
the amount of calculation and cannot re�ect the subtle
changes of the sequence. On the contrary, if m is too small,
it will cause the reconstructed vector to contain few states,
making the algorithm meaningless. Bandt suggests that the
value of the embedded dimension m be taken as 3∼7 [38, 39].
When the data length is small, the value of the embedded
dimension is smaller. When the data length is larger than 720,� = 5 works well.

Time delay: the impact of the choice of time delay on the
calculation is very small; this paper takes $ = 1.

A�er calculating the permutation entropy of a compo-
nent, it is necessary to determine whether it is a high noise
component. In this case, a threshold &0 needs to be set. 	is
paper selects &0 by calculating the permutation entropy of
dierent signals.

	e permutation entropy values of representative signals
are calculated as follows:

�1 (') = (1 + sin (5*')) sin (50*')�2 (') = sin (50*')�3 (') = sin (100*') sin (100*')�4 (') = sin (300*')

Table 1: PE values corresponding to dierent signals.

Signal �1 �2 �3 �4 �5 �6 �7
PE 0.2923 0.3031 0.3826 0.4946 0.7043 0.9684 0.9735

x1 x7x6x5x4x3x2
0

0.2

0.4

0.6

0.8

1
P

E

Figure 2: PE values corresponding to dierent signals.

�5 (') =
[[[[[[[[[

-/467 (1, 300)4��8� (1, 600)-/467 (1, 300)4��8� (1, 600)-/467 (1, 200)

]]]]]]]]]




(11)

�6(') is white noise, and �7(') is Gaussian white noise.
	e computed permutation entropy values of the above

seven signals are shown in Table 1.
	e PE corresponding to each simulation signal is shown

in Figure 2. It can be seen from the above calculation results
that PE of sinusoidal signal and the amplitude modulation
signal is small; all are less than 0.6. 	e intermittent signal is
relatively random with respect to the sinusoidal signal, and
PE is 0.7043. 	e PE value of white noise and Gauss white
noise is larger, and the PE of intermittent signal and noise are
all greater than 0.6.
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Table 2:	e permutation entropy values corresponding to dierent
noise amplitude.

Amplitude 0.3 0.5 0.8 1 1.5

PE 0.7832 0.8024 0.8616 0.9027 0.9732

Table 3:	e permutation entropy values corresponding to dierent
frequency of modulation signal.

Amplitude 80 120 180 240 300

PE 0.4012 0.4065 0.4103 0.4151 0.4198

Table 4:	e permutation entropy values corresponding to dierent
amplitude of impulse signal.

Amplitude 1.5 2 2.5 3 3.5

PE 0.4835 0.4856 0.4894 0.4954 0.5011

In order to make the experiment reliable, PE of signals
with dierent known energies are solved. Here, we selected
the classic model of gearbox fault for simulation veri
cation
including modulation signals, impulse signals, and noise
[40]. As the noise amplitude increases, PE also increases
gradually, remaining greater than 0.6. When the amplitude
and frequency of themodulated signal and the impulse signal
change, the change of PE is small, and both are less than 0.6.
As shown in Tables 2–4.

It can be seen that randomness detection based on
permutation entropy can be used to detect abnormal signals
and is more appropriate to take 0.55∼0.6. In this paper,
threshold &0 = 0.6. If the PE value of the component is greater
than 0.6, it is considered to be a high noise component.

CELMD adds both positive and negative white noise
to the original signal. By adding white noise in pairs, the
in�uence of noise on the original signal can be eliminated and
the noise can be reduced.

In the two methods of CELMD and ELMD, the purpose
of adding white noise is to change the distribution of signal
extreme points and cover abnormal signals such as high-
frequency intermittent and noise in the original signal and
result in abnormal signals because of mode mixing. 	e
added white noise is decomposed preferentially. A�er the
abnormal signal is removed, the extreme points will be evenly
distributed, so it is no longer necessary to add white noise for
integration and average decomposition. 	e speci
c steps of
improved ELMD are as follows:

(1) In the original signal �('), add white noise signal ��('),−��(') with a mean of 0,

:+� (') = � (') + ℎ� ⋅ �� ('):−� (') = � (') − ℎ� ⋅ �� (') (12)

where ℎ� and ℎ� control the white noise amplitude; i and 
 =1, . . . ,�,M is the number of white noise pairs added.
(2) As for:+� (') with :−� ('), perform LMD decomposition

separately to obtain the 
rst layer PF component ?+�,1(') and?−�,1(').

(3) Integrate the average of the above components:

?1 (') = 12� �∑�=1 [?+�,1 (') + ?−�,1 (')] (13)

(4) Calculated entropy value of ?1(') and determine
whether the component is a high noise component. If the
entropy value &1 > &0, it is considered to be a high noise
component.

(5) If ?1(') is a high noise component, calculated?2('), ?3('), . . . according to steps (2)-(4) until it appears &� ≤&0. 	is is easy to understand that ?�(') is not a high noise
component.

(6) Separate high noise ?1('), . . . , ?�−1(') from the orig-
inal signal, the signal with low noise forms a new recon-
structed signal:

C (') = � (') − �−1∑
�=1
?� (') (14)

Decompose the reconstructed signal y(t)with LMD to obtain
the PF component.

(7) A�er the high noise component is removed by
CELMD and permutation entropy, there will still be a small
amount of noise in the signal and a small amount of error due
to the noise, so the low noise component is smoothed by SG

ltering. 	e 
nal decomposition result is obtained. 	e �ow
chart of the improved ELMDmethod is shown in Figure 3.

3. Simulation Analysis

Given a simulated signal, as shown in (15), it includes an
intermittent signal, a modulated signal, and a periodic shock
signal.

�1 (') = cos (400 × 2*')
× ( F (') − F (' − 0.1) +F (' − 0.2) − F (' − 0.3) +F (' − 0.4) − F (' − 0.5) )

�2 (') = sin (10 × 2*') × sin (100 × 2*')�3 (') = 4 × exp (0.015 × 1500 × 2*')
× sin (√1 − 0.0152 × 1500 × 2*')

� (') = �1 (') + �2 (') + �3 (')

(15)

	e time-domain waveform of simulation signal x is
shown in Figure 4.

	e results obtained by CELMDAN are shown in Fig-
ure 5. It can be seen that the decomposition result of this
method is almost complete, so the method can determine the
PF of each layer in a noiseless environment. However, in a
noisy environment, this method cannot get ideal decomposi-
tion results such as adding noise of amplitude 1 to the signal,
to obtain the composite signal shown in Figure 6.
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Figure 3: Improved ELMDmethod �ow chart.

	e signal is decomposed by this method, and the result
is shown in Figure 8. As shown in Figure 7, the decompo-
sition result is greatly dierent from the three components
of the original signal and that mode mixing is present,
further indicating that CELMDAN does not denoise the
original signal when adding white noise. Improved ELMD
can reduce the in�uence of noise on the decomposition
result by using permutation entropy. 	e signal is decom-
posed by this method, and the result is shown in Figure 8.
Compared with CELMDAN, which adds white noise to each
PF component, PECELMD no longer adds noise to the
signal a�er removing the high noise component, but uses
SG 
lter to remove the noise in the low noise component,
so the reconstruction error is smaller. 	erefore, the fault
feature can be extracted in a strong noise environment. Com-
pared to CELMDAN, this method has higher decomposition
accuracy.

In order to verify the eectiveness of the improved ELMD,
nonlinear simulation signal withmixed randomnoise is used,
which is a mixture of three signals, and the three signals are
as shown in (16).

�1 = cos (100 ⋅ * ⋅ ')�2 = (1 + ') ⋅ cos (20 ⋅ * ⋅ ')�3 = 0.4 ⋅ 4��8� (7�-/ ('))
(16)

	e time-domain wave forms of the three signals are
shown in Figure 9, the time-domain waveform of the com-
posite signal is shown in Figure 10.

Decomposition process is as follows by improved ELMD.
(1) Adding 30 pairs of white noise signals with a mean

value of 0 to the combined signal :+� (') with :−� ('), among
them � = 1, 2, . . . , 30.



Complexity 7

−1

0

1
x1

−1

0

1

A
m

p
li

tu
d

e

x2

−5

0

5
x3

−5

0

5
x

Time (s)

0 0.1 0.2 0.3 0.4 0.5
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(2) Decompose the signal x by LMD and PF components?+�,j(') with ?−�,j(') are obtained, where j represents the jth layer
PF component. Average the PF component of the 
rst layer?1(').	e result is shown in Figure 11(a), and the permutation
entropy of the 
rst layer PF component is calculated &1 =0.9029, &1 > &0, the 
rst layer PF is the abnormal component.

?1 (') = 160 30∑�=1 [?+�,1 (') + ?−�,1 (')] (17)

(3) Continue to average the PF component of the second
layer �2(').	e result is shown in Figure 11(b), calculating the

entropy &2 which is 0.7196. Because &2 > &0, so the second
layer is also an abnormal signal.

?2 (') = 160 30∑�=1 [?+�,2 (') + ?−�,2 (')] (18)

(4) Continue to average the PF component of the third
layer �3('), and the result is shown in Figure 11(c), and the
permutation entropy is calculated. &3 is 0.3438 because &3 >&0, so the third layer is the normal signal.

?3 (') = 160 30∑�=1 [?+�,3 (') + ?−�,3 (')] (19)

(5) Obtain PF1 and PF2 as an abnormal signal and remove
it from the original signal.

	e time-domain waveform of the reconstructed residual
signal is shown in Figure 12.

Performing LMD decomposition on Figure 12 and then
performing SG 
ltering on each component, the decom-
position result of improved ELMD is obtained, and the
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Figure 7: Decomposition results obtained by CELMDAN.
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Figure 12: Time-domain waveform of the signal a�er removing the abnormal signal.

decomposition results of PF1, PF2, and residual component
are shown in Figure 13(d).

	e original signal is decomposed by LMD and result
is shown in Figure 13(a). 	e 
rst and second layers are
noise, the same mode appears in the fourth and the 
�h
layer, and there is signi
cant mode mixing. 	e sixth, sev-
enth, and eighth layers are pseudocomponents. 	e original
signal is decomposed by ELMD and result is shown in
Figure 13(b). Figure 13(c) shows the decomposition result of
CELMD. ELMD and CELMD still have pseudocomponents
and the calculation amount is large. Figure 13(d) shows
the decomposition result of improved ELMD. 	e results
of the improved ELMD decomposition are PF1 and PF2,
which overcomes the mode mixing phenomenon and the
occurrence of pseudocomponents is avoided.

In order to further justify the superiority of the proposed
method, the proposedmethod is comparedwith fault diagno-
sis methods based on Ensemble Empirical Mode Decompo-
sition (EEMD) and variational mode decomposition (VMD).
In gearbox fault diagnosis, EEMD and VMD are commonly
used methods. Figure 14 shows the results of EEMD.	e 
rst
and second layers are high-frequency noise, the third and
fourth layers are components of x1, and the 
�h and sixth
layers are components of x2. Compared with the proposed
method, the results of EEMD are not only moremodemixing
but also more pseudocomponents. 	is is easy to understand
that the proposed method is better than EEMD. Figure 15
shows the results of VMD. Because the simulation signal has
only twomeaningful components, the decomposition level in
VMD is set to 2. As shown in Figure 15, the 
rst layer contains
component x1 and component x2 (compared with Figure 12),

and the second layer contains a large amount of noise. It is
obvious that the proposed method is better than the VMD
method.

4. Experimental Results

4.1. Experiment 1. In order to show the eectiveness and
feasibility of the proposed method in engineering practice,
the relevant experiments on closed power �ow gearbox test
bench are carried out in this paper. In the experiment, the
gearbox was loaded by the internal force generated by the tor-
sion bar. 	e speed of gearbox is adjusted by controlling the
electromagnetic speed regulating asynchronous motor, and
the regulation range is 120 r/min–1200 r/min. 	e gear trans-
mission test bench is shown in Figure 16. 	e experimental
devices of the test bench mainly include test bearings, rota-
tional speed displays, motors, test gears, rotating sha�s, and
three-way acceleration sensors. 	e experimental bearing
model is 32212, and the three-way acceleration sensor model

is YD77SA (sensitivity is 0.01L/�72 ). 	e faulty bearing is at
the three-way acceleration sensor 1#. 	e fault frequency of
the rolling element is 72Hz, the fault frequency of the outer
ring of/bearing is 160Hz, and the meshing frequency of the
gear is 360Hz. 	e number of sampling points is 2048. 	is
paper takes the composite fault as an example to verify the
feasibility of the improved ELMD method. 	ere are three
composite faults, namely, gear peeling, bearing outer ring
defects, and rolling element defects, and the simulated fault
of bearing is shown in Figure 17. Figure 17(a) shows the fault
of bearing ball, and Figure 17(a) shows the fault of outer



10 Complexity

−1

0

1

−1

0

1

−2

0

2

−5

0

5

−2

0

2

A
m

p
li

tu
d

e

−0.5

0

0.5

−0.1

0

0.1

0.2 21.81.61.41.210.80.60.4

Time (s)

−0.05

0

0.05

mode mixing

(a)

0.2 21.81.61.41.210.80.60.4

Time (s)

−0.5

0

0.5

−2.0

0

2.0

−2.0

0

2.0

−5.0

0

5.0

A
m

p
li

tu
d

e

−0.2

0

0.2

−0.1

0

0.1

−0.05

0

0.05

−0.2

0

0.2

mode

mixing

(b)

0.2 21.81.61.41.210.80.60.4

Time (s)

−0.5

0

0.5

−1

0

1

A
m

p
li

tu
d

e

−2

0

2

−1

0

1

−0.5

0

0.5

−1

0

1

mode mixing

(c)

−5

0

5

A
m

p
li

tu
d

e

0.2 2.01.81.61.41.21.00.80.60.4

Time (s)

−2

0

2

−2

0

2

(d)

Figure 13: Decomposition results obtained by LMD (a), ELMD (b), CELMD (c), and improved ELMD (d).

ring. Some data are shown in Table 5. Bearing parameters are
shown in Table 6.

	e time-domain waveform of the vibration signal and
its spectrum diagram are shown in Figure 18. Figure 18(a)
shows the time-domain waveform and Figure 18(b) shows the
frequency-domain waveform.	ere are obvious peaks in 360
Hz, 720 Hz, 160Hz, which are meshing frequency and it is
multiple of gear and bearing outer ring frequency. However,

the rolling element vibration information does not protrude
in the spectrum due to the presence of noise, so it is necessary
to adaptively decompose the original vibration signal. 	e
signal is decomposed by CELMD, and the obtained result
is shown in Figure 19. Figure 19(a) shows the time-domain
waveform and Figure 19(b) shows the frequency-domain
waveform. 	e original signal is adaptively decomposed
into 8 layers. In addition to the high-frequency noise, the
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1—Speed motor, 2—Coupling, 3—Common test gearbox, 4—

Rotational torsion, 5—Torque bar, 6—Test gearbox, 7—�ree-

way acceleration sensor 1#, 8—�ree-way acceleration Sensor 

2#

1 2 3 4 5 6 7 8

Figure 16: Gear Drive Test Bench.

Table 5: Gear transmission test bench parameters.

Meshing method Transmission ratio Sampling frequency Sampling Point Number

Half tooth engagement 1:1 8KHz 2000

Gear tooth number Speed Axis rotation Load torque

18 1200rpm 20Hz 1000N⋅m
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(a) Fault of bearing ball (b) Fault of outer ring

Figure 17: Fault bearing.
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Figure 18: Time domain and spectrum analysis results of measured signals.
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Figure 19: Decomposition results of measured signals obtained by CELMD.

Table 6: Bearing parameters.

Model Inner diameter/mm Outside diameter/mm 	ickness/mm

32212 60 110 28
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Figure 20: Decomposition results obtained by improved ELMD.
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Figure 21: Schematic of wind turbine gearbox test bench.


rst three layers exhibit mode mixing, of which 720 Hz is
in the 
rst three layers, and the low signal-to-noise ratio
of the 
rst two layers leads to weaker fault information
energy, which is prone to misdiagnosis. 	e fourth and 
�h
layers of meshing frequency and outer ring characteristic
frequency are extracted, but the sixth and seventh layers are
not recognized. A speci
c physical meaning, the 72Hz weak
fault is still not extracted. Further analysis of the original
signal by improved ELMD is shown in Figure 20. Figure 20(a)
shows the time-domainwaveformandFigure 20(b) shows the
frequency-domain waveform. 	is method decomposes the
original vibration signal into 5 layers, of which 720 Hz, 360
Hz, 160 Hz, and 72 Hz, respectively, exist in dierent PFs. It
shows that the method not only overcomes the mode mixing
phenomenon, but also separates the three fault characteristics
of the original signal, which further indicates that the method
largely suppresses the mode mixing phenomenon and does
not have pseudocomponents.

4.2. Experiment 2. In order to further verify the feasibil-
ity of the proposed method in engineering applications,
experiments using a wind turbine gearbox test bench were
carried out in this paper. 	e detailed introduction of the

experimental bench is shown in [29]. Schematic of the wind
turbine gearbox test bench is shown in Figure 21. In the test,
bearing with inner ring fault on sha� #10 and bearing with
rolling element fault on sha� #8 are adopted. In addition,
the high-speed sha� has slight bending. Information of fault
frequency is shown in Table 7. Figure 22 shows the vibration
signal. Figure 22(a) shows the time-domain waveform and
Figure 22(b) shows the frequency-domain waveform. From
the frequency-domain diagram, it can be found that the fault
information is not obvious and there is no fault frequency
about slight bending of high-speed sha� (28Hz). 	is is
because the collected data contains a lot of noise.

	e signal is decomposed by CELMD, and the obtained
result is shown in Figure 23. Figure 23(a) shows the time-
domain waveform and Figure 23(b) shows the frequency-
domain waveform. 	e original signal is adaptively decom-
posed into 7 layers. Among them, the 
rst three levels are
the components of high-frequency noise. 	e fourth layer
is fault frequency about rolling element fault on sha� #8.
	e 
rst layer is fault frequency about inner ring fault on
sha� #10. 	e latter two levels are meaningless components.
However, the fault frequency about slight bending of high-
speed sha� was not extracted. Further analysis of the original
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Figure 22: Time domain and spectrum analysis results of measured signals.
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Figure 23: CELMD decomposition results of measured signals.

signal by improved ELMD is shown in Figure 24. Figure 24(a)
shows the time-domainwaveformandFigure 24(b) shows the
frequency-domain waveform. 	e original signal is decom-
posed into 4 layers. 	e 
rst layer is fault frequency about
rolling element fault on sha� #8. 	e second layer is fault
frequency about inner ring fault on sha� #10. 	e third layer
is fault frequency about slight bending of high-speed sha�.
It can be seen that all the fault information is extracted
through the method proposed in this paper, which veri
es
the eectiveness of the proposed method in the application.

5. Discussion

In this paper, the proposed method is veri
ed by simulation
and experiment. 	is paper veri
es the proposed method
through simulation and experiment. In the simulation, three
signals were constructed and processed with LMD, ELMD,
CELMD, and improved ELMD, respectively. 	e decompo-
sition results obtained by LMD, ELMD, and CELMD show

dierent degrees of modal aliasing and more pseudocom-
ponents. 	e improved ELMD perfectly decomposes three
signals, overcoming mode mixing and pseudocomponents.

In the experiment, vibration signals including gear peel-
ing, bearing outer ring defects, rolling element defects were
collected and processed by various methods. 	e proposed
method successfully extracts three fault characteristic fre-
quencies and has no mode mixing and pseudocomponents.
However, CELMD and ELMD were unable to extract the
rolling element fault characteristic frequency of 72 Hz. In
another test, the fault included bearing inner ring failure and
rolling element failure. In addition, the high-speed sha� is
slightly curved. 	e proposed method successfully extracts
three fault characteristic frequencies and has nomodemixing
and pseudocomponents. However, CELMD cannot extract
sha� bending faults.

	rough the comparison and analysis of simulation and
experiment, it can be concluded that the proposed method
can restrain themodemixing and pseudocomponent, and the
noise reduction eect is better than CELMD and ELMD.
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Table 7: Fault information.

Fault location Rotational frequency of sha�. Inner ring fault on sha� #10 Rolling element fault on sha� #8

Fault frequency 28 57.7 99.5
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Figure 24: Improved ELMD decomposition results.

6. Conclusion

	e objective of this paper is to make an attempt to solve
the problem of di�culty faced while extracting fault features
accurately under strong noise background. To address this
issue, the paper studies local mean decomposition and its
development, which is a new time-frequency decomposi-
tion technology. 	e mode mixing generated by intermit-
tent signals is the problem of local mean decomposition
(LMD). Based on the noise-assisted method, ensemble local
mean decomposition (ELMD) method alleviates the mode
mixing problem of LMD to some extent, but the added
white noise cannot be completely neutralized. By CELM-
DAN, the energy of each added noise can be determined
adaptively, but it ignores the eects of high-frequency
noise in the original signal during the decomposition
process.

	is paper proposes an improved ELMD method to
extract composite fault feature of gearbox. By combining
CELMD (Complementary ELMD) and Permutation Entropy
(PE), the high noise components can be eliminated directly.
	e PF component is obtained by smoothing the low
noise component combined with S-G 
ltering. 	is method
overcomes the mode mixing phenomenon and reduces the
reconstruction error. Moreover, the occurrence of pseudo-
components is also avoided, and the amount of calculation is
reduced. Characteristic information is extracted eectively in
both simulation analysis and experimental analysis, and the
feasibility of the method is illustrated in comparison to LMD
and CELMD.
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